CSC 411: Lecture 10: Neural Networks |

Richard Zemel, Raquel Urtasun and Sanja Fidler

University of Toronto

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

@ Multi-layer Perceptron

@ Forward propagation

@ Backward propagation

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Motivating Examples

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks | 3/62

http://www.robots.ox.ac.uk/~szheng/crfasrnndemo
https://www.instapainting.com/ai-painter

Are You Excited about Deep Learning?

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Limitations of Linear Classifiers

@ Linear classifiers (e.g., logistic regression) classify inputs based on linear
combinations of features x;

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Limitations of Linear Classifiers

@ Linear classifiers (e.g., logistic regression) classify inputs based on linear
combinations of features x;

@ Many decisions involve non-linear functions of the input

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Limitations of Linear Classifiers

@ Linear classifiers (e.g., logistic regression) classify inputs based on linear
combinations of features x;

@ Many decisions involve non-linear functions of the input

@ Canonical example: do 2 input elements have the same value?

0,1 @ 01,1
—
\Out%
OUtput S5~ ~—_
0,0 ° ®10

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Limitations of Linear Classifiers

@ Linear classifiers (e.g., logistic regression) classify inputs based on linear
combinations of features x;

@ Many decisions involve non-linear functions of the input

@ Canonical example: do 2 input elements have the same value?

0,1 @ 01,1
—
\Out%
OUtput S5~ ~—_
0,0 ° ®10

@ The positive and negative cases cannot be separated by a plane

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Limitations of Linear Classifiers

@ Linear classifiers (e.g., logistic regression) classify inputs based on linear
combinations of features x;

@ Many decisions involve non-linear functions of the input

@ Canonical example: do 2 input elements have the same value?

0,1 @ 01,1
—
\Out%
OUtput S5~ ~—_
0,0 ° ®10

@ The positive and negative cases cannot be separated by a plane

@ What can we do?

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

How to Construct Nonlinear Classifiers?

@ We would like to construct non-linear discriminative classifiers that utilize
functions of input variables

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

How to Construct Nonlinear Classifiers?

@ We would like to construct non-linear discriminative classifiers that utilize
functions of input variables

@ Use a large number of simpler functions

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

How to Construct Nonlinear Classifiers?

@ We would like to construct non-linear discriminative classifiers that utilize
functions of input variables

@ Use a large number of simpler functions

» If these functions are fixed (Gaussian, sigmoid, polynomial basis
functions), then optimization still involves linear combinations of (fixed
functions of) the inputs

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

How to Construct Nonlinear Classifiers?

@ We would like to construct non-linear discriminative classifiers that utilize
functions of input variables

@ Use a large number of simpler functions

» If these functions are fixed (Gaussian, sigmoid, polynomial basis
functions), then optimization still involves linear combinations of (fixed
functions of) the inputs

» Or we can make these functions depend on additional parameters —
need an efficient method of training extra parameters

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Inspiration: The Brain

@ Many machine learning methods inspired by biology, e.g., the (human) brain

@ Our brain has ~ 101! neurons, each of which communicates (is connected)
to ~ 10* other neurons

impulses carried
toward cell body

branches

dendrites

axon
terminals

nucleus

impulses carried

away from cell body
cell body

Figure : The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]
Zemel, Urtasun, Fidler (UofT)

CSC 411: 10-Neural Networks |

Mathematical Model of a Neuron

@ Neural networks define functions of the inputs (hidden features), computed
by neurons

@ Artificial neurons are called units

Zo wo
_—
axon from a neuron ynapse
WoTo

cell body

f (Zwiﬂ"‘i 3 b)
Z w;x; +b :

output axon

activation
function

Figure : A mathematical model of the neuron in a neural network

[Pic credit: http://cs231n.github.io/neural-networks-1/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Activation Functions

Most commonly used activation functions:

1

@ Sigmoid: o(z) = Ttexp(—2z)

o Tanh: tanh(z) = 73;;8;:;55:3

@ RelU (Rectified Linear Unit): ReLU(z) = max(0, z)

Sigmoid: {(z) = 1/(1+exp(-2)) Tanh: f(z) = [exp(z)-exp(-2)] / [exp(2)+exp(-2)] RelU: (z) = max(0, z)
1 1
09 08 ;
08 06
6
07 04
06 02 5
05 0 4
04 02 5
03 04
2
02 06
o1 08 1
ol -1 [s]
5 4 =2 0 2 4 6 8 6 4 =2 0 2 4 &8 s 4 2 0 2 4 &8

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Neuron in Python

@ Example in Python of a neuron with a sigmoid activation function

class Neuron(object):
def forward(inputs):

wan W

assume inputs and weights are 1-D numpy arrays and bias is a number
cell _body sum = np.sum(inputs * self.weights) + self.bias

firing rate = 1.0 / (1.0 + math.exp(-cell body sum)) # sigmoid activation function
return firing rate

Figure : Example code for computing the activation of a single neuron

[http://cs231n.github.io/neural-networks-1/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Neural Network Architecture (Multi-Layer Perceptro

@ Network with one layer of four hidden units:

input layer

O O O inpUt units hidden layer

Figure : Two different visualizations of a 2-layer neural network. In this example: 3
input units, 4 hidden units and 2 output units

output units

Q

output layer

@ Each unit computes its value based on linear combination of values of units
that point into it, and an activation function

[http://cs231n.github.io/neural-networks-1/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Neural Network Architecture (Multi-Layer Perceptr

@ Network with one layer of four hidden units:

input layer

O O O inpUt units hidden layer

Figure : Two different visualizations of a 2-layer neural network. In this example: 3
input units, 4 hidden units and 2 output units

output units

Q

output layer

@ Naming conventions; a 2-layer neural network:

> One layer of hidden units
» One output layer
(we do not count the inputs as a layer)

[http://cs231n.github.io/neural-networks-1/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Neural Network Architecture (Multi-Layer Perceptron)

@ Going deeper: a 3-layer neural network with two layers of hidden units

input layer
hidden layer 1 hidden layer 2

Figure : A 3-layer neural net with 3 input units, 4 hidden units in the first and second
hidden layer and 1 output unit

@ Naming conventions; a N-layer neural network:

» N — 1 layers of hidden units
» One output layer

[http://cs231n.github.io/neural-networks-1/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Representational Power

@ Neural network with at least one hidden layer is a universal approximator
(can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
http://arxiv.org/pdf/1312.6184v7.pdf

Representational Power

@ Neural network with at least one hidden layer is a universal approximator

(can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

20 hidden neurons

3 hidden neurons 6 hidden neurons
® L] @
® e ® °® lo ® ° lo
° ® ° ® ® ®
® ® ®
° e o ® CRS) °® ° o
® L L ® L | ® ® L @
* °® ® ® @ ®
*—@
® ° ®
- o & N S e © *© * R, o
® ® P ® ® 2 @ ® 8
o ® o)] @
(<} L o @ o » ® o L
L] * L]
® L (]

@ The capacity of the network increases with more hidden units and more

hidden layers

14 / 62

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
http://arxiv.org/pdf/1312.6184v7.pdf

Representational Power

@ Neural network with at least one hidden layer is a universal approximator
(can represent any function).

Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

3 hidden neurons 6 hidden neurons 20 hidden neurons
e © ® o ® Il o s o ° o
° ® ° ® ® ®
® ® @
° e o ® CRS) °® ° o
® L L ® L | @ ® L @
* °® ® ® @ ®
o —@ A J
® ° ®
- o & N S e © *© * R, o
® ® P ® ® 2 @ ® 8
® ° ° ® ® 0
(<} L o @ o » ® o L
L] * °
® °)

@ The capacity of the network increases with more hidden units and more
hidden layers

@ Why go deeper? Read e.g.,: Do Deep Nets Really Need to be Deep? Jimmy Ba,
Rich Caruana, Paper: paper]

[http://cs231n.github.io/neural-networks-1/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks | 14 / 62

http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf
http://arxiv.org/pdf/1312.6184v7.pdf

Neural Networks

@ We only need to know two algorithms

» Forward pass: performs inference

» Backward pass: performs learning

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Forward Pass: What does the Network Compute?

output layer
input layer
hidden layer

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Forward Pass: What does the Network Compute?

output layer
input layer
hidden layer

@ Output of the network can be written as:

D
hi(x) = flvo+ Y xivi)

i=1

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Forward Pass: What does the Network Compute?

output layer
input layer
hidden layer

@ Output of the network can be written as:

D
hi(x) = flvo+ Y xivi)

¥
ok(x) = g(Wk0+Zhj(x)ij)

(j indexing hidden units, k indexing the output units, D number of inputs)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Forward Pass: What does the Network Compute?

output layer
input layer
hidden layer

@ Output of the network can be written as:

D
hi(x) = flvo+ Y xivi)

¥
ok(x) = g(Wk0+Zhj(x)ij)

(j indexing hidden units, k indexing the output units, D number of inputs)
@ Activation functions f, g: sigmoid/logistic, tanh, or rectified linear (ReLU)

B 1 _ exp(z) — exp(—2)
o(z) = T4 exp(—2)’ tanh(z) = exp(z) + exp(—2z)’

ReLU(z) = max(0, z)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Forward Pass in Python

@ Example code for a forward pass for a 3-layer network in Python:

input layer
hidden layer 1 hidden layer 2

forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

X = np.random.randn(3, 1) # random input vector of three numbers (3x1)

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)

@ Can be implemented efficiently using matrix operations

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Forward Pass in Python

@ Example code for a forward pass for a 3-layer network in Python:

input layer
hidden layer 1 hidden layer 2

forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

X = np.random.randn(3, 1) # random input vector of three numbers (3x1)

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)

@ Can be implemented efficiently using matrix operations

@ Example above: W is matrix of size 4 x 3, W5 is 4 x 4. What about biases
and W3?

http://cs231n.github.io/neural-networks-1

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Special Case

® What is a single layer (no hiddens) network with a sigmoid act. function?

O
O

@)

Input Output
Layer Layer

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Special Case

® What is a single layer (no hiddens) network with a sigmoid act. function?

O
O

@)

Input Output
Layer Layer
@ Network: 1
o(x) = T/~
1+ exp(—2¢)
J
Zk = Wi+ E Xj Wij
j=1

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Special Case

® What is a single layer (no hiddens) network with a sigmoid act. function?

O
O

@)

Input Output
Layer Layer
@ Network: 1
o(x) = T/~
1+ exp(—2¢)
J
Zk = Wi+ E Xj Wij
j=1

@ Logistic regression!

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Example Application

o Classify image of handwritten digit (32x32 pixels): 4 vs non-4

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Example Application

o Classify image of handwritten digit (32x32 pixels): 4 vs non-4

@ How would you build your network?

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Example Application

o Classify image of handwritten digit (32x32 pixels): 4 vs non-4

bl

@ How would you build your network?

@ For example, use one hidden layer and the sigmoid activation function:

o (X) — ;
g 1+ exp(—z)
J
Zxk = Wi+ Z hj(X) Wi
j=1

Zemel, Urtasun, Fidler (UofT)

CSC 411: 10-Neural Networks |

Example Application

o Classify image of handwritten digit (32x32 pixels): 4 vs non-4

@ How would you build your network?

@ For example, use one hidden layer and the sigmoid activation function:

o (X) — ;
g 1+ exp(—z)
J
Zxk = Wi+ Z hj(X) Wi
j=1

@ How can we train the network, that is, adjust all the parameters w?

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Training Neural Networks

@ Find weights:

N
w* = argmin Z loss(o(™, t(M)
w n=1

where 0 = f(x; w) is the output of a neural network

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Training Neural Networks

@ Find weights:

N
w* = argmin Z loss(o(™, t(M)

w n=1

where 0 = f(x; w) is the output of a neural network
@ Define a loss function, eg:
» Squared loss: >, %(O,E") — (M2
» Cross-entropy loss: — Y, t,((") log o,((")

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Training Neural Networks

@ Find weights:
N
w* = argmin Zloss(o("), ()

w n=1

where 0 = f(x; w) is the output of a neural network

@ Define a loss function, eg:

» Squared loss: >, %(OIEH) _ t,((”))z
(n)

» Cross-entropy loss: — >, t,((") log o,

@ Gradient descent:
OE

owt

where 7 is the learning rate (and E is error/loss)

witl =wt—7p

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Useful Derivatives

name function derivative
Sigmoid o(z) = m a(z) - (1 —o(2))
Tanh tanh(z) = % 1/ cosh?(z)
ReLU ReLU(z) = max(0, z) {(1): ::i Z 8

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Training Neural Networks: Back-propagation

@ Back-propagation: an efficient method for computing gradients needed to
perform gradient-based optimization of the weights in a multi-layer network

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Training Neural Networks: Back-propagation

