
CSCC24 2020 Winter – Assignment 3
Due: Wednesday, March 25, midnight

This assignment is worth 10% of the course grade.

In this assignment, you will implement in Haskell a parser for a toy language.
As usual, you should also aim for reasonably efficient algorithms and reasonably organized,

comprehensible code.

Expression Syntax

We will have a “simple” (just you wait) expression syntax. Here is the EBNF grammar, together
with the informal points afterwards for completion and disambiguation.

<expr > ::= <literal >
| <var >
| <op1 > <expr >
| <expr > <op2 > <expr >
| "(" <expr > ")"

<op1 > ::= "!" | "-"
<op2 > ::= "+" | "-" | "==" | "&&" | "||"

Informal points:

• The start symbol is <expr>.

• <literal> is for natural number literals: One or more digits. (Unary prefix minus is handled
separately.)

• <var> is for variable names: A letter followed by zero or more letters or digits. However, the
following are reserved words and cannot be variable names: or, assert, while, do. (These
are for constructs that will appear in the next assignment!)

• Ambiguity under <expr> is resolved by operator precedence and association. From lowest
precendence to highest:

operator association
|| right
&& right
== none, e.g., “x == y == z” is unexpected
+, infix binary - left
!, prefix unary -
literal, var, parentheses

• Whitespaces around tokens are possible.

The abstract syntax tree is defined by these types:

1

data Expr = LitNat Integer
| Var String -- typo fixed Mar 19
| Prim1 Op1 Expr
| Prim2 Op2 Expr Expr

deriving (Eq, Show)

data Op1 = Not | Neg
deriving (Eq, Show)

data Op2 = Add | Sub | EqNat | And | Or
deriving (Eq, Show)

Basically Prim1 is for the unary operators, and Prim2 is for the binary operators.
Implement a parser for Orlang. A main parser mainParser is already provided, so you can

focus on the start symbol parser expr :: Parser Expr and downwards.
From the lectures, you already know how to implement infix operator precedence. The extra

challenges in this assignment are == and the prefix unary operators.
In the case of the prefix unary operators, take care that these inputs are legal and their

corresponding abstract syntax trees are:

input AST
- - 5 Prim1 Neg (Prim1 Neg (LitNat 5))
- - - 5 Prim1 Neg (Prim1 Neg (Prim1 Neg (LitNat 5)))
! - ! 5 Prim1 Not (Prim1 Neg (Prim1 Not (LitNat 5)))

(Typo fixed March 20)

How do you get this to work?

End of questions.

2

