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Figure 1: The player (green)
has two macro-goals: 1)
pass the ball (orange) and
2) move to the basket.

S = {si}mayerS oAt = {ai}pmyers .- The history of events is h; = {(su, au)}0§u<t'

e Macro policies also use a goal space G, e.g. regions in the court that a player should reach.
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Given input state s, we want to decide on an action a

u = RN Npicro(s)
P(gls) = g = RN Nmacro(s)
P(als) = u® softmaz(NN(g))
L = Lyacro + Limicro + R(0)
Licro = —logP(a = atrutn)

Lma('ro = _IOgP(g = gu‘(‘al.')

where @ is element-wise product and geqr 1S pre-computed macro-level labels. They called the trans-

formation softmax(NN(-)) the attention mechanism ¢ 4. Training is done in 2 stages

Algorithm 1 HPN Training
1: Pretrain RN Nyicro. RN Npacro. ATt USIng @iy, and pre-computed ¢ueak. Gwear independently
2: Train the whole HPN without Lmacro




HPN-detalils

Table 1.1: HPN preproc (Nirain = 13k, Nhetdout = 1.3k)

input state (image)

1. extract 200 frams from random starting point

2. downsample by 4

3. turn into 400 x 380 x 4 images of player.ball.team.defense
micro label a (1-hot image)

1. 17 x 17 1-hot velocity (1ft radius)

2. clipped if out of range (j1% of the time)

weak label ¢ (1-hot image)

. : . t
1. identify location where player moved < ITT for 5 frames

2. 10 x 9 image of 1-hot occupancy
weak label ¢ (1-hot image)
1. 17 x 17 image mask (all zeros)

. . . . . _— . . S
2. randomly one pixel to 1 in the direction of g; — s; with magnitude € [1,

raw micro-policy .,

/512 / 512 920 128
macro-policy Mmacro transfer ¢




HPN-visualization
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. L. . b) Rollout tracks and predicted macro-goals blue
(a) Predicted distributions for attention masks ¢(g) ( ), F g gt (
. . L . .77 boxes). The HPN starts the rollout after 20 frames.
(left column), velocity (micro-action) Ty, (middle) : -

. . . Macro-goal box intensity corresponds to relative pre-
and weighted velocity ¢(g) ® Tmicro (right) for basket- . . . .
. ST . diction frequency during the trajectory.
ball players. The center corresponds to 0 velocity. - -




HPN-results (I)

Model | A=0 A=1 A=2 A=23 | Macro-goals g | Attention ¢ |

CNN 21.8% 21.5% 21.7%  21.5% - -
GRU-CNN 258% 25.0% 249% 24.4% -
H-GRU-CNN-CC 31.5% 299%  29.5%  29.1% 10.1% -
H-GRU-CNN-STACK | 26.9% 25.7% 259% 24.9% 9.8% -
H-GRU-CNN-ATT 337% 31.6% 31.0% 30.5% 10.5% -
H-GRU-CNN-AUX 31.6%  30.7%  29.4%  28.0% 10.8% 19.2%
Table 2: Benchmark Evaluations. A-step look-ahead prediction accuracy for micro-actions a;, n = m(5¢)
on a holdout set, with A = 0,1, 2,3. H-GRU-CNN-STACK is an HPN where predictions are organized in a
feed-forward stack, with w(s¢): feeding into w(s¢)t+1. Using attention (H-GRU-CNN-ATT) improves on all
baselines in micro-action prediction. All hierarchical models are pre-trained, but not fine-tuned, on macro-goals
g. We report prediction accuracy on the weak labels g, é) for hierarchical models.H-GRU-CNN-AUX is an HPN
that was trained using c; As ¢ optimizes for optimal long-term behavior, this lowers the micro-action accuracy.