@ Back-propagation: an efficient method for computing gradients needed to
perform gradient-based optimization of the weights in a multi-layer network

/~ Training neural nets:)
Loop until convergence:
» for each example n

1. Given input x| propagate activity forward (x(") — h - o("))
(forward pass)

2. Propagate gradients backward (backward pass)

_ 3. Update each weight (via gradient descent)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Training Neural Networks: Back-propagation

@ Back-propagation: an efficient method for computing gradients needed to
perform gradient-based optimization of the weights in a multi-layer network

/~ Training neural nets:)
Loop until convergence:
» for each example n

1. Given input x| propagate activity forward (x(") — h - o("))
(forward pass)

2. Propagate gradients backward (backward pass)

_ 3. Update each weight (via gradient descent)

J

@ Given any error function E, activation functions g() and f(), just need to
derive gradients

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Key ldea behind Backpropagation

@ We don't have targets for a hidden unit, but we can compute how fast the
error changes as we change its activity

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Key ldea behind Backpropagation

@ We don't have targets for a hidden unit, but we can compute how fast the
error changes as we change its activity

> Instead of using desired activities to train the hidden units, use error
derivatives w.r.t. hidden activities

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Key ldea behind Backpropagation

@ We don't have targets for a hidden unit, but we can compute how fast the
error changes as we change its activity

> Instead of using desired activities to train the hidden units, use error
derivatives w.r.t. hidden activities

» Each hidden activity can affect many output units and can therefore
have many separate effects on the error. These effects must be
combined

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Key ldea behind Backpropagation

@ We don't have targets for a hidden unit, but we can compute how fast the
error changes as we change its activity

> Instead of using desired activities to train the hidden units, use error
derivatives w.r.t. hidden activities

» Each hidden activity can affect many output units and can therefore
have many separate effects on the error. These effects must be

combined
» We can compute error derivatives for all the hidden units efficiently

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Key ldea behind Backpropagation

@ We don't have targets for a hidden unit, but we can compute how fast the
error changes as we change its activity

> Instead of using desired activities to train the hidden units, use error
derivatives w.r.t. hidden activities

» Each hidden activity can affect many output units and can therefore
have many separate effects on the error. These effects must be
combined

» We can compute error derivatives for all the hidden units efficiently

» Once we have the error derivatives for the hidden activities, its easy to
get the error derivatives for the weights going into a hidden unit

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Key ldea behind Backpropagation

@ We don't have targets for a hidden unit, but we can compute how fast the
error changes as we change its activity

> Instead of using desired activities to train the hidden units, use error
derivatives w.r.t. hidden activities

» Each hidden activity can affect many output units and can therefore
have many separate effects on the error. These effects must be
combined

» We can compute error derivatives for all the hidden units efficiently

» Once we have the error derivatives for the hidden activities, its easy to
get the error derivatives for the weights going into a hidden unit

@ This is just the chain rule!

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Computing Gradients: Single Layer Network

@ Let's take a single layer network

Output layer oL

Input layer Z;

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Computing Gradients: Single Layer Network

@ Let's take a single layer network and draw it a bit differently

Output layer Ok w

Input layer Z;

Output of unit k
Output layer Output layer activation function

Net input to output unit k

Weight from inputi to k

Input layer Input uniti

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Computing Gradients: Single Layer Network

Output layer

Input layer

@ Error gradients for single layer network:
OE

6Wk,'

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Computing Gradients: Single Layer Network

Output layer

Input layer

@ Error gradients for single layer network:
OF _ OE doi 02,
6Wk,' o 80/(82/(8Wk,'

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Computing Gradients: Single Layer Network

Ok
Output layer
<k
Wk
Input layer Z;

@ Error gradients for single layer network:
OF _ OE doi 02,
6Wk,' o 8ok 82/(8Wk,'

@ Error gradient is computable for any continuous activation function g(), and
any continuous error function

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |

Computing Gradients: Single Layer Network

, OE
Ok (Sk:a—Ok

Output layer

Input layer

@ Error gradients for single layer network:

OF _ OF Do 0z
8Wk,' a f)ok 8Zk awk,‘
~~~

o

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Computing Gradients: Single Layer Network

Output layer

Input layer

@ Error gradients for single layer network:

OE o OE 60;( 8Zk ank 8Zk

aWk,' o Tw@izkawk; - kaawk;

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Computing Gradients: Single Layer Network

Output layer

Input layer

@ Error gradients for single layer network:

OF _ OE 00 0z _ ., 00x Oz
8Wk,' o 80k 821( 6Wk,‘ Tk azk 8Wk;
——

5%

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Computing Gradients: Single Layer Network

Output layer

Input layer

@ Error gradients for single layer network:

OF _ OE 00 0z _ 0%y
Bwk,- - aOk 8zk aWk,' h kaWk,' Tk !

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Gradient Descent for Single Layer Network

@ Assuming the error function is mean-squared error (MSE), on a single
training example n,

we have
O =)t =5
0o,

Output layer

Using logistic activation functions:

0" g(z") = (1 +exp(~2{")) "
P} (n) ., .
Of,,) O,(()(l—o,(())
Input layer 8Zk

Zemel, Urtasun, Fidler (UofT)

CSC 411: 10-Neural Networks |



Gradient Descent for Single Layer Network

@ Assuming the error function is mean-squared error (MSE), on a single
training example n,

we have
OE n n o
) = Ol(< ) _ tf( ) = 5k
Bok

o
Output layer

Using logistic activation functions:

| o) = &z")=0+en(-z")"
(n)
wri d0,” — o(1- o™
Input layer T 82‘((”) k k
@ The error gradient is then:
0E
8Wk,'

Zemel, Urtasun, Fidler (UofT) CSC 411

: 10-Neural Networks |



Gradient Descent for Single Layer Network

@ Assuming the error function is mean-squared error (MSE), on a single
training example n,

we have
OE n n o
) = Ol(< ) _ tf( ) = 5k
Bok

o
Output layer

Using logistic activation functions:

of! = g(#")=(1+exp(-z")) "
(n)
wri d0,” — o(1- o™

Input layer T 82‘((”) k k

@ The error gradient is then:

N n n
OE = OE 90" 9z\"

i 00" 077 Dwii

8Wk,'

Zemel, Urtasun, Fidler (UofT)

CSC 411: 10-Neural Networks |



Gradient Descent for Single Layer Network

@ Assuming the error function is mean-squared error (MSE), on a single
training example n,

we have
OE n n o
) = Ol(< ) _ tf( ) = 5k
Bok

o
Output layer

Using logistic activation functions:

of! = g(#")=(1+exp(-z")) "
(n)
wri d0,” — o(1- o™

Input layer T 82‘((”) k k

@ The error gradient is then:
N (n) 9_(n)
OE 9E 9o, 0z, () _ My (M (M), (n)
= = (0" = t,")o,"(1 — 0, )x
; 90\ 02\ Owii Z g Tk ,

i
n=1

8Wk,'

Zemel, Urtasun, Fidler (UofT)

CSC 411: 10-Neural Networks |



Gradient Descent for Single Layer Network

@ Assuming the error function is mean-squared error (MSE), on a single
training example n,

we have
OE n n o
) = Ol(< ) _ tf( ) = 5k
Bok

o
Output layer

Using logistic activation functions:

of! = g(#")=(1+exp(-z")) "
(n)
wri d0,” — o(1- o™

Input layer T 82‘((”) k k

@ The error gradient is then:
N (n) 9_(n)
OE 9E 9o, 0z, () _ My (M (M), (n)
= = (0" = t,")o,"(1 — 0, )x
; 90\ 02\ Owii Z g Tk ,

i
n=1

8Wk,'

@ The gradient descent update rule is given by:

OE
Wi <— Wk — nawk- =

Zemel, Urtasun, Fidler (UofT)

CSC 411: 10-Neural Networks |



Gradient Descent for Single Layer Network

@ Assuming the error function is mean-squared error (MSE), on a single
training example n, we have

E

o)

ol _ ¢,

=6

o
Output layer

Using logistic activation functions

| o) = gz"”)=01+en(-z")"
s
'u';..,‘ aO,En) _ o(")(l 3 O(n))
Input layer T 8Z(n) k k
k

@ The error gradient is then:
N (n) q_(n)
oE OE 9o, 9z, (M) _ () (n) (MY, (n)
= =) (07 =)o, (1 — 0" )x;
; 80’((n) az‘((n) 8Wki Z k

n=1

8Wk,'

@ The gradient descent update rule is given by:

Wi < Wii —

OE ()0
NGy = Wi = nz (1-

Zemel, Urtasun, Fidler (UofT)

CSC 411: 10-Neural Networks |



Multi-layer Neural Network

Output of unit k
Output layer Output layer activation function

Net input to output unit k

Weight from hidden unit j to output k

Output of hidden unit j

Hidden layer activation function

Hidden layer
Net input to unit j
Weight from inputito j
Input layer Input unit i

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Back-propagation: Sketch on One Training Case

@ Convert discrepancy between each output and its target value into an error
derivative

1 OE
E = = — 2. _— —
5 gk (ox — t)5 9or Ok — tk

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Back-propagation: Sketch on One Training Case

@ Convert discrepancy between each output and its target value into an error
derivative

1 OE
E = — — 2. _— = —
5 gk (o — )% 9or Ok — tk

@ Compute error derivatives in each hidden layer from error derivatives in layer
above. [assign blame for error at k to each unit j according to its influence

on k (depends on w;j)]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Back-propagation: Sketch on One Training Case

@ Convert discrepancy between each output and its target value into an error
derivative

1 OE
E = — — 2. _— = —
5 gk (o — )% 9or Ok — tk

@ Compute error derivatives in each hidden layer from error derivatives in layer
above. [assign blame for error at k to each unit j according to its influence

on k (depends on w;j)]

@ Use error derivatives w.r.t. activities to get error derivatives w.r.t. the
weights.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Gradient Descent for Multi-layer Network

@ The output weight gradients for a
multi-layer network are the same as for a
single layer network

Output layer

N
OE OE dok 92"
= 6
8wkj ;aok 8Wk Z

where dj is the error w.r.t. the net input
for unit k

Hidden layer

Input layer

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Gradient Descent for Multi-layer Network

@ The output weight gradients for a
multi-layer network are the same as for a
single layer network

Output layer

N
OE OE dok 92"
= 6
8wkj ;aok 8Wk Z

where dj is the error w.r.t. the net input
for unit k

Hidden layer

Input layer

@ Hidden weight gradients are then computed via back-prop:

OF
(n) ™
O

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Gradient Descent for Multi-layer Network

@ The output weight gradients for a
multi-layer network are the same as for a
single layer network

Output layer

OE IZN: dE (?ok sz" 25 40

Owyg do\"

Hidden layer

where §y is the error w.r.t. the net input
for unit k

Input layer

@ Hidden weight gradients are then computed via back-prop:

OE _ Z OE OOIEH) 82‘((”) _
dh 90" 02" oh"

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Gradient Descent for Multi-layer Network

@ The output weight gradients for a
multi-layer network are the same as for a
single layer network

Output layer

OE IZN: dE (?ok sz" 25 40

Owyg do\"

Hidden layer

where §y is the error w.r.t. the net input
for unit k

Input layer

@ Hidden weight gradients are then computed via back-prop:

OE _ OE Ook" 8an) . chy(n)
oh" _gaoi") 02" oh™ 25 “ =0

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Gradient Descent for Multi-layer Network

@ The output weight gradients for a
multi-layer network are the same as for a
single layer network

Output layer

N

(n)
" OE oy OE OE dok oz" 25

u; 8ij —1 8ok 8Wk

Hidden layer

where § is the error w.r.t. the net input
for unit k

Input layer

@ Hidden weight gradients are then computed via back-prop:

8E 0E 80,((") 82,‘(11) z,(n) . h,(n)
m — Z OO Z 0 wig 1= 9;
oh; do,” 0z, Oh; B

0E K 0E ah“’ ouf”
i Z o duf <9vﬂ

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Gradient Descent for Multi-layer Network

@ The output weight gradients for a
multi-layer network are the same as for a
single layer network

Output layer

N

(n)
" OE oy OE OE dok oz" 25

u; 8ij —1 8ok 8Wk

Hidden layer

where § is the error w.r.t. the net input
for unit k

Input layer

@ Hidden weight gradients are then computed via back-prop:

8E 0E 80,((") 82,‘(11) z,(n) . h,(n)
m — Z OO Z 0 wig 1= 9;
oh; do,” 0z, Oh; B

N (M) gy N (")
OE _ Z OE 8/71 auj _ Zéh’(n)f,(u(n))auj _
i = on" ou" Ovi ’ 77 Oy

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Gradient Descent for Multi-layer Network

@ The output weight gradients for a
multi-layer network are the same as for a
single layer network

Output layer

N

OE OE Ook 8zk
= (S
Owig ; 6Ok Z

Hidden layer

where & is the error w.r.t. the net input
for unit k

Input layer

@ Hidden weight gradients are then computed via back-prop:

8E aE 80£n) (’)z,g") z,(n) . h,(n)
o = Z ) A () Ay Z(Sk wij 1= 9
(9hj 0o, 0z, ahj P

9E <. 9E Oh" auf ou” N e

0 = 22 on 5 vy 25 =2 "

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Choosing Activation and Loss Functions

@ When using a neural network for regression, sigmoid activation and MSE as
the loss function work well

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Choosing Activation and Loss Functions

@ When using a neural network for regression, sigmoid activation and MSE as
the loss function work well

@ For classification, if it is a binary (2-class) problem, then cross-entropy error
function often does better (as we saw with logistic regression)

N
E=- Z M log o™ + (1 — (M) log(1 — o(M)

n=1

o™ = (1 + exp(—zM)~?

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Choosing Activation and Loss Functions

@ When using a neural network for regression, sigmoid activation and MSE as
the loss function work well

@ For classification, if it is a binary (2-class) problem, then cross-entropy error
function often does better (as we saw with logistic regression)

N
E=- Z M log o™ + (1 — (M) log(1 — o(M)

n=1

o™ = (1 + exp(—zM)~?

@ We can then compute via the chain rule

OE
o = (0~ t)/(o(1~0))
do
g = 0(1 - O)
O0E  OE 0o

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Multi-class Classification

@ For multi-class classification problems, use
cross-entropy as loss and the softmax
activation function

E=- Z Z t,E") log ok")
n k

()
ol — exp(z”)

Output layer

Hidden layer

> e(z”)
@ And the derivatives become
0
872:: = Ok(l — Ok)
0E O0E doj B _
8—Zk = XJ: 8701872/( = (Ok tk)Ok(l Ok)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Example Application

@ Now trying to classify image of
handwritten digit: 32x32 pixels

@ 10 output units, 1 per digit

@ Use the softmax function:

oup o exp(zx)
ayer = - 7
> exp(z)
J
Hidden Zk = Wko + Z hj(x) Wi
Layer
j=1
Input
baver @ Whatis J ?

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Ways to Use Weight Derivatives

@ How often to update

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Ways to Use Weight Derivatives

@ How often to update

» after a full sweep through the training data (batch gradient descent)

N

OE IE(0(™ (M, w

Wki%Wki*ﬂaWk.:Wki*UE %
1 n=1 !

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Ways to Use Weight Derivatives

@ How often to update

» after a full sweep through the training data (batch gradient descent)

N

OE IE(0(™ (M, w

Wki%Wki*ﬂaWk.:Wki*UE %
1 n=1 !

» after each training case (stochastic gradient descent)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Ways to Use Weight Derivatives

@ How often to update

» after a full sweep through the training data (batch gradient descent)

OE ZN: OE(0™,t(M; w)

Wki(*Wki*naW = Wk — 1
ki

—~ OWi
» after each training case (stochastic gradient descent)
» after a mini-batch of training cases

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Ways to Use Weight Derivatives

@ How often to update
» after a full sweep through the training data (batch gradient descent)

OE ZN: OE(0™,t(M; w)

Wki(*Wki*naW = Wk — 1
ki

Wi
=1 0 ki

» after each training case (stochastic gradient descent)
» after a mini-batch of training cases

@ How much to update

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Ways to Use Weight Derivatives

@ How often to update
» after a full sweep through the training data (batch gradient descent)

OE ZN: OE(0™,t(M; w)

Wki(*Wki*naW = Wk — 1
ki

Wi
=1 0 ki

» after each training case (stochastic gradient descent)
» after a mini-batch of training cases
@ How much to update

» Use a fixed learning rate

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Ways to Use Weight Derivatives

@ How often to update

» after a full sweep through the training data (batch gradient descent)

OE ZN: OE(0™,t(M; w)

= Wk — 1
aWk,' 1

Wi <= Wi — 1) ow
ki

» after each training case (stochastic gradient descent)
» after a mini-batch of training cases

@ How much to update

» Use a fixed learning rate
> Adapt the learning rate

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |




Ways to Use Weight Derivatives

@ How often to update

» after a full sweep through the training data (batch gradient descent)

OE ZN: OE(0™,t(M; w)

= Wk — 1
aWk,' 1

Wi <= Wi — 1) ow
ki

» after each training case (stochastic gradient descent)
» after a mini-batch of training cases

@ How much to update

» Use a fixed learning rate
> Adapt the learning rate
> Add momentum

Wi < Wy — V

vV 'yv—i—naWk'
1

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |




Comparing Optimization hods

- SGD

—— Momentum
;i?nentum E s NAG
NAG E — Adagrad
Adagrad Adadelta
Adadelta c — Rmsprop

2
b

[http://cs231n.github.io/neural-networks-3/, Alec Radford]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Monitor Loss During Training

@ Check how your loss behaves during training, to spot wrong
hyperparameters, bugs, etc

low learning rate

high learning rate

good learning rate

00

epoch 0 0 £ 60 & 100

Epoch “

Figure : Left: Good vs bad parameter choices, Right: How a real loss might look
like during training. What are the bumps caused by? How could we get a more
smooth loss?

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Monitor Accuracy on Train/Validation During Training

@ Check how your desired performance metrics behaves during training

I 3 fiw
accuracy training accurac

validation accuracy:
little overfitting

validation accuracy: strong overfitting

epoch

[http://cs231n.github.io/neural-networks-3/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Supervised Learning: Examples

Classification

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Supervised Learning: Examples

Classification

Supervised Deep Learning

Classification

“dog”

[Picture from M. Ranzato]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Neural Networks

@ Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh,
max) to create complex non-linear functions

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Neural Networks

@ Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh,
