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Introduction

Instructor: Raquel Urtasun (rurtasun@ttic.edu)

Lectures: Tuesday and Thursday 10:30-11:50

Course Webpage:
http://ttic.uchicago.edu/~rurtasun/courses/CV/cv.html

TA: TBD
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Other useful info:

Materials:

Rick Szeliski, Computer Vision: Algorithms and Applications,
http://szeliski.org/Book/

David Forsyth and Jean Ponce, Computer Vision: A Modern Approach

Lot’s of papers
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Course requirements

Essential Prerequisites:

Linear algebra

Vector calculus

Programming

Course does not knowledge about:

Computer vision

Image processing

Graphics

Robotics
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Today

1 Introduction to computer vision

2 Course overview
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Readings for today

Szeliski, CV: A&A, Ch 1.0 (Introduction)
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Every image tells a story

Goal of computer vision: perceive the
story behind the picture

Compute properties of the world

3D shape and appearance
Names of people or objects
Track a person moving against a
complex background
What happened?

[Source: N. Snavely]
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The goal of Computer Vision

[Source: N. Snavely]
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Why is vision so difficult?

It is an inverse problem: recover some unknowns given insufficient
information to fully specify the solution

In general to disambiguate between solutions we resort to

physics-based model, e.g., geometry, light
probabilistic models

These are two different schools that are typically in conflict

The future is in unifying both ... in my opinion
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Forward models ...

... are usually developed in physics (radiometry, optics, and sensor design) and
graphics, modeling

how objects move and animate,

how light reflects off their surfaces,

is scattered by the atmosphere,

refracted through camera lenses (or human eyes),

and finally projected onto a flat (or curved) image plane
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Inverse problem ...

In computer vision, we

describe the world that we see in one or more images

and try to reconstruct its properties

shape
illumination
color distributions
...
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Can the computer match human perception?

Yes and no (but mainly no, so far)

computers can be better at some easy things

humans are much better at hard things

The notion of ”hardness” is different for human and machine. Examples?
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Is computer vision hard?
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Is computer vision hard?

Figure: Turning the Tables by Roger Shepard

Depth processing is automatic, and we can not shut it down

[Souce: A. Torralba]
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Is computer vision hard?

Do A and B have the same gray level?

[Souce: A. Torralba]
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Is computer vision hard?

Figure: 2006 Walt Anthony

Do they have the same length?

[Souce: A. Torralba]
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Is computer vision hard?

Figure: Ames room

Assumptions can be wrong

[Souce: A. Torralba]
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Is computer vision hard?

Figure: Chabris & Simons

Count number of times the white team pass the ball

Concentrate, difficult task!
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Is computer vision hard?

Figure: Simons et al.

Is something happening in the picture?
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A bit of history ...
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The beginning of Computer Vision ...

[Source: A. Torralba]
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Vision is hard ...

So let’s make the problem more simple

[Source: A. Torralba]
Raquel Urtasun (TTI-C) Computer Vision January 8th, 2013 22 / 74



Vision is hard ...

Initial focus on geometry.

But, despite promising initial results, things did not work out so well for
recognition (lack of data, processing power, lack of reliable methods for
low-level and mid-level vision)

Instead, a different way of thinking about object detection started making
some progress: learning based approaches and classifiers, which ignored low
and mid-level vision.

Maybe the time is here to come back to some of the earlier models, more
grounded in intuitions about visual perception

[Source: A. Torralba]
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But humans are pretty good at it
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Recognition even from tiny images

Figure: 80 million tiny images [Torralba et al.]

[Source: N. Snavely]
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The goals of computer vision

Computing the 3D shape of the world

[Source: N. Snavely]
Raquel Urtasun (TTI-C) Computer Vision January 8th, 2013 26 / 74



The goals of computer vision

Recognizing objects and people

[Source: N. Snavely]
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What does visual recognition involve?

[Source: R. Fergus]
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Verification: Is that a lamp?
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Detection: Where are the people?
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Activity Recognition: What are they doing?

walking 
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Pose: Which pose do they have?
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Identification: Is that the great wall?
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Description: Attributes and relations

Crowded square in China 
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The goals of computer vision

Enhancing images (c.f. Computational Photography)

!"#$%&%$'()"*(+,-,.$+(/'/+0,
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[Source: N. Snavely]
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The goals of computer vision

Forensics

Figure: Source: Nayar and Nishino, Eyes for Relighting

[Source: N. Snavely]
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The goals of computer vision

Source: Nayar and Nishino, “Eyes for Relighting” 

[Source: N. Snavely]
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The goals of computer vision

Figure: Source: Nayar and Nishino, Eyes for Relighting

[Source: N. Snavely]
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Why study computer vision?

Millions of images being captured all the time

Lots of useful applications

The next slides show the current state of the art

[Source: S. Lazebnik]
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Why study computer vision?

UNITED STATES 

SECURITIES AND EXCHANGE COMMISSION 

Washington, D.C. 20549 

Amendment No. 4 to 

Form S-1 

REGISTRATION STATEMENT 

Under 

The Securities Act of 1933 

Facebook, Inc. 

… On average more than 300 million photos per day were uploaded 
to Facebook in the three months ended March 31, 2012 … 

[Source: N. Snavely]
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Why study computer vision?

http://youtube-global.blogspot.com/2011/05/thanks-youtube-community-for-two-big.html 

[Source: N. Snavely]
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Why study computer vision?