HPN-results (Il)

Model comparison

Experts
W/T/L

Avg Gain

Non-Experts

W/T/L Avg Gain

All

W/T/L Avg Gain

VS-CNN

21/0/74

0.68

15/9/1 0.56

21/0/74 0.68

VS-GRU-CNN

21/0/74

0.68

18/21/5 0.52

21/0/4 0.68

VS-H-GRU-CNN-CC

22/0/3

0.76

21/0/4 0.68

21/0/4 0.68

VS-GROUND TRUTH

11/0/ 14

-0.12

10/4/11 -0.04

11/0/14 -0.12




HPN-failure cases

(d) HPN (top) and (e) HPN (top), base-
failure case (bottom) line (bottom)




HPN - comment

The notion of weak label

No player identity




Defense - Intro

= ‘Hc;usitoin at San Antonio
Dec. 25, 2013

In 42 minutes Harden

ave up 15.5 points
WHO IS GUARDING WHOM? Lot i o
AND HOW MANY POINTS DID THEY GIVE UP?
SAN ANTONIO SPURS ON OFFENSE

James Hardea
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In 35 minutes Howard
gave up 4.2 points
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Defender matchups coded
with blue lines

Tony Parker

Figure 1. Matchup matrix for the Houston at San Antonio game on Dec 25, 2013. The matchup matrix has cells
shaded according to the fraction of time spent guarding each offender. Counterpoints are assigned according to these
fractions (see Methods). Points off of putbacks or fast breaks are not assigned to a defender (“unaccounted”™). We
visualize these responsibilities as 2 possession unfolds; the blue lines symbolize connections linking defenders to their
offensive responsibilities (right side).




Defense - assignment

Defense (j), offense (k) Wik = Yo Otk + Yo Bt + ynH,

Dyjllijr =1~ N(#tk, 0'{'))-




Defense - HMM

Parameters: 6 scalar weights, variance, 1 scalar “switch” probability

Hidden: “assignment”

L(T,05)= P(D.IIT,05)

= n [P(Dtj“tjk, [, GZ“))P(I,J-”[(,_”J._)]IUA-,
t.j.k

P(Lijr =1|I¢-1)jk =1) = p,

1 — '
P(Lijk =1—yjw =1 = Tp k' #k




Defense - inference

Note: all defensive players are independent

2.1. Inference. We use the EM algorithm to estimate the relevant unknowns,
ik, 012), [ and p. At each iteration, i, of the algorithm, we perform the E-step

and M-step until convergence. In the E-step, we compute E,(j',)\ = E[I;jk|Dy;, o,

~2(0) A (i) i) A20) AG .
6p PV and A = Uijklq—1)ji|Dyj, TV, 65", p] for all ¢, j, k and K'.

These expectations can be computed using the forward-backward algorithm




Defense - inference E-step

P(X|zn)p(2n) (13.32)

Yzn) = p(z,,lX) = 2(X)

Note that the denominator p(X) is implicitly conditioned on the parameters 6°
of the HMM and hence represents the likelihood function. Using the conditional
independence property (13.24), together with the product rule of probability, we
obtain
Xns z'l)l)(xll'f'l N |2 _ “(zvl )-1(2“)
p(X) p(X)

(13.33)

(13.34)
(13.35)

a(z,) = p(xn|2n) Z (Zp—1)p(2n|2n-1)-

Zn—1

‘i(zn) = Z ‘i(zn*-l)}’(xu—lIzu’l)p(znol|zu)-

Zn41




Defense - inference M step (emission)

Solved analytically using constrained generalized least square

In the ith iteration of the M-step we first update our estimates of I" and o7,

(i—=1)
(f‘(”,c%l?')('))<—argmaxzL : -, '=1.

2
ro} tjk 9D




Defense - inference M step (transition)

Next, we update‘ our estimate of the transition parameter, p, in iteration i:

~ 1
p") < arg max Z Z Auwlog( 7] ) Z Ayjkk log(p).
p

t,j.kk'#k t.j.k

It is easy to show, under the proposed transition model, that the maximum like-
lihood estimate for the odds of staying in the same state, Q = IL is

_p ?
1 Xrjk Arjkk

o=
42 0k 2ok #k Arjkk




Defense - results

an offender. We use the EM algorithm to fit the HMM on 30 random possessions
from the database. We find that a defender’s canonical position can be described as
0.620,; +0.11B, + 0.27H at any moment in time. That is, we infer that on aver-

