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Today's lecture ...

@ Image formation

@ Image Filtering
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Readings

@ Chapter 2 and 3 of Rich Szeliski's book

tn:rs IM COMPUTER SCIENCE

Computer Vision

Algorithms and Applications

Richard Szeliski

@ Springer

@ Available online here
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http://szeliski.org/Book/
http://szeliski.org/Book/

How is an image created?

The image formation process that produced a particular image depends on
@ lighting conditions
@ scene geometry
@ surface properties

@ camera optics

light {:}

source

[Source: R. Szeliski]
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Image formation
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What is an image?

Illumination (energy)

,/,’//l\ source

p Imaging system [
(Internal) image plane

Scene element

We’ll focus on these in this class

Source: A. Efros
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From photons to RGB values

@ Sample the 2D space on a regular grid.

@ Quantize each sample, i.e., the photons arriving at each active cell are
integrated and then digitized.

[Source: D. Hoiem]
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What is an image?

@ A grid (matrix) of intensity values

@ Common to use one byte per value: 0=black, 255=white)

[Source: N. Snavely]
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What is an image?

@ We can think of a (grayscale) image as a function f : 2 — R giving the
intensity at position (x, y)

ﬁf@J)

> X

/

@ A digital image is a discrete (sampled, quantized) version of this function

[Source: N. Snavely]
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Image Transformations

@ As with any function, we can apply operators to an image

g(xy) =f(xy)+20 g(xy) =f(xy)

@ We'll talk about special kinds of operators, correlation and convolution
(linear filtering)

[Source: N. Snavely]
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Filtering
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Question: Noise reduction

@ Given a camera and a still scene, how can you reduce noise?
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@ Given a camera and a still scene, how can you reduce noise?

@ Take lots of images and average them!
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Question: Noise re

@ Given a camera and a still scene, how can you reduce noise?

@ Take lots of images and average them!

[Source: S. Seitz]
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Question: Noise re

@ Given a camera and a still scene, how can you reduce noise?

@ Take lots of images and average them!

@ What's the next best thing?

[Source: S. Seitz]
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Image filtering

@ Modify the pixels in an image based on some function of a local
neighborhood of each pixel

10(5 |3 Some function
4|51 # 7
1 (1|7
Local image data Modified image data

[Source: L. Zhang]
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Applications of Filtering

@ Enhance an image, e.g., denoise, resize.
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Applications of Filtering

@ Enhance an image, e.g., denoise, resize.

@ Extract information, e.g., texture, edges.
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Applications of Filtering

@ Enhance an image, e.g., denoise, resize.
@ Extract information, e.g., texture, edges.

@ Detect patterns, e.g., template matching.
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Noise reduction

@ Simplest thing: replace each pixel by the average of its neighbors.
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Noise reduction

@ Simplest thing: replace each pixel by the average of its neighbors.

@ This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

[Source: S. Marschner]

il

original

i

smoothed

Raquel Urtasun (TTI-C)

Computer Vision

Jan 10, 2013



Noise reduction

@ Simplest thing: replace each pixel by the average of its neighbors.

@ This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

[Source: S. Marschner]
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Noise reduction

@ Simplest thing: replace each pixel by the average of its neighbors

@ This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

@ Moving average in 1D: [1, 1, 1, 1, 1]/5

[Source: S. Marschner]
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Noise reduction

@ Simpler thing: replace each pixel by the average of its neighbors

@ This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

@ Non-uniform weights [1, 4, 6, 4, 1] / 16

[Source: S. Marschner]
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Moving Average in 2D

Flz, y] Gz, y]

[Source: S. Seitz]
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Moving Average in 2D

Flx,y] Gz, y]

0 10
90 | 90 | 90 | 90 | 90
90 | 90 | 90 | 90 | 90
90 | 90 | 90 | 90 | 90
%0 90 | 90 | 90
90 | 90 | 90 | 90 | 90

S0

[Source: S. Seitz]
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Moving Average in 2D