max) to create complex non-linear functions

@ Note: a composite of linear functions is linear!

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Neural Networks

@ Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh,
max) to create complex non-linear functions

@ Note: a composite of linear functions is linear!

@ Example: 2 hidden layer NNet (now matrix and vector form!) with ReLU as
nonlinearity

h! h?
x —>[ max(0, W, x + bt) ]—»[ max(0, W, ht + b?) ]-»[ W h? + b3 ]—> y

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Neural Networks

@ Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh,
max) to create complex non-linear functions

@ Note: a composite of linear functions is linear!

@ Example: 2 hidden layer NNet (now matrix and vector form!) with ReLU as
nonlinearity

h! h?
x —>[ max(0, W, x + bt) ]—»[ max(0, W, ht + b?) ]-»[ W h? + b3 ]—> y

» X is the input

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Neural Networks

@ Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh,
max) to create complex non-linear functions

@ Note: a composite of linear functions is linear!

@ Example: 2 hidden layer NNet (now matrix and vector form!) with ReLU as
nonlinearity

h! h?
x —>[ max(0, W, x + bt) ]—»[ max(0, W, ht + b?) ]-»[ W h? + b3 ]—> y

» X is the input
> y is the output (what we want to predict)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Neural Networks

@ Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh,
max) to create complex non-linear functions

@ Note: a composite of linear functions is linear!

@ Example: 2 hidden layer NNet (now matrix and vector form!) with ReLU as
nonlinearity

h! h?
x —>[ max(0, W, x + bt) ]—»[ max(0, W, ht + b?) ]-»[ W h? + b3 ]—> y

» X is the input
> y is the output (what we want to predict)
> h' is the i-th hidden layer

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Neural Networks

@ Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh,
max) to create complex non-linear functions

@ Note: a composite of linear functions is linear!

@ Example: 2 hidden layer NNet (now matrix and vector form!) with ReLU as
nonlinearity

h! h?
x —>[ max(0, W, x + bt) ]—»[ max(0, W, ht + b?) ]-»[ W h? + b3 ]—> y

x is the input

y is the output (what we want to predict)
h' is the i-th hidden layer

W; are the parameters of the i-th layer

v vy VvYy

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Evaluating the Function

@ Assume we have learn the weights and we want to do inference

@ Forward Propagation: compute the output given the input

L3 h®
x —>[ max(0, Wi x + b') ]—»[ max(0, W, h* + b?) ]—»[ WS h? + b3 ]—» y

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Evaluating the Function

@ Assume we have learn the weights and we want to do inference

@ Forward Propagation: compute the output given the input
2

L3 h
x —>[ max(0, Wi x + b') ]—»[ max(0, W, h* + b?) ]—»[ WS h? + b3 ]—» y

@ Do it in a compositional way,

h! = max(0, W' x + b')

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Evaluating the Function

@ Assume we have learn the weights and we want to do inference

@ Forward Propagation: compute the output given the input

hl
X —»[ max(0, Wi x + bt) ]—v[ max(0, W, ht + b?) ]—> W h? + b3 ]—> y

@ Do it in a compositional way

h! max(0, W, x + by)
h? = max(0, W, h! + by)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Evaluating the Function

@ Assume we have learn the weights and we want to do inference

@ Forward Propagation: compute the output given the input
2

h! h
x —>[ max(0, W, x + b?) ]—»[ max(0, W, ht + b?) ]-»[ Wy h? + b3 ]-».

@ Do it in a compositional way

h! = max(0, W,"x + by)
h> = max(0, W, h' 4 by)
y = Wih*4 b

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



2

h! h
x vb[ max(0, W, x + bt) ]—v[ max(0, W, ht + b?) ]—v[ Wy h? + b3 ]—> y

@ We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

@ Collect a training set of input-output pairs {x(", t("}

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



2

h! h
x vb[ max(0, W, x + bt) ]—v[ max(0, W, ht + b?) ]—v[ Wy h? + b3 ]—> y

@ We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

@ Collect a training set of input-output pairs {x(", t("}

@ For classification: Encode the output with 1-K encoding t = [0, .., 1, .., 0]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |




1 2

h h
x vb[ max(0, W, x + bt) ]—v[ max(0, W, ht + b?) ]—v[ Wy h? + b3 ]—> y

@ We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

@ Collect a training set of input-output pairs {x(", t("}
@ For classification: Encode the output with 1-K encoding t = [0, .., 1, .., 0]

@ Define a loss per training example and minimize the empirical risk
1
_ = (n) ()
L(w) = N En (w, x\"™ ')

with N number of examplesand w contains all parameters

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Loss Function: Classification

1
L(w) = N Zﬁ(w,x(”),t(”))

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Loss Function: Classification

1
L(w) = N Zﬁ(w,x(”),t(”))

@ Probability of class k given input (softmax):

exp(yk)

Cx = 1x) = —————
A== 5~ ootr)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Loss Function: Classification

1
L(w) = N Zﬁ(w,x(”),t(”))

@ Probability of class k given input (softmax):

exp(yk)

Cx = 1x) = —————
A== 5~ ootr)

@ Cross entropy is the most used loss function for classification

O(w, x(M ¢ Z ty" Vlog p (ck|x)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Loss Function: Classification

1
L(w) = N Zﬁ(w,x(”),t(”))

@ Probability of class k given input (softmax):

exp(yk)

Cx = 1x) = —————
A== 5~ ootr)

@ Cross entropy is the most used loss function for classification
O(w, x(M ¢ Z ty" Vlog p (ck|x)

@ Use gradient descent to train the network

1
mvjn m zn: O(w, x(M (M)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule

v v B
x —>[ max(0, Wy x + b*) ]-»[ max(0, Wy h' + b?) ]-»[ W5 h? + b3 ]4— y

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule

v v B
x —>[ max(0, Wy x + b*) ]-»[ max(0, Wy h' + b?) ]-»[ W5 h? + b3 ]4— y

plce = 1x) = §XP(yk)

Zj:l exp(y;)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule

v v B
x —>[ max(0, Wy x + b*) ]-»[ max(0, Wy h' + b?) ]-»[ W5 h? + b3 ]4— y

exp(y)
plec =1x) = —e———
Zj:l exp(y;)
oxM M w) = — Z t,((") log p(ck|x)
K

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule

v v B
x —>[ max(0, Wy x + b*) ]-»[ max(0, Wy h' + b?) ]-»[ W5 h? + b3 ]4— y

exp(y)
plo=1px) = =)
Zj:l exp(y;)
oxM M w) = — Z £ log p(ckx)
P

@ Compute the derivative of loss w.r.t. the output

S—ﬁ — plclx) — t

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule

v v B
x —>[ max(0, Wy x + b*) ]-»[ max(0, Wy h' + b?) ]-»[ W5 h? + b3 ]4— y

exp(y)
plo=1px) = =)
Zj:l exp(y;)
oxM M w) = — Z £ log p(ckx)
P

@ Compute the derivative of loss w.r.t. the output

S—ﬁ — plclx) — t

@ Note that the forward pass is necessary to compute g—ﬁ

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
hl
x —»[ max(0, Wy x + b') ]—»[ max(0, Wy h' + b?)

oL
Ay

Wi h? + b° ]4— y

@ We have computed the derivative of loss w.r.t the output

oY

oy p(clx) —t

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
hl
x —»[ max(0, Wy x + b') ]—»[ max(0, Wy h' + b?)

oL
Ay

Wi h? + b° ]4— y

