
A Counter Monad

Action monads are often implemented by state transformers. Here is a
counter monad that illustrates the idea.
The state is the counter value. A state transformer maps an old counter
value to a new counter value and a return value.

data Counter a = C (Int -> (Int,a))

-- reset the counter
new :: Counter ()
new = C $ \ -> (0,())

-- increment the counter:
inc :: Counter ()
inc = C $ \n -> (n+1,())

FP Lecture 12 1



A Counter Monad

-- returning the current value of the counter:
get :: Counter Int
get = C $ \n -> (n,n)

-- return is nop, >>= is sequential execution
instance Monad Counter where

return r = C $ \n -> (n,r)
(>>=) (C f) g = C $ \n0 -> let (n1,r1) = f n0

C g’ = g r1
in g’ n1

The “runtime system” for our counter monad may look like this:

run :: Counter a -> a
run (C f) = snd (f 0)

FP Lecture 12 2



A Counter Monad: Example of Use

An example “program” using a counter:

myprog :: Counter Int
myprog = do new

inc >> inc >> inc
c1 <- get
inc
c2 <- get
return (c1*c2)

Run the program:

run myprog

The result is 12.

FP Lecture 12 3



Counter Monad with Exceptions

An exception is just an ordinary type, e.g.,

data Exn = Overflow | Other

It is the monad that treats exceptions in a special way. An exception is
stored at the place of the return value:

data ECounter a = EC (Int -> (Int, Either a Exn))

We do this due to the following concerns:

• There is no other good value to return when an exception occurs.

• This does not affect normal return values if we implement the monad
operations properly.

FP Lecture 12 4



Counter Monad with Exceptions

Let’s say inc will overflow if the counter exceeds 3:

inc :: ECounter ()
inc = EC f where f n | n <= 3 = (n+1, Left ())

| otherwise = (n, Right Overflow)

The monad operators:

instance Monad ECounter where
return r = EC $ \n -> (n, Left r)
(EC f) >>= g =
EC $ \n0 -> let (n1,r1) = f n0

EC g’ = either g throw r1
in g’ n1

FP Lecture 12 5



Counter Monad with Exceptions

Where throw is defined as a command that throws an exception:

throw :: Exn -> ECounter a
throw e = EC $ \n -> (n, Right e)

To allow the user to catch and handle exceptions:

catch :: ECounter a -> (Exn->ECounter a) -> ECounter a
catch (EC f) h =
EC $ \n0 -> let (n1,r1) = f n0

EC g’ = either return h r1
in g’ n1

FP Lecture 12 6



Counter Monad with Exceptions

The runtime system may look like this:

run :: ECounter a -> Either a Exn
run (EC f) = snd (f 0)

A program that throws an exception due to overflow:

errprog = inc >> errprog

A program that handles an exception:

witprog = errprog ‘catch‘ \ -> return ()

FP Lecture 12 7



(blank)

FP Lecture 12 8


