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Today's lecture ...

@ More on Image Filtering

@ Additional transformations
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@ Chapter 2 and 3 of Rich Szeliski's book

tn:rs IM COMPUTER SCIENCE

Computer Vision

Algorithms and Applications

Richard Szeliski

@ Springer

@ Available online here
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http://szeliski.org/Book/
http://szeliski.org/Book/

Image Sub-Sampling
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Image Sub-Sampling

@ Throw away every other row and column to create a 1/2 size image

[Source: S. Seitz]
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Image Sub-Sampling

@ Why does this look so crufty?

71/2 1/4 (2x zoom) 1/8 (4x zoom)

[Source: S. Seitz]
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Image Sub-Sampling

[Source: F. Durand]
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Even worse for synthetic images

@ What's happening?

[Source: L. Zhang]
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@ Occurs when your sampling rate is not high enough to capture the amount
of detail in your image

NANAAAANANAN
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@ Occurs when your sampling rate is not high enough to capture the amount
of detail in your image

NANAAAANANAN

@ To do sampling right, need to understand the structure of your signal /image
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@ Occurs when your sampling rate is not high enough to capture the amount
of detail in your image

NANAAAANANAN

@ To do sampling right, need to understand the structure of your signal /image

@ The minimum sampling rate is called the Nyquist rate
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Aliasing problems

@ Shannons Sampling Theorem shows that the minimum sampling

fs > 2fmax

@ If you haven't seen this... take a class on Fourier analysis... everyone should
have at least one!

AN/ A AVAT I AV e
VAVAVIN /I VA N BN

=34 f=5/4

Figure: example of a 1D signal [R. Szeliski et al.]
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Nyquist limit 2D example

Good sampling

Bad sampling

[Source: N. Snavely]
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Going back to Downsampling ...

@ When downsampling by a factor of two, the original image has frequencies
that are too high
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Going back to Downsampling ...

@ When downsampling by a factor of two, the original image has frequencies
that are too high

@ How can we fix this?
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Gaussian pre-filtering

@ Solution: filter the image, then subsample

Gaussian 1/2

[Source: S. Seitz]
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Subsampling with Gaussian pre-filtering

Gaussian 1/2

[Source: S. Seitz]
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Compare with ...

e B

1/2 1/4 (2x zoom) 1/8 (4x zoom)

[Source: S. Seitz]
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Figure: (a) Example of a 2D signal. (b—d) downsampled with different filters

[Source: R. Szeliski]
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Gaussian pre-filtering

@ Solution: filter the image, then subsample

b .

blly subsa/mple blly subsa/mple

e

[Source: N. Snavely]
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Gaussian pre-filtering

Gaussian
pyramid

3
W ow..

blty subsa}nple blly subsa/mple

mﬂ
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Gaussian Pyramids [Burt and Adelson, 1983]

@ In computer graphics, a mip map [Williams, 1983]

@ A precursor to wavelet transform

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2*x2¥ images (assuming N=2%)

level k (= 1 pixel

level k-1

level k-2

level 0 (= original image)

[Source: S. Seitz]
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Gaussian Pyramids [Burt and Adelson, 1983]

@ In computer graphics, a mip map [Williams, 1983]

@ A precursor to wavelet transform

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2*x2¥ images (assuming N=2%)

level k (= 1 pixel

level k-1

level k-2

level 0 (= original image)

@ How much space does a Gaussian pyramid take compared to the original
image?

[Source: S. Seitz]
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Example of Gaussian Pyramid

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 21 / 65



Decimation or Sub-sampling

@ Decimation: reduces resolution

g(ij) =Y f(k)h(i—k/r.j—1/r)

P

with r the down-sampling rate.
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Decimation or Sub-sampling

@ Decimation: reduces resolution

g(ij) =Y f(k)h(i—k/r.j—1/r)

Kyl
with r the down-sampling rate.

@ Different filters exist to do this.
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Decimation or Sub-sampling

@ Decimation: reduces resolution
g(ij) =Y f(k,h(i —k/r.j—1/r)

k.l

with r the down-sampling rate.

@ Different filters exist to do this.

@ What would you use?
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Image Up-Sampling
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Image Up-Sampling

@ This image is too small, how can we make it 10 times as big?