Flz,y] Gz, y]

o 10 | 20
90 [ 90 90 | 90 | 90
90 [ 90 | 90 | 90 | 90
90 [ 90 | 90 | 90 | 90
90 90 | 90 | 90
90 [ 90 | 90 | 90 | 90

[Source: S. Seitz]
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Moving Average in 2D

Flz, y] Glz, y]

50 | 90 | S0 90 | 90
90 | 90 | 90 | 90 [ 90
90 | 90 | 90 | 90 | 90
%0 90 | 90 | 90
90 | 90 | 90 | 90 | 90

S0

[Source: S. Seitz]
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Moving Average in 2D

Flx,y] Gla, y]

50 | 90 | 90 | 90 | S0
90 | 90 | 90 | 90 | 90
50 | 90 | 90 | 90 | S0
%0 90 | 90 | 90
90 | 90 | 90 | 90 | 90

90

[Source: S. Seitz]
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Moving Average in 2D

Flx, y] Glx, y]

[Source: S. Seitz]
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Linear Filtering: Correlation

@ Involves weighted combinations of pixels in small neighborhoods.
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Linear Filtering: Correlation

@ Involves weighted combinations of pixels in small neighborhoods.

@ The output pixels value is determined as a weighted sum of input pixel values

g(i.j) =Y _f(i+k.j+1h(k1)
k,l
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Linear Filtering: Correlation

@ Involves weighted combinations of pixels in small neighborhoods.

@ The output pixels value is determined as a weighted sum of input pixel values

g(i.j) =Y _f(i+k.j+1h(k1)

k.l

@ The entries of the weight kernel or mask h(k, /) are often called the filter
coefficients.
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Linear Filtering: Correlation

Involves weighted combinations of pixels in small neighborhoods.

The output pixels value is determined as a weighted sum of input pixel values

g(i.j) =Y _f(i+k.j+1h(k1)
k,l

The entries of the weight kernel or mask h(k, /) are often called the filter
coefficients.

@ This operator is the correlation operator

g=1f®h
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Smoothing by averaging
depicts box filter:
nK white = high value, black = low value|

original filtered

@ What if the filter size was 5 x 5 instead of 3 x 37

[Source: K. Graumann]
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Gaussian filter

@ What if we want nearest neighboring pixels to have the most influence on

the output?

@ Removes high-frequency components from the image (low-pass filter).

Flx,y]

[Source: S. Seitz]

This kernel is an
approximation of a 2d
Gaussian function:

_u2+1:2
v

h(u,v) =
v(u,v) o
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Smoothing with a Gaussian

[Source: K. Grauman]
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Mean vs Gaussian
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Gaussian filter: Parameters

@ Size of kernel or mask: Gaussian function has infinite support, but discrete
filters use finite kernels.

o = 5 with
10 x 10 30 x 30
kernel kernel

[Source: K. Grauman]
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Gaussian filter: Parameters

@ Variance of the Gaussian: determines extent of smoothing.

o = 2 with o = 5 with

30 x 30 30 x 30
kernel kernel

[Source: K. Grauman]
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Gaussian filter: Parameters

[ W]
10
o
an
0 oz 30

for sigma=1:3:10
h = fspecial('gaussian‘', fsize, sigma);
out = imfilter(im, h);
imshow (out) ;
pause;
end

[Source: K. Grauman]
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Is this the most eral Gaussian?

@ No, the most general form for x € R¢

08
07
06

05 ; ; \\ \
04 : “‘\

: : H ‘//”"“

03 : ;,,_'o‘,\\\

02

01

0 1 2 3 4 5 6 7 8 9 10 =10 10

@ But the simplified version is typically use for filtering.
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Properties of the Smoothing

@ All values are positive.
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Properties of the Smoothing

@ All values are positive.

@ They all sum to 1.
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Properties of the Smoothing

@ All values are positive.
@ They all sum to 1.

@ Amount of smoothing proportional to mask size.