Values of the transition parameter are more variable but have a smaller impact on
inferred defensive matchups: values range from p = 0.96 to p = 0.99. Empirically,

§

)

(b)

FIG. 2. Who's guarding whom. Players 04 (red circles) are the offenders and players 5-9 (blue
triangles) are defenders. Line darkness represents degree of certainty. We illustrate a few properties




Defense - App

TABLE 1
Average attention drawn, on and off ball. Using inference about who's guarding whom, we
calculate the average attention each player receives as the total amount of time guarded by each
defender divided by the total time playing (subset by time with and without the ball). At any moment
in time, there are five defenders, and hence five units of “attention” to divide among the five
offenders each possession. On ball, the players receiving the most attention are double
teamed an average of 20% of their time possessing the ball. Off ball, the players
that command the most attention consist largely of MVP caliber players

On ball Off ball

Player Attention Player Attention

DeMar DeRozan 1.213 Stephen Curry 1.064
Kevin Durant 1.209 Kevin Durant 1.063
Rudy Gay 1.201 Carmelo Anthony 1.048
Eric Gordon 1.187 Dwight Howard 1.044
Joe Johnson 1.181 Nikola Pekovic 1.036




Defense - App

Team defensive entropy. A player’s defensive entropy for a particular
possession is defined as 22=1 Zn(j.k)log(Zn(j, k)), where Zn(j, k)
is the fraction of time the defender j spends guarding offender k
during possession n. Team defensive entropy is defined as the
average player entropy over all defensive possessions for
that team. Induced entropy is the average player entropy
over all defenders facing a particular offense

Induced
Rank Team Entropy Rank Team  entropy

Mia 0.574 Mia 0.535
Phi 0.568 Dal 0.526
Mil 0.543 Was 0.526
Bkn 0.538 Chi 0.524
Tor 0.532 LAC 0.522

Cha 0.433 OKC 0.440
Chi 0.433 NY 0.440
Uta 0.426 Min 0.431
SA 0.398 Phi 0.428
Por 0.395 LAL 0.418




Defense - App

JAMES HARDEN KAWHI LEONARD
HOT C CHA

DEFENSIVE SHOT CHART DEFENSIVE SHOT CHART

o
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Figure 2a. Graphical depiction of a defender’s volume (size) and disruption scores (color). Kawhi Leonard tends to
suppress shots on the peaimeter. More comparisons are provided in the Appendix.




Defense - App: counter-point

Points Against Comparison (Back Court Defenders)
Top Defenders Bottom Defenders
Player Original Shot Fractonal  Player Onginal Shot Fractuonal
Chris Paul 144 (1) 17.7 (9) 10.8 (1) Jrue Holiday 235(61) 24.1 (30) 19.1 (63)
Norms Cole 15.0 (3) 17.0 (3) 11.1 (2) Shaun Livingston  25.1 (63) 27.8 (62) 175 (62)
Nick Calathes 16.0(3) 194 (18) 120 (3) Jarrett Jack 223 (33) 5 (61)

C.J. Watson 18.8 (33) 19.3 (17) 12.0 (4) Mo Williams 35(62) 19.8(19) 3 (60)

Greivis Vasquez 15.0(2) 174 (7) 123 (5) Patey Mills 3.1 (39 231 (41) -1 (39)
Steph Curry 16.6 (7) 16.2 (2) 123 (6) Kemba Walker 0.7 (31) 26.7 (60) 9 (38)

Table 2) Comparison of three points against metrics and their associated ranking for one defensive group (back court
defenders). While highlighting slightly different aspects of defense, these metrics are largely consistent.




Defense - comment

simple model
Not using player information, defense/offense strategy

Lack player dependent physics (e.g. speed, acceleration)

“Average defense”, no notion of “good” defense




Halftime

Sequence generation

Defense inference (maybe not generation)




Expected Point Value

What leads to a good shot is what's really important (assist?)

