Course Overview

1. What is functional programming

2. The Haskell programming language

3. Some common data structures and algorithms
4. Combinators and its use in parsing

5. Theorem proving

6. Monadic I/O and a chat server example

FP Lecture 1

Traditional Programming

Factorial example in traditional programming:

int factorial(int n) {
int p=1, 1 =1;
while (i <= n) {
P=p*i;
i=1+1;
}
return p;

¥

e /mperative: program works by reading and writing state variables.

e Use loops.

FP Lecture 1

Reading List

e Course web page: www.cs.utoronto.ca/ trebla/fp/
e Haskell and functional programming resources: www.haskell.org
e Haskell Tutorial: www.haskell.org/tutorial/

e Any good Haskell book, e g,

— Paul Hudak. The Haskell School of Expression: Learning Functional
Programming through Multimedia. Cambridge University Press, 2000.

— Richard Bird. Introduction to Functional Programming using Haskell.
Prentice Hall Europe, second edition, 1998

— Any other books suggested on the Haskell home page.

FP Lecture 1 2

Functional Programming

Factorial example in functional programming:

factorial n

let £ pi=i1f i <= n then
£ (pxi) (i+1)
else p
in f 11

e No state variables. Program works by passing parameters and returning values.

e Use recursion, most often tail recursion.

FP Lecture 1 4

Functional Programming (cont.) Evaluation Policy

Suppose a function does not use an argument:
e Functions are first-class citizens like data value are:

fxy=x
— can pass a function as a parameter
— can create a new function on the fly What will happen if we give a malicious parameter to the unused argument?
This function inputs a function f and outputs a function g with g(z) = 2f(z) £3 (1/0)

e Fager evaluation: parameters are evaluated always. All malicious parameters
cause errors.

double f = let gx =2 * f x in g

Example of use:
e Lazy evaluation: parameters are evaluated only when used. Unused parameters
g = double factorial never cause errors.

twelve = g 3
& The language of this course, Haskell, performs lazy evaluation.

FP Lecture 1 5 FP Lecture 1 6

Functional vs Imperative: Functional vs Imperative:
Modes of Thinking Pros and Cons

e Think recursion, not loop. e Pros:

— Base case, induction step.

— No side effects.
— Divide and conquer. o side effects

— Easier to prove correct.
) — Shorter, higher level.
e No state variables. &

— If you really need them, make them arguments. e Cons:

— Harder to write.

— The 1/O model is harder to understand and use.
— In fact, the library is full of functions like this. — Slower.

e Don't hesitate to pass functions as parameters and return functions.

FP Lecture 1 7 FP Lecture 1 8

The Haskell Language

Named after the logician Haskell B. Curry.

e Summarizes a lot of mature ideas, research, and experience in functional
programming.

e Purely functional. No side effects.

e lazy evaluation.

e Strongly typed and polymorphic.

FP Lecture 1 9

Types

Each expression and value has a data type.
Some typical types in Haskell:

e Int: machine-sized integer

e Integer: arbitrary size integer

o [Integer]: list of integers

e Integer -> Integer: function that maps an integer to an integer

e Integer->Integer->Integer: function that maps two integers to an integer

e (Integer, Int): ordered pair of Integer and Int

FP Lecture 1 11

Expressions and Values

Expressions are things you want the computer to calculate.

3

3+ 4
factorial (3+4)
X +y

Values are the results of calculating expressions.

The values of the above expressions are, respectively:

3

7

5040

ERROR: Undefined variables

FP Lecture 1 10

Types (cont.)

Examples:

e factorial has type Integer -> Integer

factorial 3 has type Integer

[3, 4, 5] has type [Integer]

(3, 4, 5) has type (Integer, Integer, Integer)

3+4 has type Integer

+ has type Integer->Integer->Integer

FP Lecture 1 12

Bindings/Definitions

We can bind an expression to an identifiers, i.e., define an identifier to be an
expression.

ten=1+2+ 3+ 4

Important: this does not create a state variable. We cannot change ten later.

More often, we bind functions (which are expressions) to function names.
square x = X * X

This says: here is an expression that is a function mapping « to & X x. Bind this
function to square.

FP Lecture 1 13

Local Bindings (cont.)

Multiple local bindings in a let-expression:

let x =3
y=x+4
in x * y

Local bindings may also be used in a function expression:

fourth_power x = let x2 = x*x in x2*x2

factorial n
let £ p i =41if i <= n then f (pxi) (i+1) else p
inf 11

FP Lecture 1 15

Local Bindings

let x=3 in x*x

This is called a let-expression.

e The body of the expression is x*x.
e Within the scope of the expression, x is temporarily bound to 3.
e Therefore, the value of the expression will be 9.

e Qutside the scope of the expression, the binding is invisible.

FP Lecture 1 14

Local Bindings for Definitions

There is a where-clause for local bindings in definitions.

seven = x + y where x = 3
y=x+4

fourth_power x = x2%x2 where x2 = x*x

factorialn = £ 11
where f p i = if 1 <= n then f (p*i) (i+l) else p

Note: where-clauses are only for definitions, not expressions.

x*x where x=3 <--- wrong; use let instead

FP Lecture 1 16