[Source: K. Grauman]
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Properties of the Smoothing

@ All values are positive.

@ They all sum to 1.

@ Amount of smoothing proportional to mask size.

@ Remove high-frequency components; low-pass filter.

[Source: K. Grauman]
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Example of Correlation

@ What is the result of filtering the impulse signal (image) F with the arbitrary
kernel H?

Flz,y] Glx, y]

[Source: K. Grauman]
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Convolution

@ Convolution operator

= f(i—kj—Dh(k,))=> f(k)h(i—kj—1)=Ffxh

P P

and h is then called the impulse response function.
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Convolution

@ Convolution operator
= f(i—kj—Dh(k,))=> f(k)h(i—k,j—1)=Fxh
k! k,I

and h is then called the impulse response function.

@ Equivalent to flip the filter in both dimensions (bottom to top, right to left)
and apply cross-correlation.
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@ Correlation and convolution can both be written as a matrix-vector multiply,
if we first convert the two-dimensional images 7(/,;) and g(i,J) into
raster-ordered vectors f and g

g = Hf

with H a sparse matrix.

2 1 . 72
12 1 . 88

[72]88[62]52]37 |« Ya| o] Va] & % 121 . 62
121 52

12 37
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Correlation vs Convolution

@ Convolution

g(ij) = > f(i—kj—1Ih(k1)
k.l
G = HxF

Correlation

g(ij) = D Fli+kj+h(k1)
k.l
G = H®F

@ For a Gaussian or box filter, how will the outputs differ?

If the input is an impulse signal, how will the outputs differ? h* 47, and
h® 47
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@ What's the result?

o

Y

o
~

Original

[Source: D. Lowe]

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 33 /82



@ What's the result?

0|0|0
0|10
0|00
Original Filtered

(no change)

[Source: D. Lowe]
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@ What's the result?

o

o=

-
~

Original

[Source: D. Lowe]

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 33 /82



@ What's the result?

0(0]0
001
0/0]0

[Source: D. Lowe]
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Example

@ What's the result?

0 1 1(11(1
m 111 —
9
0|0 1 1

Original

[Source: D. Lowe]
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Example

@ What's the result?

0|0 1 1(1(1
20| = —|1|1](1
9
0|0 1(1(1

Sharpening filter

Original (accentuates edges)

[Source: D. Lowe]
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Sharpening

before

[Source: D. Lowe]
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Gaussian Filter

@ Convolution with itself is another Gaussian

K

@ Convolving twice with Gaussian kernel of width o is the same as convolving
once with kernel of width ov/2

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 35 /82



Sharpening revisited

@ What does blurring take away?

detail

[Source: S. Lazebnik]
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[

—

unfiltered

filtered —

N

[Source: N. Snavely]
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"Optical” Convolution

@ Camera Shake

Figure: Fergus, et al., SIGGRAPH 2006

@ Blur in out-of-focus regions of an image.

Figure: Bokeh: Click for more info

[Source: N. Snavely]
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Correlation vs Convolution

@ The convolution is both commutative and associative.

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 39 /82



Correlation vs Convolution

@ The convolution is both commutative and associative.

@ The Fourier transform of two convolved images is the product of their
individual Fourier transforms.
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Correlation vs Convolution

@ The convolution is both commutative and associative.

@ The Fourier transform of two convolved images is the product of their
individual Fourier transforms.

@ Both correlation and convolution are linear shift-invariant (LSI)
operators, which obey both the superposition principle

ho(fo+f)=hof,+hohf
and the shift invariance principle
it g(i,j)=f(i+kj+1) < (hog)(i,j)=(hof)(i+kj+1)

which means that shifting a signal commutes with applying the operator.
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Correlation vs Convolution

@ The convolution is both commutative and associative.

@ The Fourier transform of two convolved images is the product of their
individual Fourier transforms.

