
CSC 411: Lecture 16: Kernels

Raquel Urtasun & Rich Zemel

University of Toronto

Nov 16, 2015

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 1 / 15

Today

Support vectors

Soft-margin

Kernel trick

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 2 / 15

Learning a Margin-Based Classifier

We can search for the optimal parameters (w and b) by finding a solution
that:

1. Correctly classifies the training examples: {(x(i), t(i))}Ni=1

2. Maximizes the margin (same as minimizing wTw)

min
w,b

1

2
||w||2

s.t.∀i (wTx(i) + b)t(i) ≥ 1,

This is call the primal formulation of Support Vector Machine (SVM)

Can optimize via projective gradient descent, etc.

Apply Lagrange multipliers: formulate equivalent problem

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 3 / 15

Learning a Linear SVM

Convert the constrained minimization to an unconstrained optimization
problem: represent constraints as penalty terms:

min
w,b

1

2
||w||2 + penalty− term

For data {(x(i), t(i))}Ni=1, use the following penalty

max
αi≥0

αi [1− (wTx(i) + b)t(i)] =

{
0 if (wTx(i) + b)t(i) ≥ 1

∞ otherwise

Rewrite the minimization problem

min
w,b
{1

2
||w||2 +

N∑
i=1

max
αi≥0

αi [1− (wTx(i) + b)t(i)]}

where αi are the Lagrange multipliers

= min
w,b

max
αi≥0
{1

2
||w||2 +

N∑
i=1

αi [1− (wTx(i) + b)t(i)]}

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 4 / 15

Solution to Linear SVM

Swap the ”max” and ”min”: This is a lower bound

max
αi≥0

min
w,b
{1
2
||w||2 +

N∑
i=1

αi [1− (wTx(i) + b)t(i)]} = max
αi≥0

min
w,b

J(w, b;α)

First minimize J() w.r.t. w, b for fixed Lagrange multipliers:

∂J(w, b;α)

∂w
= w −

N∑
i=1

αix
(i)t(i) = 0

∂J(w, b;α)

∂b
= −

N∑
i=1

αi t
(i) = 0

We obtain
w =

N∑
i=1

αi t
(i)x(i)

Then substitute back to get final optimization:

L = max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))}

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 5 / 15

Summary of Linear SVM

Binary and linear separable classification

Linear classifier with maximal margin

Training SVM by maximizing

max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))}

subject to αi ≥ 0;
N∑
i=1

αi t
(i) = 0

The weights are

w =
N∑
i=1

αi t
(i)x(i)

Only a small subset of αi ’s will be nonzero, and the corresponding x(i)’s are
the support vectors S

Prediction on a new example:

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))] = sign[b + x · (

∑
i∈S

αi t
(i)x(i))]

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 6 / 15

What if data is not linearly separable?

Introduce slack variables ξi

min
1

2
||w||2 + λ

N∑
i=1

ξi

s.t ξi ≥ 0; ∀i t(i)(wTx(i)) ≥ 1− ξi = 0

Example lies on wrong side of hyperplane ξi > 1

Therefore
∑

i ξi upper bounds the number of training errors

λ trades off training error vs model complexity

This is known as the soft-margin extension

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 7 / 15

Non-linear decision boundaries

Note that both the learning objective and the decision function depend only
on dot products between patterns

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))

y = sign[b + x · (
N∑
i=1

αi t
(i)x(i))]

How to form non-linear decision boundaries in input space?

1. Map data into feature space x→ φ(x)
2. Replace dot products between inputs with feature points

x(i)
T

x(j) → φ(x(i))Tφ(x(j))

3. Find linear decision boundary in feature space

Problem: what is a good feature function φ(x)?

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 8 / 15

Kernel Trick

Kernel trick: dot-products in feature space can be computed as a kernel
function

K (x(i), x(j)) = φ(x(i))Tφ(x(j))

Idea: work directly on x, avoid having to compute φ(x)

Example:

K (a,b) = (aTb)3 = ((a1, a2)T (b1, b2))3

= (a1b1 + a2b2)3

= a31b
3
1 + 3a21b

2
1a2b2 + 3a1b1a

2
2b

2
2 + a32b

3
2

= (a31,
√

3a21a2,
√

3a1a
2
2, a

3
2)T (b31,

√
3b21b2,

√
3b1b

2
2, b

3
2)

= φ(a) · φ(b)

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 9 / 15

Kernels

Examples of kernels: kernels measure similarity

1. Polynomial

K (x(i), x(j)) = (x(i)
T

x(j) + 1)2

2. Gaussian

K (x(i), x(j)) = exp(−||x
(i) − x(j)||2

2σ2
)

3. Sigmoid

K (x(i), x(j)) = tanh(β(x(i)
T

x(j)) + a)

Each kernel computation corresponds to dot product
I calculation for particular mapping φ(x) implicitly maps to

high-dimensional space

Why is this useful?

1. Rewrite training examples using more complex features
2. Dataset not linearly separable in original space may be linearly

separable in higher dimensional space

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 10 / 15

Input transformation

Mapping to a feature space can produce problems:

I High computational burden due to high dimensionality
I Many more parameters

SVM solves these two issues simultaneously

I Kernel trick produces efficient classification
I Dual formulation only assigns parameters to samples, not features

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 11 / 15

Classification with non-linear SVMs

Non-linear SVM using kernel function K ():

` =
N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαjK (x(i), x(j))

Maximize ` w.r.t. {α} under constraints ∀i , αi ≥ 0

Unlike linear SVM, cannot express w as linear combination of support
vectors

I now must retain the support vectors to classify new examples

Final decision function:

y = sign[b +
N∑
i=1

t(i)αiK (x, x(i))]

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 12 / 15

Kernel Functions

Mercer’s Theorem (1909): any reasonable kernel corresponds to some
feature space

Reasonable means that the Gram matrix is positive definite

Kij = K (x, x(i))

Feature space can be very large

I polynomial kernel (1 + x(i) + x(j))d corresponds to feature space
exponential in d

I Gaussian kernel has infinitely dimensional features

Linear separators in these super high-dim spaces correspond to highly
nonlinear decision boundaries in input space

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 13 / 15

Summary

Advantages:

I Kernels allow very flexible hypotheses
I Poly-time exact optimization methods rather than approximate

methods
I Soft-margin extension permits mis-classified examples
I Variable-sized hypothesis space
I Excellent results (1.1% error rate on handwritten digits vs. LeNet’s

0.9%)

Disadvantages:

I Must choose kernel parameters
I Very large problems computationally intractable
I Batch algorithm

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 14 / 15

More Summary

Software:

I A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

I Some implementations (such as LIBSVM) can handle multi-class
classification

I SVMLight is among the earliest implementations
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle
I Target function for SVMs
I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 15 / 15

http://www.kernel-machines.org/software.html

	Introduction

