CSC 411: Lecture 09: Naive Bayes

Raquel Urtasun & Rich Zemel

University of Toronto

Oct 9, 2015

Today

- Classification Multi-dimensional Bayes classifier
- Estimate probability densities from data
- Naive Bayes

Generative vs Discriminative

Two approaches to classification:

- Discriminative classifiers estimate parameters of decision boundary/class separator directly from labeled sample
 - ▶ learn boundary parameters directly (logistic regression models $p(t_k|\mathbf{x})$)
 - ▶ learn mappings from inputs to classes (least-squares, neural nets)
- Generative approach: model the distribution of inputs characteristic of the class (Bayes classifier)
 - ▶ Build a model of $p(\mathbf{x}|t_k)$
 - Apply Bayes Rule

Bayes Classifier

- Aim to diagnose whether patient has diabetes: classify into one of two classes (yes C=1; no C=0)
- Run battery of tests
- Given patient's results: $\mathbf{x} = [x_1, x_2, \cdots, x_d]^T$ we want to update class probabilities using Bayes Rule:

$$p(C|\mathbf{x}) = \frac{p(\mathbf{x}|C)p(C)}{p(\mathbf{x})}$$

More formally

$$posterior = \frac{Class\ likelihood \times prior}{Evidence}$$

• How can we compute $p(\mathbf{x})$ for the two class case?

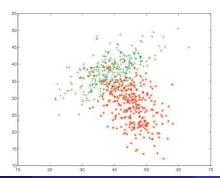
$$p(\mathbf{x}) = p(\mathbf{x}|C = 0)p(C = 0) + p(\mathbf{x}|C = 1)p(C = 1)$$

Classification: Diabetes Example

 Last class we had a single input/observation per patient: white blood cell count

$$p(C = 1|x = 50) = \frac{p(x = 50|C = 1)p(C = 1)}{p(x = 50)}$$

- Add second observation: Plasma glucose value
- Can construct bivariate normal (Gaussian) distribution of each class



Gaussian Bayes Classifier

• Gaussian (or normal) distribution:

$$p(\mathbf{x}|t=k) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left[-(\mathbf{x} - \mu_k)^T \Sigma^{-1} (\mathbf{x} - \mu_k)\right]$$

• Each class *k* has associated mean vector, but typically the classes share a single covariance matrix

Multivariate Data

- Multiple measurements (sensors)
- d inputs/features/attributes
- N instances/observations/examples

$$\mathbf{X} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \cdots & x_d^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{(N)} & x_2^{(N)} & \cdots & x_d^{(N)} \end{bmatrix}$$

Multivariate Parameters

Mean

$$\mathbb{E}[\mathbf{x}] = [\mu_1, \cdots, \mu_d]^T$$

Covariance

$$\Sigma = Cov(\mathbf{x}) = \mathbb{E}[(\mathbf{x} - \mu)^T (\mathbf{x} - \mu)] = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_{d}^2 \end{bmatrix}$$

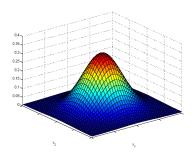
 Correlation = Corr(x) is the covariance divided by the product of standard deviation

$$\rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_i}$$

Multivariate Gaussian Distribution

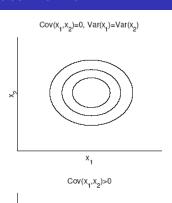
• $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$, a Gaussian (or normal) distribution defined as

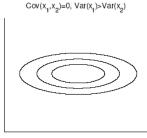
$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-(\mathbf{x} - \mu_k)^T \Sigma^{-1} (\mathbf{x} - \mu_k)\right]$$

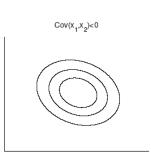


- Mahalanobis distance $(\mathbf{x} \mu_k)^T \Sigma^{-1} (\mathbf{x} \mu_k)$ measures the distance from \mathbf{x} to μ in terms of Σ
- It normalizes for difference in variances and correlations

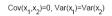
Bivariate Normal



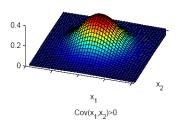


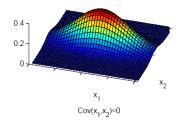


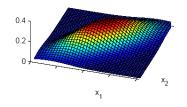
Bivariate Normal

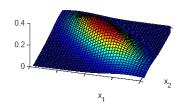


 $Cov(x_1,x_2)=0$, $Var(x_1)>Var(x_2)$









Gaussian Bayes Classifier Decision Boundary

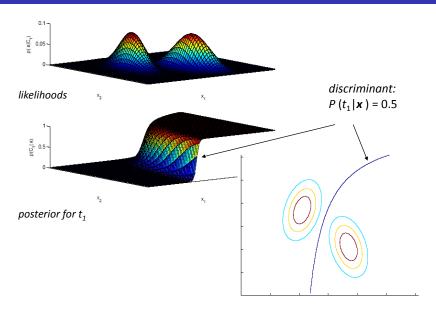
- GBC decision boundary: based on class posterior
- Take the class which has higher posterior probability

$$\log p(t_k|\mathbf{x}) = \log p(\mathbf{x}|t_k) + \log p(t_k) - \log p(\mathbf{x})$$

