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 Multivariate Linear Regression, Demo
 Cross-Validation, Review
e k-NN Classification, Demo



Multivariate Linear Regression

We want to predict output, such as the median house price,
from multi-dimensional observations

Each house is a data point n, with observations indexed by j:
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Simple predictor is analogue of linear classifier, producing
real-valued y for input x with parameters w (assuming x, = 1):
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Multivariate Data

 Multiple measurements (sensors)

* dinputs/features/attributes

* N instances/observations/examples
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Multivariate Parameters

Mean:E[x]=[ ... 1t, ]
Covariance:0;; = Cov(Xi,X j)
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Multivariate Normal Distribution
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e Mahalanobis distance: (x — )" ¥ (x — u) :

measures the distance from x to u in terms of ¥ (normalizes for
difference in variances and correlations)
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Bivariate Normal
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Independent Inputs: Naive Bayes

* If x; are independent, offdiagonals of 3 are O,
Mahalanobis distance reduces to weighted (by 1/
o;) Euclidean distance:

 |f variances are also equal, reduces to Euclidean
distance



Parametric Classification

e Ifpx|C)~N(u,2)
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p(X | Ci)=
e Discriminant functions

g.(x)=logp(x|C.)+logP(C,)
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MATLAB Demo

e Multivariate Linear Regression



Cross-Validation

* why validation?
e performance estimation
* model selection (e.g. hyper parameters)

* hold-out validation
* split dataset into training set and test set
e drawbacks: waste of dataset, estimation of
error rate maybe misleading

* cross-validation

Total number of examples

Training Set Test Set




Cross-Validation

e random subsampling
e k-fold cross-validation
e |eave-1-out cross-validation ( k=N )

Total number of examples

_— Testexample

Experiment 1 4

Experiment 2

Experiment 3




Cross-Validation

e random subsampling
e k-fold cross-validation
e |eave-1-out cross-validation ( k=N )

Total number of examples

Experiment 1

Experiment 2

Experiment 3

/ Test examples
Experiment 4




Cross-Validation

e random subsampling
e k-fold cross-validation

e |eave-1-out cross-validation ( k=N )

Total number of examples

Experiment 1

Experiment 2

Experiment 3

Single test example

Experiment N




Cross-Validation

* how many folds do we need ?
* with larger k
e error estimation tends to be more accurate
* but computational time will be larger
* in practice, larger dataset, smaller k
* 3 common choice for k-fold cross-validation is k =10



Some Issues with Cross-Validation

* intensive use of cross-validation can overfit if you
explore too many models, by tuning hyper parameters to
predict the whole training set well
* hold out an additional test set before doing any
model selection. Check the best model performs well
even on the additional test set
* time consuming (always if done naively)
* there are efficient tricks that can save work over
brute force



k-Nearest Neighbors

* k-NN is a simple algorithm which stores all available
training examples and predict value/class of an unseen
instance based on a similarity measure
ck=1
* predict the same value/class as the nearest
instance in the training set
ck>1
* find the k closet training examples
* predict class: majority vote
* predict value: average weighted by inverse
distance
* memory based, no explicit training or model



k-NN Classification

* similarity measure: Euclidean distance, etc.
e assumption behind Euclidean distance: uncorrelated
inputs with equal variances
* predict class: majority vote
 k preferably odd to avoid ties for binary classification
* choice of k
* smaller k: higher variance (less stable)
* larger k: higher bias (less precise)
* cross-validation can help
* MATLAB demo