@ Both correlation and convolution are linear shift-invariant (LSI)
operators, which obey both the superposition principle

ho(fo+f)=hof,+hohf
and the shift invariance principle
it g(i,j)=f(i+kj+1) < (hog)(i,j)=(hof)(i+kj+1)

which means that shifting a signal commutes with applying the operator.

@ |s the same as saying that the effect of the operator is the same everywhere.
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Boundary Effects

@ The results of filtering the image in this form will lead to a darkening of the
corner pixels.
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Boundary Effects

@ The results of filtering the image in this form will lead to a darkening of the
corner pixels.

@ The original image is effectively being padded with 0 values wherever the
convolution kernel extends beyond the original image boundaries.
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Boundary Effects

@ The results of filtering the image in this form will lead to a darkening of the
corner pixels.

@ The original image is effectively being padded with 0 values wherever the
convolution kernel extends beyond the original image boundaries.

@ A number of alternative padding or extension modes have been developed.

Zero wrap clamp mirror

blurred zero normalized zero blurred clamp blurred mirror
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Boundary Effects

@ The results of filtering the image in this form will lead to a darkening of the
corner pixels.

@ The original image is effectively being padded with 0 values wherever the
convolution kernel extends beyond the original image boundaries.

@ A number of alternative padding or extension modes have been developed.

Zero wrap clamp mirror

blurred zero normalized zero blurred clamp blurred mirror
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Separable Filters

@ The process of performing a convolution requires K2 operations per pixel,
where K is the size (width or height) of the convolution kernel.
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Separable Filters

@ The process of performing a convolution requires K2 operations per pixel,
where K is the size (width or height) of the convolution kernel.

@ In many cases, this operation can be speed up by first performing a 1D
horizontal convolution followed by a 1D vertical convolution, requiring 2K
operations.
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Separable Filters

@ The process of performing a convolution requires K2 operations per pixel,
where K is the size (width or height) of the convolution kernel.

@ In many cases, this operation can be speed up by first performing a 1D
horizontal convolution followed by a 1D vertical convolution, requiring 2K
operations.

@ If his is possible, then the convolution kernel is called separable.

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 41 / 82



Separable Filters

@ The process of performing a convolution requires K2 operations per pixel,
where K is the size (width or height) of the convolution kernel.

@ In many cases, this operation can be speed up by first performing a 1D
horizontal convolution followed by a 1D vertical convolution, requiring 2K
operations.

@ If his is possible, then the convolution kernel is called separable.

@ And it is the outer product of two kernels

K=vh'
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Let's play a game...

Is this separable? If yes, what's the separable version?

111 1
11 1
1
N N
11 1
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Let's play a game...

Is this separable? If yes, what's the separable version?

e 1
11 1

%

K 1
bl g el

What does this filter do?
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Let's play a game...

Is this separable? If yes, what's the separable version?

&sl=
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Let's play a game...

Is this separable? If yes, what's the separable version?

121
L 4|2
16

2|1

What does this filter do?
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Let's play a game...

Is this separable? If yes, what's the separable version?

1141641
4116 24|16 |4

1
srg| 612436246
4116 |24 |16 | 4
1141641
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Let's play a game...

Is this separable? If yes, what's the separable version?

16 | 24 | 16
24|36 | 24
16 | 24 | 16

bo

G~

[=>]
—lelo| e~
[ Sy N

o 1[4]6]4]1]

What does this filter do?
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Let's play a game...

Is this separable? If yes, what's the separable version?

~1]0]1
1
2oz

~1|0]1
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Let's play a game...

Is this separable? If yes, what's the separable version?

—1]o]1

1

=270
—1]of1

What does this filter do?
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Let's play a game...

Is this separable? If yes, what's the separable version?

1 [ 2] 1

1

242
1| 2] 1
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Let's play a game...

Is this separable? If yes, what's the separable version?

1] 2] 1

1

2[4 ]2
1] 2|1

What does this filter do?
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How can we tell if a given kernel K is indeed separable?

@ Inspection... this is what we were doing.
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How can we tell if a given kernel K is indeed separable?