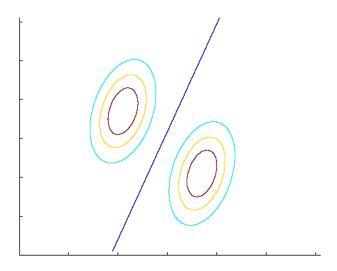
$$= -\frac{d}{2}\log(2\pi) - \frac{1}{2}\log|\Sigma_k^{-1}| - \frac{1}{2}(\mathbf{x} - \mu_k)^T \sigma_k^{-1}(\mathbf{x} - \mu_k) + \log p(t_k) - \log p(\mathbf{x})$$

Decision: which class has higher posterior probability

Decision Boundary



Shared Covariance Matrix



Learning Gaussian Bayes Classifier

• Learn the parameters using maximum likelihood

$$\ell(\phi, \mu_0, \mu_1, \Sigma) = -\log \prod_{n=1}^{N} p(\mathbf{x}^{(n)}, t^{(n)} | \phi, \mu_0, \mu_1, \Sigma)$$
$$= -\log \prod_{n=1}^{N} p(\mathbf{x}^{(n)} | t^{(n)}, \mu_0, \mu_1, \Sigma) p(t^{(n)} | \phi)$$

What have I assumed?

More on MLE

Assume the prior is Bernoulli (we have two classes)

$$p(t|\phi) = \phi^t (1 - \phi)^{1-t}$$

• You can compute the ML estimate in closed form

$$\phi = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}[t^{(n)} = 1]$$

$$\mu_{0} = \frac{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = 0] \cdot \mathbf{x}^{(n)}}{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = 0]}$$

$$\mu_{1} = \frac{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = 1] \cdot \mathbf{x}^{(n)}}{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = 1]}$$

$$\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \mu_{t^{(n)}}) (\mathbf{x}^{(n)} - \mu_{t^{(n)}})^{T}$$

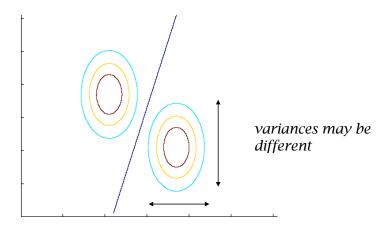
Naive Bayes

- For Gaussian Bayes Classifier, if input x is high-dimensional, then covariance matrix has many parameters
- Save some parameters by using a shared covariance for the classes
- Naive Bayes is an alternative Generative model: assumes features independent given the class

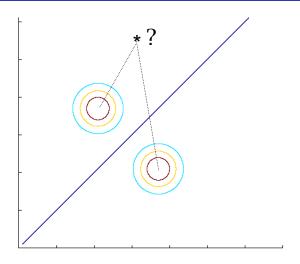
$$p(\mathbf{x}|t=k) = \prod_{i=1}^{d} p(x_i|t=k)$$

• How many parameters required now? And before?

Diagonal Covariance



Diagonal Covariance, isotropic



• Classification only depends on distance to the mean

Naive Bayes Classifier

Given

- prior
- assuming features are conditionally independent given the class
- likelihood for each x_i

The decision rule

$$y = \arg\max_{k} p(t = k) \prod_{i=1}^{d} p(x_i|t = k)$$

- If the assumption of conditional independence holds, NB is the optimal classifier
- If not, a heavily regularized version of generative classifier
- What's the regularization?

Gaussian Naive Bayes

Assume

$$p(x_i|t=k) = \frac{1}{\sqrt{2\pi}\sigma_{ik}} \exp\left[\frac{-(x_i - \mu_{ik})^2}{2\sigma_{ik}^2}\right]$$

Maximum likelihood estimate of parameters

$$\mu_{ik} = \frac{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k] \cdot x_i^{(n)}}{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k]}$$

Similar for the variance

Gaussian Bayes Classifier (GBC) vs Logistic Regression

• If you examine $p(t = 1|\mathbf{x})$ under GBC, you will find that it looks like this:

$$p(t|\mathbf{x}, \phi, \mu_0, \mu_1, \Sigma) = \frac{1}{1 + \exp(-\mathbf{w}(\phi, \mu_0, \mu_1, \Sigma)^T \mathbf{x})}$$

- So the decision boundary has the same form as logistic regression!
- When should we prefer GBC to LR, and vice versa?

GBC vs LR

- GBC makes stronger modeling assumption: assumes class-conditional data is multivariate Gaussian
- If this is true, GBC is asymptotically efficient (best model in limit of large N)
- But LR is more robust, less sensitive to incorrect modeling assumptions
- Many class-conditional distributions lead to logistic classifier
- When these distributions are non-Gaussian, in limit of large N, LR beats GBC