@ We have computed the derivative of loss w.r.t the output

ol
— =p(c|x) -t
oy p(clx)
@ Given g—ﬁ if we can compute the Jacobian of each module

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
hl
x —»[ max(0, Wy x + b') ]—»[ max(0, Wy h' + b?)

oL
Ay

Wi h? + b° ]4— y

@ We have computed the derivative of loss w.r.t the output

14
RCORE
@ Given g—ﬁ if we can compute the Jacobian of each module
or
oWs

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
hl
x —»[ max(0, Wy x + b') ]—»[ max(0, Wy h' + b?)

oL
Ay

Wi h? + b° ]4— y

@ We have computed the derivative of loss w.r.t the output

RCORE
@ Given g—ﬁ if we can compute the Jacobian of each module
ot ot gy
6W3 o (9)/ 8W3 -

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
hl
x —»[ max(0, Wy x + b') ]—»[ max(0, Wy h' + b?)

oL
Ay

Wi h? + b° ]4— y

@ We have computed the derivative of loss w.r.t the output

RCORE
@ Given g—ﬁ if we can compute the Jacobian of each module
ol ol Oy
OWs Dy oW, (p(clx) = t)(W*)"

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
hl
x —»[ max(0, Wy x + b') ]—»[ max(0, Wy h' + b?)

oL
Ay

Wi h? + b° ]4— y

@ We have computed the derivative of loss w.r.t the output
ol
— = plc|x) —t
oy p(clx)

@ Given g—ﬁ if we can compute the Jacobian of each module

or _% dy B N T
WL oy W (p(clx) — t)(h%)
o _

oh2

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
hl oL
Ay

x —»[ max(0, Wy x + b') ]—»[ max(0, Wy h' + b?) Wy h? 4 b° ]4— y

@ We have computed the derivative of loss w.r.t the output
ol
dy

= p(cx) —t

@ Given g—ﬁ if we can compute the Jacobian of each module

O = L0 (p(eix) — )h)T

OWs — Oy W5
o _ ooy _
oh2 ~ dyoh?

CSC 411: 10-Neural Networks |

Zemel, Urtasun, Fidler (UofT)



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
hl
x —»[ max(0, Wy x + b') ]—»[ max(0, Wy h' + b?)

oL
Ay

Wi h? + b° ]4— y

@ We have computed the derivative of loss w.r.t the output
ol
— = plc|x) —t
oy p(clx)

@ Given g—ﬁ if we can compute the Jacobian of each module
o % dy
6W3 o (9)/ 8W3 -

ot oty B
oh2 = By on? = (W3) " (p(clx) —t)

(p(clx) — £)(h*)"

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
hl oL
Ay

x —»[ max(0, Wy x + b') ]—»[ max(0, Wy h' + b?) Wy h? 4 b° ]4— y

@ We have computed the derivative of loss w.r.t the output
ol
dy

= p(cx) —t

@ Given g—ﬁ if we can compute the Jacobian of each module

O = L0 (p(eix) — )h)T

OWs — Oy W5
o _otay .. B
ohe " Dy one (W3) " (p(clx) —t)

@ Need to compute gradient w.r.t. inputs and parameters in each layer

CSC 411: 10-Neural Networks |

Zemel, Urtasun, Fidler (UofT)



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
514 124

o ay
max(0, W, h! + b?) J«—l W5 h? + b3 ]4— y

X —>[ max(0, Wy x + b')

ot oty B
oh2 = By oh? = (W3) " (p(clx) —t)

@ Given % if we can compute the Jacobian of each module

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
514 124

o ay
max(0, W, h! + b?) J«—l W5 h? + b3 ]4— y

X —>[ max(0, Wy x + b')

ot oty B
oh2 = By oh? = (W3) " (p(clx) —t)

@ Given % if we can compute the Jacobian of each module

or

oW,

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
514 124

o ay
max(0, W, h! + b?) J«—l W5 h? + b3 ]4— y

X —>[ max(0, Wy x + b')

ot oty B
oh2 = By oh? = (W3) " (p(clx) —t)

@ Given % if we can compute the Jacobian of each module

or oL ow
oW, — OhZ aW,

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
514 124

o ay
max(0, W, h! + b?) J«—l W5 h? + b3 ]4— y

X —>[ max(0, Wy x + b')

ot oty B
oh2 = By oh? = (W3) " (p(clx) —t)

@ Given % if we can compute the Jacobian of each module

or oL ow
oW, — OhZ aW,
o

aht

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Backpropagation

@ Efficient computation of the gradients by applying the chain rule
514 124

o ay
max(0, W, h! + b?) J«—l W5 h? + b3 ]4— y

X —>[ max(0, Wy x + b')

ot oty B
oh2 = By oh? = (W3) " (p(clx) —t)

@ Given % if we can compute the Jacobian of each module

o o on?
W, — 0h2 W,
ot _ ot ow?
dhl — 9h2 dh!

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Toy Code (Matlab): Neural Net Trainer

% F—-PROP
for i =1 : nr_layers -1
[h{i} Jac{i}] = nonlinearity(W{i} * h{i-1} + b{i});
end
h{nr_layers-1} = W{nr_layers-1} * h{nr_layers-2} + b{nr_layers-1};
prediction = softmax(h{l-1});

% CROSS ENTROPY LOSS

loss = - sum(sum(log(prediction) .* target)) / batch_size;
% B—-PROP
dh{l-1} = prediction - target;
for i = nr_layers - 1 : -1 : 1
Wgrad{i} = dh{i} * h{i-1}"';
bgrad{i} = sum(dh{i}, 2);
dh{i-1} = (W{i}' * dh{i}) .* Jac{i-1};
end
% UPDATE
for i =1 : nr_layers - 1
W{i} = W{i} - (lr / batch_size) * Wgrad{i};
b{i} = b{i} - (lr / batch_size) * bgrad{i};
end 3
This code has a few bugs with indices... Ranzaton

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks | 54 / 62



@ The training data contains information about the regularities in the mapping
from input to output. But it also contains noise

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



@ The training data contains information about the regularities in the mapping
from input to output. But it also contains noise

» The target values may be unreliable.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



@ The training data contains information about the regularities in the mapping
from input to output. But it also contains noise

» The target values may be unreliable.
» There is sampling error: There will be accidental regularities just
because of the particular training cases that were chosen

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



@ The training data contains information about the regularities in the mapping
from input to output. But it also contains noise

» The target values may be unreliable.
» There is sampling error: There will be accidental regularities just
because of the particular training cases that were chosen

@ When we fit the model, it cannot tell which regularities are real and which
are caused by sampling error.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



@ The training data contains information about the regularities in the mapping
from input to output. But it also contains noise

» The target values may be unreliable.
» There is sampling error: There will be accidental regularities just
because of the particular training cases that were chosen

@ When we fit the model, it cannot tell which regularities are real and which
are caused by sampling error.

» So it fits both kinds of regularity.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



@ The training data contains information about the regularities in the mapping
from input to output. But it also contains noise

» The target values may be unreliable.
» There is sampling error: There will be accidental regularities just
because of the particular training cases that were chosen

@ When we fit the model, it cannot tell which regularities are real and which
are caused by sampling error.

» So it fits both kinds of regularity.
» If the model is very flexible it can model the sampling error really well.
This is a disaster.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Preventing Overfitting

@ Use a model that has the right capacity:

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Preventing Overfitting

