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@ Support vectors

@ Soft-margin

@ Kernel trick
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Learning a Margin-Based Classifier

@ We can search for the optimal parameters (w and b) by finding a solution
that:

1. Correctly classifies the training examples: {(x(), t()}N
2. Maximizes the margin (same as minimizing w’w)
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@ This is call the primal formulation of Support Vector Machine (SVM)
@ Can optimize via projective gradient descent, etc.

@ Apply Lagrange multipliers: formulate equivalent problem
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Learning a Linear SVM

@ Convert the constrained minimization to an unconstrained optimization
problem: represent constraints as penalty terms:

1 2
min = ||w||® + penalty — term
w,b 2

@ For data {(x(), t())}N_, use the following penalty

, , T 4 B > 1
max a,[l _ (WTX(I) + b)t(l)] — {0 | (W X\ + b)t =

;>0 oo otherwise

@ Rewrite the minimization problem
1 N
inf = 2 11— (wx(® ()
min{5|iwll +Z;gjg>5a,[1 (wx? + b))}
=
where «; are the Lagrange multipliers

N
— i L2 S a T () (7)
= mipmax{5liwll” + ._10"[1 (w X D)E]y
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Solution to Linear SVM

@ Swap the "max” and "min"”: This is a lower bound

maxmin{f||w|| +Za,[1—(w x4+ b))} = maxmyinJ(w,b;a)

a; >0 w
i=1

@ First minimize J() w.r.t. w, b for fixed Lagrange multipliers:

8J(w, b; Oé) N (i) ()
T = W — E QX t == 0
oJ(w, b; ) N

s Uy - _ () _
5 g ait 0

@ We obtain

N
W= st

@ Then substitute back to get final optimization:

L= max{z aj— = Z 00 ;05 (x17) -xU))}

a;>0
ij=1

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 5/15



Summary of Linear SVM

@ Binary and linear separable classification
@ Linear classifier with maximal margin

@ Training SVM by maximizing
max{z o — = Z 00 o5 (x7) -x(j))}

a; >0
i,j=1

subject to «; > 0; Z oz;t(i) =0

@ The weights are

N

w=3 it

i=1

@ Only a small subset of «;'s will be nonzero, and the corresponding x(N's are
the support vectors S
@ Prediction on a new example:
y =sign[b+x- Za, = sign[b+x - Za,
i=1 ieS
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What if data is not linearly separable?

+1 plane
’
/ 4
Y / -1 plane
7 /

@ Introduce slack variables &;

N
o1 5
min > ||w|| +A_§_;$,-
® st >0 Vi t9wx?)>1-¢=0
[ ]
[ ]

@ Example lies on wrong side of hyperplane & >1
@ Therefore ). & upper bounds the number of training errors
@ )\ trades off training error vs model complexity

@ This is known as the soft-margin extension

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 7/15



Non-linear decision boundaries

@ Note that both the learning objective and the decision function depend only
on dot products between patterns

{ = Za,fth to)aaj(x -x)

ij=1

= sign[b+x- (Z ;i t %)

i=1

<
I

@ How to form non-linear decision boundaries in input space?

1. Map data into feature space x — ¢(x)
2. Replace dot products between inputs with feature points

x0T =5 §(x )T p(x)

3. Find linear decision boundary in feature space

@ Problem: what is a good feature function ¢(x)?
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Kernel Trick

@ Kernel trick: dot-products in feature space can be computed as a kernel

function o ' '
K(x,x) = o(x)To(x)

@ Idea: work directly on x, avoid having to compute ¢(x)
@ Example:
K(a,b) = (a’b)’ = ((a1,a)" (b1, b))
= (aibs + axby)?
= a3b} + 3alb?arby + 3a1byash? + a3b3
= (a},V3a%ay,V/3a1a2,a3)" (b3,v/3b2by, \/3by b2, b3)
= ¢(a) - ¢(b)
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Kernels

@ Examples of kernels: kernels measure similarity
1. Polynomial
K(X(’),X(‘,)) — (X(i)Tx(j) + 1)2

2. Gaussian | 0 (j)||2
0 WU [|x* —x
K, x0) = exp(— P =I0)
3. Sigmoid
K(x(), x0)) = tanh(ﬂ(x(i)TxU)) +a)
@ Each kernel computation corresponds to dot product

» calculation for particular mapping ¢(x) implicitly maps to
high-dimensional space

@ Why is this useful?

1. Rewrite training examples using more complex features
2. Dataset not linearly separable in original space may be linearly
separable in higher dimensional space
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Input transformation

Input space Feature space

@ Mapping to a feature space can produce problems:

» High computational burden due to high dimensionality
» Many more parameters

@ SVM solves these two issues simultaneously

» Kernel trick produces efficient classification
» Dual formulation only assigns parameters to samples, not features

Urtasun & Zemel (UofT) CSC 411: 16-Kernels Nov 16, 2015 11 /15



Classification with non-linear SVMs

@ Non-linear SVM using kernel function K():

= Za, - = Z t0 W a;a;K (x| x0)

ij=1

@ Maximize ¢ w.r.t. {a} under constraints Vi, a; > 0

@ Unlike linear SVM, cannot express w as linear combination of support
vectors

» now must retain the support vectors to classify new examples

@ Final decision function:

—S|gn[b+z aiK(x,x()]
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Kernel Functions

@ Mercer's Theorem (1909): any reasonable kernel corresponds to some
feature space

@ Reasonable means that the Gram matrix is positive definite

K = K(x,x")

@ Feature space can be very large

» polynomial kernel (1 + x() xU))d corresponds to feature space
exponential in d
» Gaussian kernel has infinitely dimensional features

@ Linear separators in these super high-dim spaces correspond to highly
nonlinear decision boundaries in input space
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@ Advantages:

> Kernels allow very flexible hypotheses

> Poly-time exact optimization methods rather than approximate
methods

» Soft-margin extension permits mis-classified examples

» Variable-sized hypothesis space
» Excellent results (1.1% error rate on handwritten digits vs. LeNet's

0.9%)
@ Disadvantages:

» Must choose kernel parameters
> Very large problems computationally intractable
» Batch algorithm
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@ Software:

» A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

» Some implementations (such as LIBSVM) can handle multi-class
classification

» SVMLight is among the earliest implementations

> Several Matlab toolboxes for SVM are also available

@ Key points:

v

Difference between logistic regression and SVMs
Maximum margin principle

Target function for SVMs

Slack variables for mis-classified points

Kernel trick allows non-linear generalizations

v vy VvYy
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