[Source: N. Snavely]
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Let’s look at some applications
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Applications: Optical character recognition (OCR)

If you have a scanner, it probably came with OCR software

!"#"$%&'()#*"+)*,%-./.%0123%
456788999:&'3'1&(4:15:();8<=1**8%

>"('*3'%601$'%&'1?'&3%
456788'*:9"@"6'?"1:)&#89"@"8-A$);1+(B*A;2'&B601$'B&'()#*"+)*%

Source: S. Seitz 
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Applications: Face detection

Many new digital cameras now detect faces: e.g., Canon, Sony, Fuji,

[Source: S. Seitz]
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Applications: Face recognition

[Source: N. Snavely]
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Applications: Face recognition

http://developers.face.com/tools/ 

[Source: N. Snavely]
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Applications: Face Recognition

Who is she?
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Applications: Vision-based biometrics

“How the Afghan Girl was Identified by Her Iris Patterns”  Read the story  

Source: S. Seitz 

Click for the story
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Applications: Fingerprint Recognition

[Source: S. Lazebnik]
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Applications: Login without a password

Fingerprint scanners on 
many new laptops,  

other devices 

Face recognition systems now 
beginning to appear more widely 

http://www.sensiblevision.com/ 

Source: S. Seitz 
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Applications: Object recognition (in supermarkets)

LaneHawk by EvolutionRobotics 
“A smart camera is flush-mounted in the checkout lane, continuously watching 
for items. When an item is detected and recognized, the cashier verifies the 
quantity of items that were found under the basket, and continues to close the 
transaction. The item can remain under the basket, and with LaneHawk,you are 
assured to get paid for it… “ 

Source: S. Seitz 
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Applications: Object recognition (in mobile phones)

[Source: S. Seitz]
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Applications: Iphone apps
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Source: S. Lazebnik 
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Applications: Google Goggles

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision January 8th, 2013 53 / 74



Applications: Google Search by Image

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision January 8th, 2013 54 / 74



Applications: Finding Similar Products
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Applications: Special effects, shape capture

Figure: The Matrix movies, ESC Entertainment, XYZRGB, NRC

[Source: S. Seitz]
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Applications: Special effects, motion capture

Figure: Pirates of the Carribean, Industrial Light and Magic

[Source: S. Seitz]
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Applications: Sports

Figure: Sportvision explanation

[Source: S. Seitz]
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How football works

Know the orientation of the field with respect to the camera so that it can
paint the first-down line with the correct perspective from that camera’s point of
view.

Know, in that same perspective framework, exactly where every yard line is.

Given that the cameraperson can move the camera, the system has to be able to
sense the camera’s movement (tilt, pan, zoom, focus) and understand the
perspective change that results from that movement.

Given that the camera can pan while viewing the field, the system has to be able
to recalculate the perspective at a rate of 30 frames per second as the camera
moves.

A football field is not flat – it crests very gently in the middle to help rainwater run
off. So the line calculated by the system has to appropriately follow the curve of
the field.

A football game is filmed by multiple cameras at different places in the stadium,
so the system has to do all of this work for several cameras.

The system has to be able to sense when players, referees or the ball crosses
the first-down line so it does not paint the line right on top of them.

The system also has to be aware of superimposed graphics that the network
might overlay on the scene.
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Applications: 3D Pose Estimation with Depth Sensors

[Source: Microsoft Kinect]
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Applications: 3D Reconstruction from Photo Collections

[N. Snavely et al. Siggraph 2006]
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Applications: 3D Reconstruction from Depth Cameras

[Izadi et al. Siggraph 2011]
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Applications: Assisted Driving

Pedestrian and car detection

Lane detection and lane departure warning

Collision warning systems with adaptive cruise control

[Source: R. Fergus]
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Applications: Smart cars

Mobileye: Vision systems currently in high-end BMW, GM, Volvo models

[Source: A. Shashua and S. Seitz]
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Applications: Smart cars

Part of my own research focus on smart cars
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Applications: Vision in Space

Vision systems (JPL) uses for several tasks

Panorama stitching

3D terrain modeling

Obstacle detection, position tracking

For more, read Computer Vision on Mars by Matthies et al.

The Heights of Mount Sharp 
http://www.nasa.gov/mission_pages/msl/multimedia/pia16077.html 
Panorama captured by Curiosity Rover, August 18 (Sol 12) 

[Source: N. Snavely]
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Applications: Robotics
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Applications: Medical Imaging
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Source: S. Seitz 
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Current state of the art

You just saw examples of current systems, many less than 5 years old

This is a very active research area, and rapidly changing

To learn more about vision applications and companies David Lowe
maintains an excellent overview of vision companies

http://www.cs.ubc.ca/spider/lowe/vision.html

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision January 8th, 2013 69 / 74

http://www.cs.ubc.ca/spider/lowe/vision.html


Let’s talk about the inevitable ...
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Grading

One final exam, NO midterm

Exercises every week

Theoretical
Summary and critic of papers
Programming

Project?
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Late policy

Every day late, the max grade is divided by 2.

Strict submission time!

All submissions in latex. A template will be provided.
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In this class ...

We will ”hopefully” cover the following topics:

Image processing

Reconstruction

Grouping

Tracking

Recognition: only an intro. See full class next year if you are interested.
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Questions?
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