
Tree Equality: The Problem

Recall the tree data type we defined:

data LTree a = LLeaf a | LBranch (LTree a) (LTree a)

Suppose we want to write a function that determines if two trees are equal:

treeEq (LLeaf x) (LLeaf y) = x==y
treeEq (LBranch t1 t2) (LBranch s1 s2) =
treeEq t1 s1 && treeEq t2 s2

treeEq = False

There are two problems:

1. What is its type?
2. We would like to overload == and not use the name treeEq.
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Operator Overloading: The Questions

Recall our previous story about numbers: we said

3 :: Integer
(+) :: Integer -> Integer -> Integer

But this is obviously lying. For example, + also works with Int, Rational,
Float, and Double. On the other hand, it does not work with lists. So we
raise the questions:

• What is the actual type of + then? Is it polymorphic?

• How is this overloading implemented?

• Can we extend this overloading to my data types and my operators?
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Type Classes
All of the above problems and questions are resolved in Haskell by type
classes.

• Conceptually, a type class represents a restricted set of types. (Contrast:
a type variable represents the set of all types, unrestricted.)

• Pragmatically, a type class declares a few operators and functions for
overloading.

E.g., == is declared in the type class Eq:

class Eq a where
(==), (/=) :: a -> a -> Bool

This says: For a type a that belongs to the class Eq, it has two operators:
== and /= of type a->a->Bool.
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Type Instances: Declaration

You can put any data type into a type class, but you have to implement
the operators.
Put it in another way: in order to overload an operator for your data type,
you put it into the appropriate type class.
E.g., recall Tree:

data Tree = Leaf | Branch Tree Tree

Put it into class Eq:

instance Eq Tree where
Leaf==Leaf = True
(Branch t1 t2)==(Branch s1 s2) = t1==s1 && t2==s2
== = False
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Type Instances: Defaults

Note that we only implemented == but not /=. This is because Eq has
default implementations:

class Eq a where
(==), (/=) :: a -> a -> Bool
x == y = not (x/=y)
x /= y = not (x==y)

If we only implement ==, the above code for /= will work, and vice versa.
So now we can compare trees:

Leaf /= Branch Leaf Leaf --True
Branch Leaf Leaf == Branch Leaf Leaf --True
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Types of Overloaded Operators

What is the type of == then? It ain’t a->a->Bool, as a could be outside
Eq.
Here it is:

(==) :: Eq a => a->a->Bool

It says: it is of type a->a->Bool assuming that a belongs to Eq.
Likewise, there is a class Num consisting of all numeric types, and we have:

(+) :: Num a => a->a->a
3 :: Num a => a

So + and 3 will work for Int, Integer, Rational, Float, Double, etc.,
because they all belong to Num (and they all implement + accordingly).
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Tree Equality: Solution
To overload == for LTree:

data LTree a = LLeaf a | LBranch (LTree a) (LTree a)

we need a prerequisite: a should belong to Eq first.

instance Eq a => Eq (LTree a) where

This says: LTree a belongs to class Eq provided that a already belongs to
class Eq.

(LLeaf x)==(LLeaf y) = x==y

That is why we need the Eq a assumption.

(LBranch t1 t2)==(LBranch s1 s2) = t1==s1 && t2==s2
== = False
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Tree Equality: Solution 2

Could we still write treeEq and use it? Yes.

treeEq (LLeaf x) (LLeaf y) = x==y
treeEq (LBranch t1 t2) (LBranch s1 s2) =
treeEq t1 s1 && treeEq t2 s2

treeEq = False

The type is

Eq a => LTree a -> LTree a -> Bool

You can then use it to define == for trees:

instance Eq a => Eq (LTree a) where
(==) = treeEq
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Tree Equality: Solution 3

Probably 99% of your data types will have == defined in a similar fashion
as the above.
Haskell can automatically generate such näıve definitions:

data LTree a = LLeaf a | LBranch (LTree a) (LTree a)
deriving Eq

Then you immediately have == and /= defined for you the way above.
Another class, Show, is for types that can be printed. You can derive it and
get the näıve printing too:

dataLTree a = LLeaf a | LBranch (LTree a) (LTree a)
deriving (Eq, Show)
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Binary Search Tree

We can now define polymorphic but restricted data types.
E.g., let us define binary search trees.

5

3 8

1 4 7

The key in a node is greater than all keys in the left subtree, and less than
all keys in the right subtree. For simplicity, we disallow duplicate keys.
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BST as Constrained Polymorphic Type

We wish to allow any type of keys, but the type must come with the < and
the > operators. These come from the Ord class (for “ordered”):

class Eq a => Ord a where
(<), (<=), (>=), (>) :: a->a->Bool
...

It declares the comparison operators. It also requires the type to belong to
Eq first.
Now we can define our polymorphic binary search tree:

data Ord a => BST a = Nil | Node a (BST a) (BST a)

We require the key type to come from the Ord class. For simplicity, keys
go into internal nodes, and “null pointers” are modelled by Nil.
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BST Operations
The membership operation: does a key occur in the tree?

member :: Ord a => a -> BST a -> Bool
member key Nil = False
member key (Node x t s) | key<x = member key t

| key>x = member key s
| key==x = True

The insert operation: add a key to a tree, returning the new tree.

insert :: Ord a => a -> BST a -> BST a
insert k Nil = Node k Nil Nil
insert k n@(Node x t s) | k<x = Node x (insert k t) s

| k>x = Node x t (insert k s)
| otherwise = n

FP Lecture 6 12


