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Dimensionality Reduction 
y We have some data 

y D may be huge, etc. 

y We would like to find a new representation 
where K << D. 
y For computational reasons. 
y To better understand (e.g., visualize) the data. 
y For compression. 
y … 

y We will restrict ourselves to linear transformations for 
the time being. 



Intrinsic Latent Dimensions 
•   •  In this dataset, there is only 3 degrees of freedom of variability, 
corresponding to vertical and horizontal translations, and the rotations.  

•  Each image undergoes a random displacement and rotation within 
some larger image field.  

•  The resulting images have 100 £  100 = 10,000 pixels.  

Example 
y In this dataset, there are only 3 degrees of freedom: 

horizontal and vertical translations, and rotations. 

y Yet each image contains 784 pixels, so X will be 784 
elements wide. 



Abstract Visualization 



What is a Good 
Transformation? 

y Goal is to find good directions u 
that preserves “important” aspects of the 
data. 

y In a linear setting: 

y This will turn out to be the 
top-K eigenvalues of the 
data covariance. 

y Two ways to view this: 
1. Find directions of maximum variation 
2. Find projections that 

minimize reconstruction error 



Principal Component Analysis 
(Maximum Variance) 

 

 

 

where the sample mean and covariance are given by:  
 

i.e., 
variance of 
the projected 
data 



Finding u1 
y We want to maximize 

 
subject to  
(since we are finding a direction) 

y Use lagrange multiplier      to express this as 



Finding u1 
y Take derivative and set to 0 

 

 

y So      is an eigenvector of S with eigenvalue 

y In fact it must be the eigenvector with maximum 
eigenvalue, since this minimizes the objective. 



Finding u2 

Lagrange form: 

Finding β: 



Finding u2 

0 

Lagrange form: 

Finding α2: 

So α2 must be the second largest eigevalue of S.  



PCA in General 
y We can compute the entire PCA solution by just 

computing the eigenvectors with the top-k eigenvalues. 

y These can be found using the singular value 
decomposition of S. 



y How do we choose the number of components? 

 

 

 

 

 

y Look at the spectrum of covariance, pick K to capture most of the 
variation. 

y More principled: Bayesian treatment (beyond this course). 



Demo 
y Eigenfaces 



Principal Component Analysis 
(Minimum Reconstruction Error) 

y We can also think of PCA as minimizing the reconstruction 
error of the compressed data. 

 

 

y We will omit the details for now, but the key is that we define 
some K-dimensional basis such that: 

 

 

y The solution will turn out to be the same as the minimum 
variance formulation. 



Reconstruction 
y PCA learns to represent vectors in terms of sums of 

basis vectors. 

y For images, e.g., 



PCA for Compression 

  

PCA for compression

D=1 D=5 D=10

D=50 D=100 D=200
321x481 image, D is the number of basis vectors used

D in this slide is the same as K in the previous slides 



Relation to Neural Networks 
y An autoencoder is a neural network whose outputs are 

it’s own inputs. The goal is to minimize reconstruction 
error. 

Autoencoders and PCA 
•   Given an input x, its corresponding reconstruction is given by: 

•  We can determine the network parameters 
w by minimizing the reconstruction error:  

•  If the hidden and output layers are linear, 
it will learn hidden units that are a linear 
function of the data and minimize the 
squared error. 

•  The M hidden units will span the same space as the first m principal 
components. The weight vectors may not be orthogonal.  



Autoencoders 
y Define: 

 

y Goal: 

 

y If g is linear: 

 

y In other words, the optimal solution is PCA. 



Autoencoders 
y What if g is not linear? 

y Then we are basically doing nonlinear PCA. 

y Some subtleties (see Bishop) but in general you can 
take the above statement as fact. 





Reuters dataset 
•  Autoencoder: 2000-500-250-125-2  Reuters Corpus: Learning 2-D topic space
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