
Assignment 1

1. Write a function

fib :: Integer -> Integer

for the Fibonacci sequence:

f(0) = 1

f(1) = 1

f(n + 2) = f(n + 1) + f(n) for n ≥ 0

It does not have to be efficient.

2. Write a function

prodlist :: [Integer] -> Integer

that computes the product of the numbers in a list. E.g.,

prodlist []
prodlist [1,3,4]

should be 1 and 12 respectively.

3. Write a function

oddity :: [Int] -> [Bool]

that scans the input list N of numbers, checks each one if it is even or odd,
and returns a boolean list B of the same length in which each element is
true iff the correspond element in N (by position) is odd. Examples:

oddity [] = []
oddity [1,2,3,5] = [true, false, true, true]

4. Modify the Shape type in the lecture to include two more shapes: triangle
with three vertices, and polygon with a list of vertices. Each vertex is an
ordered pair of floats, i.e., (Float, Float).

To avoid cluttering, you may use type synomyn in Haskell:

type Vertex = (Float, Float)

Then wherever you would write (Float, Float) you may write Vertex
instead, and vice versa.

Modify the area function accordingly.

1


