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@ Key Concepts:

> Logistic Regression
» Regularization
» Cross validation

(note: we are still talking about binary classification)

Zemel, Urtasun, Fidler (UofT) CSC 411: 04-Prob Classif



Logistic Regression

@ An alternative: replace the sign(-) with the sigmoid or logistic function

@ We assumed a particular functional form: sigmoid applied to a linear
function of the data
y(x) =0 (wa + Wo)

where the sigmoid is defined as
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@ The output is a smooth function of the inputs and the weights. It can be
seen as a smoothed and differentiable alternative to sign(-)
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Logistic Regression

@ We assumed a particular functional form: sigmoid applied to a linear
function of the data
y(x) =0 (wx+ wp)

where the sigmoid is defined as

1

=13 exp(—2)

» One parameter per data dimension (feature) and the bias
> Features can be discrete or continuous

Output of the model: value y € [0,1]

Allows for gradient-based learning of the parameters

v

v
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Shape of the Logistic Function

@ Let's look at how modifying w changes the shape of the function

@ 1D example:
y = o (wix + wp)

wy,=0,mw =1 wy=0,m =05 w,=-2,wm=1

0e / 03| /»/ 03 /
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Probabilistic Interpretation

@ If we have a value between 0 and 1, let's use it to model class probability
1

p(C=0lx) =o(w'x+wp) with o(z)= 1+exp(—2)

Substituting we have
1

P(C = Ox) = 1+exp(—wTx— wp)

@ Suppose we have two classes, how can | compute p(C = 1|x)?
@ Use the marginalization property of probability
p(C=1x) + p(C = 0}x) = 1
@ Thus
T
p(C=1lx)=1- T exp(—tlTX ~ o) 1 _T_X::p (viv:Tx iVOV)VO)
@ Demo

/ MATLAB
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Decision Boundary for Logistic Regression

@ What is the decision boundary for logistic regression?

@ p(C=1x,w)=p(C=0|x,w)=0.5

o p(C=0lx,w) =0 (W'x+wp) =05, where o(z) = ﬁp(_z)
@ Decision boundary: w'x + wy =0

@ Logistic regression has a linear decision boundary

v'v X+ WO':O (dedsion bdundaryf
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Logistic Regression vs Least Squares Regression

logistic
/regression

1

least squarges
regression

If the right answer is 1 and the
model says 1.5, it loses, so it
changes the boundary to avoid
being “too correct” (tilts aways
from outliers)
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Example

@ Problem: Given the number of hours a student spent learning, will (s)he
pass the exam?

@ Training data (top row: x(), bottom row: t(7)

Hours | 0.50 |0.75 | 1.00 1.25 |1.50 1.75 1.75 2.00 225 |2.50 2.75 3.00 3.25 3.50 4.00 4.25 4.50 4.75 5.00 5.50
Pass |0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1

@ Learn w for our model, i.e., logistic regression (coming up)
@ Make predictions:

Probability of passing exam versus hours of studying

Hours of study | Probability of passing exam

& 1 0.07
j 2 0.26
z 3 0.61
g 4 0.87

5 0.97
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@ When we have a d-dim input x € R¢
@ How should we learn the weights w = (wg, wy, - -+ , wy)?
@ We have a probabilistic model

@ Let's use maximum likelihood
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Conditional Likelihood

@ Assume t € {0,1}, we can write the probability distribution of each of our
training points p(t™M), ...tV |x(D) ... x(N): w)

@ Assuming that the training examples are sampled IID: independent and
identically distributed, we can write the likelihood function:

N

@ We can write each probability as (will be useful later):

p(t(i)|x(i); w) = p(C= 1|X(i); W)t(")p(c - 0|x(f); w)l—t
£

(1 — p(C = 0jx1; w)) p(C = 0|x; w)1-t<f)

(i)

@ We can learn the model by maximizing the likelihood
max L(w) = maxH p(t x( 0w

@ Easier to maximize the log likelihood log L(w)
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N
Hp(t(i)|x(i)) (likelihood)
i=1

N (i)

= H (1 — P(C = 0|x(i)))t p(C _ O|x("))17t(i

i=1

L(w)

)

@ We can convert the maximization problem into minimization so that we can
write the loss function:

(1og(w) = — log L(w)

N
=— Z log p(tx(; w)

i=1
N

N
= - Z () log(1 — p(C = 0|x) w)) — 2(1 — t)log p(C = 0]x); w)
=1 i=1

@ Is there a closed form solution?

