
Problems with The Lazy Queue

The lazy queue operations are sometimes expensive because rotation is done
monolithically:

... fs ++ reverse bs ...

To achieve O(1) worst-case time bound, we need to:

• do rotation incrementally

• schedule to evaluate it often

This spreads out the cost of the expensive operation.

FP Lecture 10 1



Incremental Rotation

Rather than relying on reverse to rotate, we write our own rotation:

rotate [] (y:[]) a = y:a
rotate (x:xs) (y:ys) a = x : rotate xs ys (y:a)

(We ignore rotate [] y:ys a with ys /= []. We will make sure it never
happens.)
So rotate xs ys [] has the same value as xs ++ reverse ys, except
that it is incrementally lazy. The parameter a acts as a kind of accumulator.
More generally, rotate xs ys a == xs ++ reverse ys ++ a.

FP Lecture 10 2



O(1) Lazy Queue

The queue has a front list, a back list, and a schedule:

data SQueue a = SQ [a] [a] [a]

The schedule holds an unevaluated rotate expression. It is usually a suffix
of the front list. By evaluating it once in a while, we discharge the rotation
incrementally.

snoc (SQ f b s) x = exec f (x:b) s
head (SQ (h:f) b s) = h
tail (SQ (h:f) b s) = exec f b s

Here exec evaluates the schedule once and returns the new queue.

FP Lecture 10 3



Scheduling

exec evaluates the schedule by matching it against patterns. It also forgets
the head so that the rest gets evaluated next time.
If the schedule becomes empty, we simply create a new rotation as the new
schedule (and as the new front list). It is this time when the back list is
emptied.

exec f b (x:s) = SQ f b s
exec f b [] = SQ f’ [] f’ where f’ = rotate f b []

Now each operation takes O(1) time.

FP Lecture 10 4


