
Guards in Functions

A function to find the “sign” of a number:

sgn x = if x>0 then 1 else if x<0 then -1 else 0

Here is a slick way to write it, using guards:

sgn x | x>0 = 1
| x<0 = -1
| otherwise = 0

Bindings in where clauses are visible in guards:

f x | w > 10 = 1
| otherwise = 2

where w = x*x

FP Lecture 3 1



Polymorphism

Recall the types of lists:

[True, False] :: [Boolean]
[Rectangle 1 2, Ellipse 1 2] :: [Shape]
[] :: [what should go here?]

Whatever type [] has, it must be consistent with these:

True : [] :: [Boolean]
Rectangle 1 2 : [] :: [Shape]

The first expression requires [] to have type [Boolean].
The second expression requires [] to have type [Shape].
How could this be possible?

FP Lecture 3 2



Polymorphism

The type of [] is [a]. The a here is called a type variable.
Note that a type variable begins in lower case. (An actual type begins in
upper case.)
A type variable can stand for any type. It is instantiated to an actual type
so as to satisfy the context. E.g.,

True : [] --a is instantiated to Boolean
Rectangle 1 2 : [] --a is instantiated to Shape

If the context does not impose any type on a, it remains uninstantiated.
E.g.,

[] --has type [a] when alone

In this way, [] is polymorphic : it can have any of a multitude of types.

FP Lecture 3 3



Polymorphic Function

A function to count the elements in a list.

length [] = 0
length (x:xs) = 1 + length xs

Its type is [a] -> Integer because nothing in the function determines the
type of the list elements.
This is a polymorphic function: its parameters (and even return values) can
have any of a multitude of types. E.g.,

length [True, False] --parameter is [Boolean]
length [3, 4] --parameter is [Integer]
length [] --parameter is [a]

You can see that polymorphism is Haskell’s way of providing genericity.

FP Lecture 3 4



Map
Let’s say we have a squaring function:

square n = n*n

and we want to use it to square every element of a list, e.g., if we have a
list [1,3,5], we want to get [1,9,25]. We might write:

squareList [] = []
squareList (x:xs) = square x : squareList xs

Now let’s say we have a cube function and we want to do the same:

cubeList [] = []
cubeList (x:xs) = cube x : cubeList xs

This gets boring after a few more examples. Isn’t there a better way?

FP Lecture 3 5



Map
The Haskell library has a map function. If you want to apply a function f
to every element of a list xs, you do this:

map f xs

Here is how map looks like; note how it generalizes squareList and
cubeList:

map f [] = []
map f (x:xs) = f x : map f xs

Let us consider the type of map. An element x may be of type a, and f
may map it to type b. Thus f :: a->b, the input list is [a], and the
output list is [b]. Then

map :: (a -> b) -> [a] -> [b]

FP Lecture 3 6



Higher-Order Functions

The function

map :: (a -> b) -> [a] -> [b]

takes a parameter that is in turn a function.
In general, functional languages allow a function to take functions as
parameters and even return functions as return values. Such a function is
called a higher-order function.
One more example: takes a function f and returns a slightly modified
function g that does g(x) = f(x) + 1.

upOne :: (Int -> Int) -> (Int -> Int)
upOne f = g
where g x = f x + 1

FP Lecture 3 7



(blank page)

FP Lecture 3 8