@ It's a convex function of w. Can we get the global optimum?
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Gradient Descent

mvjn Lw) = mvjn { Z D log(1 — p(C = 0|x”, w) Z(l — tD)log p(C = 0[x1”, )}

i=1
@ Gradient descent: iterate and at each iteration compute steepest direction
towards optimum, move in that direction, step-size A

w o w® )\Lg(w)
J J ow;

@ You can write this in vector form

ow) OW)]T A )= S tw)

E =
VW) = 5 S
@ But where is w?
1 exp(—w'x — wp)
=0 =1
p(C =0x) = 1+exp(—wTx — wp)’ PIC =1p) = 1+ exp(—wTx — wp)
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Let's Compute the Updates

@ The loss is

N N
Ciog—1oss(W) = = > W log p(C = 1), w) =) " (1-t0) log p(C = 0[x", w)

i=1 i=1
where the probabilities are

1 exp(—z)

PC=0w) = ey PO = T eny)

and z=w'x+ wy

@ We can simplify
UW)iog—toss = Z £ log(1 + exp(— 2 )) + Z Nz Z(l t(i)) log(1 + exp(—z(i)))

i

ZloglJrexp 2(1y) Jth()

i

@ Now it's easy to take derivatives
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lw) = Z (020 4 Z log(1 4 exp(—z("))
@ Now it's easy to take derivatives
@ Remember z =w7x + wy
ot o) ) exp(=z")
ot _ NONOEENON 7)
dw; 2’: ( NN T exp(—z(1)
® What's x{’? The j—th dimension of the i—th training example x()
@ And simplifying

f’?vij B ZXJ-(") (£9 = p(C = 1xD;w))

@ Don't get confused with indices: j for the weight that we are updating and i
for the training example
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Gradient Descent

@ Putting it all together (plugging the update into gradient descent):
Gradient descent for logistic regression:

Wj(t+1) )\ZX( i) ( —p(C= ux( ))
where:

exp(—w'x —wp) 1

L+exp(—wx—wp) 1+exp(w'x+ wp)

p(C = 1x1;w) =

@ This is all there is to learning in logistic regression. Simple, huh?
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Regularization

We can also look at

p(wl{t}, {x}) oc p({t}/{x}, w) p(w)
with {t} = (t@, ... tM) and {x} = (xD), ... x(M)

We can define priors on parameters w

This is a form of regularization

Helps avoid large weights and overfitting

()
max log | p(w) [ T p(¢"x?), w)

What's p(w)?
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Regularized Logistic Regression

@ For example, define prior: normal distribution, zero mean and identity
covariance p(w) = N(0,a71I)

@ Show the form of this prior on matlab, and show the formula, perhaps also
the log

@ This prior pushes parameters towards zero (why is this a good idea?)
@ Including this prior the new gradient is

w D oy )\LE(W) —xaw
i J w; g
where t here refers to iteration of the gradient descent

@ The parameter « is the importance of the regularization, and it's a
hyper-parameter

@ How do we decide the best value of « (or a hyper-parameter in general)?
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Use of Validation Set

Tuning hyper-parameters:

@ Never use test data for tuning the hyper-parameters

@ We can divide the set of training examples into two disjoint sets: training
and validation

@ Use the first set (i.e., training) to estimate the weights w for different values
of

@ Use the second set (i.e., validation) to estimate the best «, by evaluating
how well the classifier does on this second set

@ This tests how well it generalizes to unseen data
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Cross-Validation

@ Leave-p-out cross-validation:

» We use p observations as the validation set and the remaining
observations as the training set.

» This is repeated on all ways to cut the original training set.

> |t requires CP for a set of n examples

@ Leave-1-out cross-validation: When p = 1, does not have this problem
@ k-fold cross-validation:

» The training set is randomly partitioned into k equal size subsamples.

» Of the k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining kK — 1 subsamples are
used as training data.

» The cross-validation process is then repeated k times (the folds).

» The k results from the folds can then be averaged (or otherwise
combined) to produce a single estimate

Zemel, Urtasun, Fidler (UofT) CSC 411: 04-Prob Classif



Cross-Validation (with Pictures)

Train your model:

@ Leave-one-out cross-validation:
o k-fold cross-validation:

Training examples Tra




Logistic Regression wrap-up

Advantages:
@ Easily extended to multiple classes (thoughts?)
@ Natural probabilistic view of class predictions
@ Quick to train

Fast at classification

Good accuracy for many simple data sets
@ Resistant to overfitting

@ Can interpret model coefficients as indicators of feature importance

Less good:

@ Linear decision boundary (too simple for more complex problems?)

[Slide by: Jeff Howbert]

Zemel, Urtasun, Fidler (UofT) CSC 411: 04-Prob Classif



	Introduction