@ Inspection... this is what we were doing.

@ Looking at the analytic form of it.
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How can we tell if a given kernel K is indeed separable?

@ Inspection... this is what we were doing.
@ Looking at the analytic form of it.

@ Look at the singular value decomposition (SVD), and if only one singular
value is non-zero, then it is separable

K=UsV" => gy

with ¥ = diag(o;).

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 47 / 82



How can we tell if a given kernel K is indeed separable?

@ Inspection... this is what we were doing.
@ Looking at the analytic form of it.

@ Look at the singular value decomposition (SVD), and if only one singular
value is non-zero, then it is separable

K=UsV" => gy

with ¥ = diag(o;).

@ ,/oiu; and w/alvf are the vertical and horizontal kernels.
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Application of filtering: Template matching

@ Filters as templates: filters look like the effects they are intended to find.

@ Use normalized cross-correlation score to find a given pattern (template)
in the image.

@ Normalization needed to control for relative brightnesses.

4

Template (mask)

h

Scene

[Source: K. Grauman]
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Template matching

[Source: K. Grauman]
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Let's talk about Edge Detection
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Filtering: Edge detection

@ Map image from 2d array of pixels to a set of curves or line segments or

contours.
@ More compact than pixels.

@ Look for strong gradients, post-process.

Figure: [Shotton et al. PAMI, 07]

[Source: K. Grauman]
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Origin of edges

@ Edges are caused by a variety of factors

surface normal discontinuity

S
—_
__r depth discontinuity

A surface color discontinuity

44— illumination discontinuity

(

[Source: N. Snavely]
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What causes an edge?

Depth discontinuity:
Reflectance change: object boundary
appearance

information, texture

Cast shadows

Change in surface
orientation: shape

[Source: K. Grauman]
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Looking more locally...

[Source: K. Grauman]
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Images as functions

@ Edges look like steep cliffs

[Source: N. Snavely]
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Characterizing Edges

@ An edge is a place of rapid change in the image intensity function.

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative

[Source: S. Lazebnik]
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How to Implement Derivatives with Convolution

How can we differentiate a digital image F[x,y]?
@ Option 1: reconstruct a continuous image f, then compute the partial

derivative as
af(x7y)_| f(X—i—E’y)—f(X)
ox o e—0 €
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How to Implement Derivatives with Convolution

How can we differentiate a digital image F[x,y]?
@ Option 1: reconstruct a continuous image f, then compute the partial

derivative as
af(x7y)_| f(X—i—E’y)—f(X)
aX - e—0 €

@ Option 2: take discrete derivative (finite difference)

3f(x,y) ~ f[X+ 17y] — f[X]
ox 1
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How to Implement Derivatives with Convolution

How can we differentiate a digital image F[x,y]?
@ Option 1: reconstruct a continuous image f, then compute the partial

derivative as
af(x7y)_| f(X—i—E’y)—f(X)
aX - e—0 €

@ Option 2: take discrete derivative (finite difference)

3f(x,y) ~ f[X+ 17y] — f[X]
ox 1

@ What would be the filter to implement this using convolution?

o of.
oz’ dy’

[Source: S. Seitz]
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Partial derivatives of an image

Figure: Using correlation filters

[Source: K. Grauman]
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Finite Difference Filters

-1 JoTt 111
Prewitt: M, = [-1]o]1 M, = 0] 0
BIOE 1 -1]-1
-1 [o]1 1] 2]1
Sobel: M, = [Z]0]2 | My = [D
1|01 1| -2 |-1

Roberts: M, = NN g M, = [ 1] 0]

>> My = fspecial(‘scbel’);

>> outim = imfilter (double (im), My) ;
>> imagesc(outim) ;

>> colormap gray;

[Source: K. Grauman]
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Image Gradient

