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@ Classification — Multi-dimensional Bayes classifier
@ Estimate probability densities from data

@ Naive Bayes
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Generative vs Discriminative

Two approaches to classification:

@ Discriminative classifiers estimate parameters of decision boundary/class
separator directly from labeled sample

> learn boundary parameters directly (logistic regression models p(tx|x))
> learn mappings from inputs to classes (least-squares, neural nets)

@ Generative approach: model the distribution of inputs characteristic of the
class (Bayes classifier)

> Build a model of p(x]|tx)
> Apply Bayes Rule
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Bayes Classifier

@ Aim to diagnose whether patient has diabetes: classify into one of two
classes (yes C=1; no C=0)

@ Run battery of tests

@ Given patient's results: x = [x1, %2, -+ ,x4]T we want to update class
probabilities using Bayes Rule:

p(x|€)p(C)

p(Clx) = ()

@ More formally
Class likelihood x prior

osterior = -
P Evidence

@ How can we compute p(x) for the two class case?

p(x) = p(x|C = 0)p(C = 0) + p(x|C =1)p(C =1)
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Classification: Diabetes Example

@ Last class we had a single input/observation per patient: white blood cell

count
p(x =50|C = 1)p(C = 1)

p(x = 50)

p(C =1|x =50) =

@ Add second observation: Plasma glucose value

@ Can construct bivariate normal (Gaussian) distribution of each class
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Gaussian Bayes Classifier

@ Gaussian (or normal) distribution:

p(x|t = k) = exp [—(x — pue) TETH(x — pu)]

1
(2m)d/2|L|1/2

@ Each class k has associated mean vector, but typically the classes share a
single covariance matrix
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Multivariate Data

@ Multiple measurements (sensors)
@ d inputs/features/attributes

@ N instances/observations/examples

ORI )
@ 0 @)
X X .. X
X = 1 2 d
ORI
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Multivariate Parameters

@ Mean
Elx] = [p1,- -+ pa] "

@ Covariance

07 o1 - o4
; o1 03 -+ O

Y= Cov(x) =E[(x— ) (x—p)] = .
041 Og2 -+ 03

@ Correlation = Corr(x) is the covariance divided by the product of standard
deviation
Tij

Pij=——
gi0;j
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Multivariate Gaussian Distribution

@ x ~ N(p,X), a Gaussian (or normal) distribution defined as

p(X) = W]W exp [—(X — Mk)TZ_l(x — Mk)}

AN

75K

g 5'%":"“3\\“ -
(O

PSS

@ Mahalanobis distance (x — px) T E~1(x — ux) measures the distance from x
to p in terms of &

@ It normalizes for difference in variances and correlations

Urtasun & Zemel (UofT) CSC 411: 09-Naive Bayes Oct 9, 2015 9 /23



Bivariate Normal

Cov(x1.x2)=0. Var(x|)=Var(x2) Cov(xi.x2)=0. Valr(x1 )>Var(x2)
X
Cov(x,.x,)>0 Cov(x, X,)<0
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Bivariate Normal

Cov(x1,x2):0, Var(xI ):Var(xz)

X

Cov(x1,x2)>0
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Cov(xrxz):o, Var(x|)>Var(x2)
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X

Cov(x1 .x2)<0
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Gaussian Bayes Classifier Decision Boundary

@ GBC decision boundary: based on class posterior

@ Take the class which has higher posterior probability

log p(tk|x) = logp(x|tk) + log p(tx) — log p(x)
d 1 1 _
= —§|0g(2ﬁ)—§|0g|zkl|—E(X—Mk)TUkl(x—Mk)‘F

+ log p(tx) — log p(x)

@ Decision: which class has higher posterior probability
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Decision Boundary

e
./l//,,i"u.\
TR

TN

discriminant:
P(t;|x)=0.5

p(C,1%)

posterior for t, O
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Shared Covariance Matrix
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Learning Gaussian Bayes Classifier

@ Learn the parameters using maximum likelihood
N
g(d)a /’L07/’L17Z) = - |Ong(X(n), t(n)|¢a ,U/Oa,ulaz)
n=1

N
= —log [ [ p(x™[t", o, 11, T)p(£\") )

n=1

@ What have | assumed?
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More on MLE

@ Assume the prior is Bernoulli (we have two classes)
p(tlo) = ¢ (1 — )"

@ You can compute the ML estimate in closed form

1 N
= =S 1M =1
¢ N; [t ]
Do 1) = 0] - x()

T TS ) o)
B 27:1 ]l[t(") =1]- x(m
" Eona 11e0 =1
y = Nzx(n)_ (x(" = )7
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@ For Gaussian Bayes Classifier, if input x is high-dimensional, then covariance
matrix has many parameters

@ Save some parameters by using a shared covariance for the classes

@ Naive Bayes is an alternative Generative model: assumes features
independent given the class

d

p(xlt = k) = [ plilt = k)

i=1

@ How many parameters required now? And before?
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Diagonal Covariance

variances may be
different
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Diagonal Covariance, isotropic

@ Classification only depends on distance to the mean
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Naive Bayes Classifier

Given
@ prior
@ assuming features are conditionally independent given the class
@ likelihood for each x;

The decision rule
d

y = arg max p(t = k) ilj[lp(x,-lt = k)

@ If the assumption of conditional independence holds, NB is the optimal
classifier
@ If not, a heavily regularized version of generative classifier

@ What's the regularization?
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Gaussian Naive Bayes

@ Assume ( )2
1 —(Xi — pik }
x|t = k) = ex
pLxi ) V2mo P [ 2U§<

@ Maximum likelihood estimate of parameters

S 1) = K] X"
>y L[E™ = K]

Hik =

@ Similar for the variance
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Gaussian Bayes Classifier (GBC) vs Logistic Regression

@ If you examine p(t = 1|x) under GBC, you will find that it looks like this:

1
N 1 + exp(—w((/ﬁ, Mo, 11, Z)TX)

p(t]x, &, po, pi1, X)

@ So the decision boundary has the same form as logistic regression!

@ When should we prefer GBC to LR, and vice versa?
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GBC vs LR

@ GBC makes stronger modeling assumption: assumes class-conditional data is
multivariate Gaussian

If this is true, GBC is asymptotically efficient (best model in limit of large N)
@ But LR is more robust, less sensitive to incorrect modeling assumptions
@ Many class-conditional distributions lead to logistic classifier

@ When these distributions are non-Gaussian, in limit of large N, LR beats GBC
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