Dynamic game

Ig(ﬁ\[Nl-jI »LEONABDﬁSAHOOTS
EF:;‘ of shot: 0.68 points
Change in EPV:-0.20

PASSTO TONY PARKER
E’; Probability: 8%
V aff ).9

Cervone, D’Amour, Bornn,
Goldsberry (2014)




EPV app - stock ticker

ts 146175

the chot <tll went im 2nd the Spurs
won e game.

E

XPECTED
POINT VALUE

Game Clock

6 56

" throughout the Spurs' final possession, with annotations of major events.




EPV app - stock ticker
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EPV-app: EPV-added

EPVA = EPV - EPV _r for all possessions

Player

Player

Chris Paul

Dirk Nowitzki
Deron Williams
Stephen Curry
Jamal Crawford
Greivis Vasquez
LaMarcus Aldridge
Steve Nash
Wesley Matthews
Damian Lillard

Ricky Rubio
Kevin Love
Russell Westbrook
Evan Turner
Austin Rivers
Rudy Gay

Jrue Holiday

Paul George

Chris Singleton
Roy Hibbert




EPV-app: Shot Satisfaction

Shot Satisfaction = Z EPV(t) — E[points | passin (t,t + €], d,].

t for shot att.

Table 2. Top 10 and bottom 10 players by average shot sausfaction 1n 2012-13 (per shot attempt, minimum 500
touches dunng season). The sampling bias concerns noted 1n Table 1 apply to these results as well.

Plaver Shot Satisfaction Player Shot Satisfaction
Lance Stephenson 0.362 Alonzo Gee -.098
Steve Nash 0.340 Daniel Gibson 0.082
Pablo Prigiom 0335 Ricky Rubio 0067
Chris Paul 0.334 Patrick Beverley 0.046
Jamal Crawford 0.310 Michael Beasley 0.033
Jared Dudley 0.286 Andre Miller -0.005
Martell Webster 0.283 Luc Richard Mbah a Moute 20.005
Stephen Curry 0.258 George Hill 0.001
Amuir Johnson 0.256 Evan Turner 0.001
Patnck Mills 0.255 Glen Davis 0.010




EPV-theoretical definition

w € () possessions
T(w) end time of possessions
Zi(w)  SportVU snapshot

X(w) outcome of possession

th —o({Z;':0<s<t}) history

EPV = v = E[X|F{*)]




EPV-"coarsened processes”

A coarsened description of the basketball world (i.e. someone has ball, passes,
shoots, end)

Markov
Ci=C(zt) € {C‘])O.S‘h‘t Ctrans, C'('nd}

Decoupling events . ,
Ping Cposs = {player ID} x {region ID 1-of-7} x {is guarded}
Cirans = {shot, pass, TO, rebound}

Cena = {2pt, 3pt, end}




EPV-schematic

pe— pa— — 4
Player 2 Player 3 Player 4

Player 1

Pass to P2
Pass to P3
Pass to P4
Pass to P5

Ctrans Turnover Shot Rebound

| — —
Cend Made 2pt Made 3pt End of possession




EPV-combining C and Z

Assumption1: C is marginally semi-Markov

Assumption2:

For all s > ¢; and ¢ € C, P(C = ¢|Cj,, t(Z)) = P(Cs = ¢|Cs,).

min{s : s > t,Cs € Cians} if C; € Cposs
T —
Tt if C; & Cposs

6 = min{s : s > 74, Cs & Cirans}-

Vy = Z ]E[/\’l(vol — (*]IP’((‘O' — C|Ft(z))_

ceC




EPV-model

Vy = ZIE[JX’lC‘S‘ = (*]P((‘ot — let(Z))‘

ceC

denote M (t) as the occurence of "decoupling” event before next frame
P(Cs,|F7) = P(Cs,|M(t), F7)P(M(t)| Fy) (macrotransition)
Pz |M (), Fy) (microtransition)

The Markov transition probability matriz P, with P, = P(C"*) = ¢, Cm) = ).




EPV-microtransition model

Offense: players move based on “who”, “velocity”, “where”

TONY PARKER WITHOUT BALL DWIGHT HOWARD WITH BALL DWIGHT HOWARD WITHOUT BALL




EPV-macro entry

P(M (1) F7) = S5- B(OM; ()| 7).