@ The gradient of an image Vf = {% 7}

vi=1[%0| va_ X
I W_ y I
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Image Gradient

of af}

@ The gradient of an image Vf = {g, ay

@ The gradient points in the direction of most rapid change in intensity

vi=1[%0| va— [5L. 8
Vf— k
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Image Gradient

of af}

@ The gradient of an image Vf = {5, ay

@ The gradient points in the direction of most rapid change in intensity

I vi = [0 . o= (8%
Vf—

@ The gradient direction (orientation of edge normal) is given by:

of of
6 =tan~ ((9 /8x)

[Source: S. Seitz]
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Image Gradient

of af}

@ The gradient of an image Vf = {5, ay

@ The gradient points in the direction of most rapid change in intensity

I vi = [0 . o= (8%
Vf—

@ The gradient direction (orientation of edge normal) is given by:

of of
6 =tan~ (6 /8x)

@ The edge strength is given by the magnitude ||V || = ,/(4£)? + (%;)2

[Source: S. Seitz]
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Image Gradient

[Source: S. Lazebnik]
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Effects of noise

@ Consider a single row or column of the image.

@ Plotting intensity as a function of position gives a signal.

S

1 I I
1200 1400 1600 1800 2000

1 1
800 1000

1800 2000

Noisy input image
0 200 400 @600 800 1000 1200 1400 1600

[Source: S. Seitz]
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Effects of noise

@ Smooth first, and look for picks in %(h x f).
Sigma = 50

B j b

L R 1
1200 1400 1600 1800 2000

~
Signal

h 1 I 1 1
200 400 600 800 1000

=
Kernel

o

>
*
-
Convolution

S ; ; ;
0 200 400 600 800

S SR A R A
1000 1200 1400 1600 1800 2000

ion

L(h* 1)

Differentiati
o
© T

e L
1200 1400 1600 1800 2000

200 400 600 800 1000

[Source: S. Seitz]
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Derivative theorem of convolution

@ Differentiation property of convolution

0 oh of
ax () =G f=he(5)
@ It saves one operation

Sigma = 50

| 1 | | i i i i i
0 200 400 €00 800 1000 1200 1400 1600 1800 2000

~
Signal

9 H |
dr 2
660 B“)O 10‘00 1 2'00 14‘00 1 ff:ﬂo 1 EIOD 2000
5
2 h) 2
* f
( dx 5
ol S S SO P70 Y00 SRS SO SN O i

i I I I I 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

[Source: S. Seitz]
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2D Edge Detection Filters

A
OSSR

Gaussian

42

he(X,y) = 5z exp” 27

[Source: N. Snavely]
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Derivative of Gaussians

x-direction y-direction

[Source: K. Grauman]
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Laplacian of Gaussians

@ Edge by detecting zero-crossings of bottom graph

Sigma = A0

=]
2|
f 2
(2]

[Source: S. Seitz]
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2D Edge Filtering

W R .
1
f:”"?:':"'f:‘o"\':“:}:‘ Laplacian of Gaussian

Gaussian derivative of Gaussian
u2+vz 8
ho(u,v) = ! e 207 —ha(u,v)
A 2ra2” dx '

&f

. . 2
with V2 the Laplacian operator V2f = 9% + 5

[Source: S. Seitz]
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Effect of o on derivatives

The detected structures differ depending on the Gaussian’s scale parameter:
@ Larger values: larger scale edges detected.

@ Smaller values: finer features detected.

o =1 pixel o = 3 pixels

[Source: K. Grauman]
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Derivatives

@ Use opposite signs to get response in regions of high contrast.
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Derivatives

@ Use opposite signs to get response in regions of high contrast.

@ They sum to 0 so that there is no response in constant regions.

[Source: K. Grauman]
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Derivatives

@ Use opposite signs to get response in regions of high contrast.
@ They sum to 0 so that there is no response in constant regions.

@ High absolute value at points of high contrast.

[Source: K. Grauman]
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Band-pass filters

@ The Sobel and corner filters are band-pass and oriented filters.
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Band-pass filters

@ The Sobel and corner filters are band-pass and oriented filters.

