1 Basic Theories

1.1 Boolean Theory

Operators Some boolean operators are supported by $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$, but they have names suggesting shape rather than content, e.g., a \Rightarrow b. It would be nice if they were given informative, short names without clashing with existing $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ commands.

$a \Rightarrow b$	$\mathrm{a} \backslash \operatorname{imp} \mathrm{b}$
$a \neq b$	$\mathrm{a} \backslash \operatorname{Imp} \mathrm{b}$
$a \Leftarrow b$	$\mathrm{a} \backslash \operatorname{pmi} \mathrm{b}$ or a \impby b
$a \Leftarrow b$	$\mathrm{a} \backslash \operatorname{Pmi} \mathrm{b}$ or a \Impby b
$a=b$	$\mathrm{a} \backslash E q \mathrm{~b}$
if c then x else y fi	$\backslash \operatorname{cond}\{\mathrm{c}\}\{\mathrm{x}\}\{\mathrm{y}\}$

Other boolean symbols ($=, \backslash$ bot for \perp, \lor for \vee, etc.) have reasonable names in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, and I will not show them.

Two more variants of if-then-else-fi:

- $\backslash c o n d b\{c\}\{x\}\{y\}:$

> if c then x
> else $y \mathrm{fi}$

- \condbb\{c\}\{x\}\{y\}:

$$
\begin{aligned}
& \text { if } c \text { then } \\
& \quad x \\
& \text { else } \\
& \quad{ }^{y}{ }^{y}
\end{aligned}
$$

Proof format Using the align* environment provided by $\mathcal{A} \mathcal{M} \mathcal{S}$-IATEX (package name amsmath), a calculational proof with hints can be typeset easily. The first proof in the textbook:

$$
\begin{array}{rll}
& a \wedge b \Rightarrow c & \text { Material Implication } \\
= & \neg(a \wedge b) \vee c & \text { Duality } \\
= & a \vee \neg b \vee c & \text { Material Implication } \\
= & a \Rightarrow \neg b \vee c & \text { Material Implication } \\
= & a \Rightarrow(b \Rightarrow c) &
\end{array}
$$

Its code:

```
\begin{align*}
&\Blank a \et b \imp c && \text{Material Implication} \\
&\Eq \neg(a \et b) \vel c && \text{Duality} \\
&\Eq \neg a \vel \neg b \vel c && \text{Material Implication} \\
```

```
&\Eq a \imp \neg b \vel c && \text{Material Implication} \\
&\Eq a \imp (b \imp c)
\end{align*}
```

The command \Blank is a blank relation symbol I invented; it is necessary in that position to keep align* happy. Its definition is simply: \mathrel\{ \backslash phantom $\{\backslash$ Eq $\}\}$.

2 Basic Data Structures

Bunch Theory

A, B	A,B
$A^{\prime} B$	$A^{‘} \mathrm{~B}$
null	\nul
$\not \subset A$	\card A
$0, . .10$	0 \bto 10
nat, xnat	\nat, \xnat
int, xint	\int, \xint
rat, xrat	\rat, \xrat

String Theory

$n i l$	$\backslash \mathrm{nil}$
$n^{*} S$	$\mathrm{n}^{\wedge} * \mathrm{~S}$
${ }^{*} S$	$\left\}^{\wedge} * \mathrm{~S}\right.$
$0 ;. .10$	0 \sto 10

List Theory

$$
\begin{array}{ll}
L^{+} M & \mathrm{~L}^{\wedge}+\mathrm{M} \\
n \rightarrow i \mid L & \mathrm{n} \text { \to i \ow L } \\
L n & \mathrm{~L} \text { \ap } \mathrm{n}
\end{array}
$$

3 Function Theory

The \fun and $\backslash f n$ commands produce functions; \fun requires a domain and \fn omits the domain

$$
\begin{array}{ll}
\langle x: \text { nat } \rightarrow x+1\rangle & \backslash \text { fun }\{\mathrm{x}\}\{\backslash \text { nat }\}\{\mathrm{x}+1\} \\
\langle x \rightarrow x+1\rangle & \backslash \mathrm{fn}\{\mathrm{x}\}\{\mathrm{x}+1\}
\end{array}
$$

The \bind and \bnd commands help you produce quantified expressions. They just have the quantifier missing, and you just put it back. \bind requires a domain and \bnd omits the domain. Some examples:

```
\forallx\cdotx=x \forall\bnd{x}{x=x}
\Sigmai:0,..10\cdot\mp@subsup{i}{}{2}\\Sigma\bind{i}{0 \bto 10}{i^2}
\Sx:nat\cdotx/2:nat \S\bind{x}{\nat}{x/2:\nat}
```

Two quantifiers are not already available in $\mathrm{IA}_{\mathrm{E}} \mathrm{X}: M A X$ and $M I N$. I have defined them as \MAX and \MIN, respectively.

Both application and composition are \ap. You can think of it as standing for "apposition". Selective union is \ow, standing for "otherwise". You have seen them in List Theory. More examples:

$$
\begin{array}{ll}
M A X v: x \cdot n & \backslash \operatorname{MAX} \backslash \text { bind }\{\mathrm{v}\}\{\mathrm{x}\}\{\mathrm{n}\} \\
M I N v: x \cdot n & \backslash \operatorname{MIN} \backslash \text { bind }\{\mathrm{v}\}\{\mathrm{x}\}\{\mathrm{n}\} \\
f \mid g & \mathrm{f} \text { \ow } \mathrm{g} \\
h f x g y & \mathrm{~h} \backslash \mathrm{ap} \mathrm{f} \text { \ap } \mathrm{x} \backslash \mathrm{ap} \mathrm{~g} \text { \ap } \mathrm{y}
\end{array}
$$

4 Program Theory

$$
\begin{array}{ll}
o k & \text { \ok } \\
S . R & \mathrm{~S} \backslash \mathrm{dc} \mathrm{R} \\
x:=e & \mathrm{x} \backslash \text { get e }
\end{array}
$$

5 Programming Language

Two forms of while-do-od:

- \while\{c\}\{P\}:

$$
\text { while } c \text { do } P \text { od }
$$

- \whileb\{c\}\{P\}:
while c do P od