@ Use a model that has the right capacity:

» enough to model the true regularities

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Preventing Overfitting

@ Use a model that has the right capacity:

» enough to model the true regularities
» not enough to also model the spurious regularities (assuming they are
weaker)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Preventing Overfitting

@ Use a model that has the right capacity:

» enough to model the true regularities
» not enough to also model the spurious regularities (assuming they are
weaker)

@ Standard ways to limit the capacity of a neural net:

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Preventing Overfitting

@ Use a model that has the right capacity:

» enough to model the true regularities
» not enough to also model the spurious regularities (assuming they are
weaker)

@ Standard ways to limit the capacity of a neural net:

» Limit the number of hidden units.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Preventing Overfitting

@ Use a model that has the right capacity:

» enough to model the true regularities
» not enough to also model the spurious regularities (assuming they are
weaker)

@ Standard ways to limit the capacity of a neural net:

» Limit the number of hidden units.
» Limit the norm of the weights.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Preventing Overfitting

@ Use a model that has the right capacity:

» enough to model the true regularities
» not enough to also model the spurious regularities (assuming they are
weaker)

@ Standard ways to limit the capacity of a neural net:

» Limit the number of hidden units.
» Limit the norm of the weights.
» Stop the learning before it has time to overfit.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Limiting the size of the Weights

@ Weight-decay involves adding an extra term to the cost function that
penalizes the squared weights.

C:€+%ZW,-2

@ Keeps weights small unless they have big error derivatives.

oc _ ot
BW;_aW; Wi

c L
M B T T T N aw,

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



The Effect of Weight-decay

@ It prevents the network from using weights that it does not need

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



The Effect of Weight-decay

@ It prevents the network from using weights that it does not need

» This can often improve generalization a lot.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



The Effect of Weight-decay

@ It prevents the network from using weights that it does not need

» This can often improve generalization a lot.
> It helps to stop it from fitting the sampling error.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



The Effect of Weight-decay

@ It prevents the network from using weights that it does not need

» This can often improve generalization a lot.

> It helps to stop it from fitting the sampling error.

> It makes a smoother model in which the output changes more slowly as
the input changes.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



The Effect of Weight-decay

@ It prevents the network from using weights that it does not need

» This can often improve generalization a lot.

> It helps to stop it from fitting the sampling error.

> It makes a smoother model in which the output changes more slowly as
the input changes.

@ But, if the network has two very similar inputs it prefers to put half the
weight on each rather than all the weight on one — other form of weight
decay?

@ @
w/2 w/2 W, 0
7% 3%

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Deciding How Much to Restrict the Capacity

@ How do we decide which regularizer to use and how strong to make it?

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Deciding How Much to Restrict the Capacity

@ How do we decide which regularizer to use and how strong to make it?

@ So use a separate validation set to do model selection.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Using a Validation Set

@ Divide the total dataset into three subsets:

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Using a Validation Set

@ Divide the total dataset into three subsets:

» Training data is used for learning the parameters of the model.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Using a Validation Set

@ Divide the total dataset into three subsets:

» Training data is used for learning the parameters of the model.
» Validation data is not used for learning but is used for deciding what
type of model and what amount of regularization works best

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Using a Validation Set

@ Divide the total dataset into three subsets:

» Training data is used for learning the parameters of the model.

» Validation data is not used for learning but is used for deciding what
type of model and what amount of regularization works best

> Test data is used to get a final, unbiased estimate of how well the
network works. We expect this estimate to be worse than on the
validation data

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Using a Validation Set

@ Divide the total dataset into three subsets:

» Training data is used for learning the parameters of the model.

» Validation data is not used for learning but is used for deciding what
type of model and what amount of regularization works best

> Test data is used to get a final, unbiased estimate of how well the
network works. We expect this estimate to be worse than on the
validation data

@ We could then re-divide the total dataset to get another unbiased estimate
of the true error rate.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Preventing Overfitting by Early Stopping

@ If we have lots of data and a big model, its very expensive to keep
re-training it with different amounts of weight decay

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Preventing Overfitting by Early Stopping

@ If we have lots of data and a big model, its very expensive to keep
re-training it with different amounts of weight decay

@ It is much cheaper to start with very small weights and let them grow until
the performance on the validation set starts getting worse

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Preventing Overfitting by Early Stopping

@ If we have lots of data and a big model, its very expensive to keep
re-training it with different amounts of weight decay

@ It is much cheaper to start with very small weights and let them grow until
the performance on the validation set starts getting worse

@ The capacity of the model is limited because the weights have not had time
to grow big.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks |



Why Early Stopping Works

O (O outputs

—

OO0 O0OO0OO0O0

o=

O O

inputs

Zemel, Urtasun, Fidler (UofT)

@ When the weights are very small, every
hidden unit is in its linear range.

> So a net with a large layer of hidden
units is linear.

> It has no more capacity than a linear
net in which the inputs are directly
connected to the outputs!

@ As the weights grow, the hidden units
start using their non-linear ranges so the
capacity grows.

CSC 411: 10-Neural Networks |



	Introduction