We parameterize the macrotransition entry models as competing risks (Prentice, Kalbfleisch,
Peterson Jr, Flournoy, Farewell & Breslow 1978): assuming player ¢ possesses the ball at
time t > 0 during a possession, denote

v (2)

e—0 €

as the hazard for macrotransition j at time . We assume these are log-linear,

log(X (1)) = [WE(1)]'8; + & (2(1)) + (& (2 (1) 1 < 1)), 8)

where Wj(f) is a p; X 1 vector of time-varying covariates, ,8; a p; X 1 vector of coefficients,
z'(t) is the ballcarrier’s 2D location on the court (denote the court space S) at time ¢, and
£ .S — R is a mapping of the player’s court location to an additive effect on the log-hazard,




EPV-macro entry

All model components—the time-varying covariates, their coefficients, and the spatial
effects &, ¢ differ across macrotransition types j for the same ballcarrier £, as well as across
all L = 461 ballcarriers in the league during the 2013-14 season. This reflects the fact that

—= —
() " ‘.\\ D) {‘_};

e PX ) Lok
(a) fl.él (pass to PG) 2, &: ’ l::") ’(D ':,">

. Y

AW

(e) f;}.é} (pass to PF) (f) f.;.f..; (pass to C)

(¢) & (shot-taking) (d) &6 (turnover)




EPV-macro exit

6
P(Cs, | M (1), FP) = 37 P(Cs, |M;(8), FO)VB(M; (1) M (2), F2)

X
S ho1 AL(t)

6
= P(Cs,|M;(t), FP
J=1

Turnover -> “end”

Pass -> continue

Shot ->




EPV-learning

L rem
N

L mic -~

[[B(Ze1d 77 = (HP (Zese| M (1), FiP) ”""”)(Hl‘ B(Zos | M (£), Cs,, FLP) M)
t

t j=l1

(l_I]PJ (M(t ]-‘(Z) 1[M ()] HP \[ |E(Z))1[Mj(t)]> ( —[HP Cs, | \[ ]:'(Z) 1[M;(2)]

Jj=1 t j=1
—_ N

v ~

Lcnlry L._.x'“

The factorization used in (15) highlights data features that inform different parameter groups:
Lpyic is the likelihood term corresponding to the microtransition model (M1), Leyy the
macrotransition entry model (M2), and L.y the macrotransition exit model (M3). The
remaining term L, is left unspecified, and ignored during inference. Thus, Lc, Lentry, and




EPV-learning

inference. Thus, microtransition models are fit in parallel using each player’s data separately;
this requires L = 461 processors, each taking at most 18 hours at 2.50Ghz clock speed, using

32GB of RAM.

on macrotransition type. We perform this regression through the use of mtegrated nestec
Laplace approximations (INLA) (Rue, Martino & Chopin 2009). Each macrotransition type
can be fit separately, and requires approximately 24 hours using a single 2.50GHz processor

with 120GB of RAM.




EPV-result

Compare “transition probability” with simpler baselines

Model Terms

Macro. type  Player Covariates Covariates + Spatial  Full

Passl -29.4 -27.7 -27.2 -26.4
Pass2 -24.5 -23.7 -23.2 -22.2
Pass3 -26.3 -25.2 -25.3 -23.9
Pass4 -20.4 -20.4 -24.5 -18.9
Shot Attempt  -48.9 -46.4 -40.9 -40.7
Made Basket -6.6 -6.6 -5.6 -5.2
Turnover -9.3 -9.1 9.0 -84

Table 1: Out of sample log-likelihood (in thousands) for macrotransition entry/exit models under
various model specifications. “Player” assumes constant hazards for each player/event type com-
bination. “Covariates” augments this model with situational covariates, Wg(f) as giwen in (8).
“Covariates + Spatial” adds a spatial effect, yielding (8) in its entirety. Lastly, “Full” implements
this model with the full hierchical model discussed in Section 4.




Conclusion

SportVU data opens up a new perspective on analytics (not just basketball)

Difference approaches (i.e. stats, ML, engineering, ...)