@ More sophisticated filters can be obtained by convolving with a Gaussian

filter ) )
1 X“+y
G(X»}’»U):WGXP (— 202 )

and taking the first or second derivatives.

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 72 /82



Band-pass filters

@ The Sobel and corner filters are band-pass and oriented filters.

@ More sophisticated filters can be obtained by convolving with a Gaussian

filter ) )
1 X“+y
G(X»}’»U):WGXP (— 202 )

and taking the first or second derivatives.

@ These filters are band-pass filters: they filter low and high frequencies.

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 72 /82



Band-pass filters

@ The Sobel and corner filters are band-pass and oriented filters.

@ More sophisticated filters can be obtained by convolving with a Gaussian

filter ) )
1 X“+y
G(X»}’»U):WGXP (— 202 )

and taking the first or second derivatives.

@ These filters are band-pass filters: they filter low and high frequencies.

@ The second derivative of a two-dimensional image is the laplacian operator

_Pf P

2
F=9r
v 8x2+6‘y2
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Band-pass filters

@ The Sobel and corner filters are band-pass and oriented filters.
@ More sophisticated filters can be obtained by convolving with a Gaussian
filter ) )
1 X“+y
G =——=e —
(x,y,0) = 55 exp ( 557 )
and taking the first or second derivatives.
@ These filters are band-pass filters: they filter low and high frequencies.
@ The second derivative of a two-dimensional image is the laplacian operator
0’f  0°f
V=54
Ox2  Oy?
@ Blurring an image with a Gaussian and then taking its Laplacian is equivalent

to convolving directly with the Laplacian of Gaussian (LoG) filter,
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Band-pass filters

@ The directional or oriented filter can obtained by smoothing with a

Gaussian (or some other filter) and then taking a directional derivative

o
Vu:%

u-V(Gxf)=Vu(Gxf)=(V,G)xf
with u = (cos#,sin 8).

@ The Sobel operator is a simple approximation of this:

—1]o]1
1
=270

~1]0
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Practical Example

[Source: N. Snavely]
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Finding Edges

Figure: Gradient magnitude

[Source: N. Snavely]
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Finding Edges

where is the edge?

Figure: Gradient magnitude

[Source: N. Snavely]
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Non-Maxima Suppression

[ [ e oo
p
[ ] [
. q °
Gradient
[ ] ® O 0 [ ]
r
[ ] ® [ ]

Differentiation

e © i © i
200 400 600 800 1000 1200 1400 1600 1800 2000

Figure: Gradient magnitude

@ Check if pixel is local maximum along gradient direction: requires
interpolation

[Source: N. Snavely]
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Finding Edges

Figure: Thresholding

[Source: N. Snavely]
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Finding Edges

Figure: Thinning: Non-maxima suppression

[Source: N. Snavely]
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Canny Edge Detector

Matlab: edge (image, ’ canny’)
@ Filter image with derivative of Gaussian
@ Find magnitude and orientation of gradient
© Non-maximum suppression
@ Linking and thresholding (hysteresis):

o Define two thresholds: low and high
o Use the high threshold to start edge curves and the low threshold to
continue them

[Source: D. Lowe and L. Fei-Fei]
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edge(image,'canny')

Canny edge detector

@ Still one of the most widely used edge detectors in computer vision

@ J. Canny, A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

@ Depends on several parameters: o of the blur and the thresholds

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013



Canny edge detector

@ large o detects large-scale edges

@ small o detects fine edges

original Canny with 0 = 1 Canny with 0 = 2

[Source: S. Seitz]
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Scale Space (Witkin 83)

first derivative peaks

largerg ‘

RN

Properties of scale space (w/ Gaussian smoothing)

Gaussian filtered signal

@ edge position may shift with increasing scale (o)
@ two edges may merge with increasing scale

@ an edge may not split into two with increasing scale

[Source: N. Snavely]
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Next class ... more on filtering and image features
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