
Recursive Data Structure: Tree

A binary tree consists of leaf nodes and branch (internal) nodes:

• A leaf node is just that, a leaf node.

• A branch node has two children, which in turn are trees recursively.

This is coded in Haskell as:

data Tree = Leaf | Branch Tree Tree
deriving Show

1. A leaf node is a tree.

2. A branch node with two tree-type children is also a tree.

FP Lecture 5 1



Tree Example

Here is an example Tree expression:

Branch Leaf (Branch Leaf Leaf)

Here is how it looks like conceptually:

Branch

Leaf Branch

Leaf Leaf

FP Lecture 5 2



Polymorphic Trees

You may want to store some data in your trees. E.g., store numbers in leaf
nodes:

data IntTree = IntLeaf Int | IntBranch IntTree IntTree

But if you do this, you may have to repeat it for other types of data:

data STree = SLeaf Shape | SBranch STree STree
data BoolTree = ...

Worse, if you need a function to compute, say, the number of nodes in a
tree, you will have to write a separate version for each of the above tree
types (due to strong typing).
How should you avoid such repetitions?

FP Lecture 5 3



Polymorphic Trees

You should use polymorphism to avoid such repetitions.

data LTree a = ...

The type name is parameterized by the type variable a. The user will
instantiate it to the actual data type stored in the tree.

data LTree a = LLeaf a | LBranch (LTree a) (LTree a)

A leaf takes a parameter of type a that is the datum to be stored.
A branch takes two children as parameters. Note that the full type name
LTree a must be used.

FP Lecture 5 4



Polymorphic Tree Example

Example:

LBranch (LLeaf 1) (LBranch (LLeaf 2) (LLeaf 3))
:: LTree Int

It looks like:

LBranch

LLeaf 1 LBranch

LLeaf 2 LLeaf 3

FP Lecture 5 5



Functions for Polymorphic Trees

Write a function that counts the number of nodes (both leaves and branches)
in a tree.

totalNumofNodes :: LTree a -> Int

The parameter type has the type variable a because we do not care what
data are in the leaves.

totalNumofNodes (LLeaf ) = 1
totalNumofNodes (LBranch x y) =

1 + totalNumofNodes x + totalNumofNodes y

FP Lecture 5 6



More Polymorphic Trees

To stuff data into branch nodes instead (and no data at leaves):

data ITree a = ILeaf | IBranch a (ITree a) (ITree a)

To stuff data into both kinds of nodes:

data DTree a = DLeaf a | DBranch a (DTree a) (DTree a)

To stuff one type of data into branches and another type into leaves:

data FTree a b = FTree a
| FBranch b (FTree a b) (FTree a b)

FP Lecture 5 7



(blank)

FP Lecture 5 8


