
Types

Since each expression has a type, each definition also has a type.

• square n = n*n

then square has type Integer -> Integer

(Ok, it really is something more generic, but let me lie for once more.)

• mynumber = square 10

then mynumber has type Integer

FP Lecture 2 1

Specifying Types

• You can specify the type of an expression or a subexpression:

10 + 12 :: Integer --specifies the whole expression
10 + (12 :: Integer) --specifies the 12

• You can also specify the type of a definition. Write it on a separate line.

square :: Integer -> Integer
square n = n * n

• Generally, x::T is pronounced as “x has type T”.

You may omit such specifications. Then Haskell will compute the most
“generic” types possible.

FP Lecture 2 2

Defining Your Own Types

Let us define a colour type. It will be like an enumerated type.

data Colour = Red | Green | Blue

• The name of the new type is Colour.

• Its possible values are: Red, Green, Blue.

Note:

• Red, Green, Blue are called constructors of Colour: they produce
values of the type.

• Type names and constructor names must begin with capital letters.

FP Lecture 2 3

Writing Functions for Your Types

Let us define a function that maps Colour to integer RGB codes.
Red goes to 255× 216, Green goes to 255× 28, Blue goes to 255.

toRGB :: Colour -> Int
toRGB c = case c of

Red -> 255 * 2^16
Green -> 255 * 2^8
Blue -> 255

This is just like procedural languages. Is there a more elegant way?

FP Lecture 2 4

Writing Functions for Your Types (cont.)

More elegant way:

toRGB :: Colour -> Int
toRGB Red = 255 * 2^16
toRGB Green = 255 * 2^8
toRGB Blue = 255

Execution view:

• Computer compares the actual parameter with the formal parameters.

• Computer selects the first equation that matches.

This is called pattern matching.

FP Lecture 2 5

How to Write a Function

Human conceptual view:

• I want Red to be mapped to 255× 216.

toRGB Red = 255 * 2^16

• I also want Green to be mapped to 255× 28.

toRGB Green = 255 * 2^8

• I also want Blue to be mapped to 255.

toRGB Blue = 255

This is how you should write a function or read one.

FP Lecture 2 6

More Examples of Functions

More functions written with pattern matching. Try to get used to them.

• Straightforward factorial.

factorial :: Integer -> Integer
factorial 1 = 1
factorial n = n * factorial (n-1)

• Smart factorial.

smartfact :: Integer -> Integer
smartfact n = f 1 n
where f p 1 = p

f p i = f (p*i) (i-1)

FP Lecture 2 7

A More Interesting Type

Let us define a shape type. A shape will be a rectangle or an ellipse.

• A rectangle will have a width and a height.

• An ellipse will have a width and a height too (lengths of the axes).

Kind of like a union type.

data Shape = Rectangle Float Float
| Ellipse Float Float

Now each constructor takes some paramters.
E.g., Rectangle takes two floating-point numbers, a width and a height.
(Unfortunately the syntax only lets us write the types.)

FP Lecture 2 8

A More Interesting Type (cont.)

Some expressions of type Shape:

Rectangle 1.0 2.0 :: Shape
Ellipse 2.0 3.0 :: Shape

If you enter them at a Haskell prompt, you’ll get an error message:

ERROR: Cannot find "show" function for:
*** Expression : Rectangle 1.0 2.0
*** Of type : Shape

The computer is saying, “I don’t know how to display data of this type.”
How do we fix the stupid computer?

FP Lecture 2 9

A More Interesting Type (cont.)

Add a line “deriving Show” at the end of the type declaration:

data Shape = Rectangle Float Float
| Ellipse Float Float

deriving Show

This tells the computer, “just display data of this type näıvely.”
Now you can enter:

Rectangle 1.0 2.0

And the computer will display it.

FP Lecture 2 10

A More Interesting Function

Let us write a function to compute areas of shapes.

area :: Shape -> Float

• Area of rectangle is width times height.

area (Rectangle w h) = w * h

The parentheses are needed when there are parameters to the constructor.

• Area of ellipse is π times width times height.

area (Ellipse w h) = pi * w * h

• Done!

FP Lecture 2 11

Constructor vs Function

Consider again:

Rectangle 1.0 2.0 :: Shape

• The constructor is acting like a function:

Rectangle :: Float -> Float -> Shape

In fact you can use it as such.

• So Red, Green, Blue are like functions requiring no parameters.

• But constructors and functions are different. E.g., cannot use functions
in pattern matching.

FP Lecture 2 12

An Introduction to Lists

Some example lists:

[False, True, False] :: [Bool]
[Rectangle 1.0 2.0, Ellipse 2.0 3.0] :: [Shape]
[] --the empty list, pronounced nil

• We will discuss the type of [] later. For now, it just works.

• Because of strong typing, Haskell lists are homogeneous: all elements in
a list must be of the same type.

To simulate heterogenous lists, use list of a union type, just like how we
mix rectangles and ellipses in the same list.

FP Lecture 2 13

An Introduction to Lists (cont.)

• The operator : adds an element to the front of a list.

False:[True] gives [False, True]

• In fact, [] and : are constructors of the list types.

[] :: [Bool]
(:) :: Bool -> [Bool] -> [Bool]

So you can use them in pattern matching.

• [False, True] is really constructed in these stages:

1. start with constructor []
2. use constructor : to add True. True:[]
3. use constructor : to add False. False:True:[]

FP Lecture 2 14

A Function Of List
Write a function that adds up a list of integers.

addList :: [Integer] -> Integer

• Hey I know how to do it when the list is empty.

addList [] = 0

• If the list is not empty, then it is like x:xs, where x is the first number
and xs is the rest of the list. I will add x to the sum of xs.

The sum of xs is, of course, addList xs.

addList (x:xs) = x + addList xs

• Done!

FP Lecture 2 15

A More Interesting Function of List

Write a function that adds up the areas in a list of shapes.

areaList :: [Shape] -> Float

• Again, I know how to deal with the empty list.

areaList [] = 0

• If the list is like x:xs, I will compute the area of x, then add it to the
sum of the areas in xs.

areaList (x:xs) = area x + areaList xs

• Done!

FP Lecture 2 16