@ Simplest approach: repeat each row and column 10 times (Nearest neighbor
interpolation)

[Source: N. Snavely]
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Image Interpolation

d =1inthis
example

Recall how a digital image is formed

Flx,y] = quantize{f(xd, yd)}

@ It is a discrete point-sampling of a continuous function

[Source: N. Snavely, S. Seitz]
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Image Interpolation

d =1inthis
example

Recall how a digital image is formed

Flx,y] = quantize{f(xd, yd)}

@ It is a discrete point-sampling of a continuous function

@ If we could somehow reconstruct the original function, any new image could
be generated, at any resolution and scale

[Source: N. Snavely, S. Seitz]
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Image Interpolation

d =1inthis
example

Recall how a digital image is formed

Flx,y] = quantize{f(xd, yd)}

@ It is a discrete point-sampling of a continuous function

@ If we could somehow reconstruct the original function, any new image could
be generated, at any resolution and scale

[Source: N. Snavely, S. Seitz]
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Image Interpolation

Fx]

1 d =1 in this
h example

1 2 25 3 4 5

What if we don't know f?
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Image Interpolation

Fx]

1 d =1 in this
h example

1 2 25 3 4 5
What if we don't know f?

@ Guess an approximation: Can be done in a principled way via filtering
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Image Interpolation

Fx]

1 d =1 in this
h example

1 2 25 3 4 5
What if we don't know 7
@ Guess an approximation: Can be done in a principled way via filtering
@ Convert F to a continuous function

fr(x) = F(%) if % is an integer
7o otherwise

[Source: N. Snavely, S. Seitz]
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Image Interpolation

Fx]

1 d =1 in this
h example

1 2 25 3 4 5
What if we don't know 7
@ Guess an approximation: Can be done in a principled way via filtering
@ Convert F to a continuous function

fr(x) = F(%) if % is an integer
7o otherwise

@ Reconstruct by convolution with a reconstruction filter, h

F=hxfr

[Source: N. Snavely, S. Seitz]
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Image Interpolation

sinc(x)

AlX)

gauss(x)

Raquel Urtasun (TTI-C)

Visual Recognition

“Ideal” reconstruction

Nearest-neighbor
interpolation

Linear interpolation

Gaussian reconstruction

Source: B. Curless
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Reconstruction filters

@ What does the 2D version of this hat function look like?

h,/ N )

performs (tent function) performs
linear interpolation bilinear interpolation
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http://en.wikipedia.org/wiki/Bilinear_interpolation

Reconstruction filters

@ What does the 2D version of this hat function look like?

h,/ N )

performs (tent function) performs
linear interpolation bilinear interpolation

@ Often implemented without cross-correlation, e.g.,
http://en.wikipedia.org/wiki/Bilinear_interpolation
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http://en.wikipedia.org/wiki/Bilinear_interpolation

Reconstruction filters

@ What does the 2D version of this hat function look like?

h,/ N )

performs (tent function) performs
linear interpolation bilinear interpolation

@ Often implemented without cross-correlation, e.g.,
http://en.wikipedia.org/wiki/Bilinear_interpolation

@ Better filters give better resampled images: Bicubic is a common choice
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Image Interpolation

Original image

Lo
e N
-

Interpolation results

Nearest-neighbor interpolation Bilinear interpolation Bicubic interpolation

[Source: N. Snavely]
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Image Interpolation

What operation have we done?

Also used for resampling

[Source: N. Snavely]
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Depixelating Pixel Art

@ Published by [Kopt et al., SIGGRAPH 2011]

TSy

Nearest-neighbor result (original: 40 16 pixels) Our result
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http://research.microsoft.com/en-us/um/people/kopf/pixelart/supplementary/video_multi_comparison_4x_h264.mp4

More Examples
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When are Pyramids Useful?

@ We might want to change resolution of an image before processing.
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When are Pyramids Useful?

@ We might want to change resolution of an image before processing.

@ We might not know which scale we want, e.g., when searching for a face
in an image.
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When are Pyramids Useful?

@ We might want to change resolution of an image before processing.

@ We might not know which scale we want, e.g., when searching for a face
in an image.

o In this case, we will generate a full pyramid of different image sizes.
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When are Pyramids Useful?

@ We might want to change resolution of an image before processing.

@ We might not know which scale we want, e.g., when searching for a face
in an image.

o In this case, we will generate a full pyramid of different image sizes.

@ Can also be used to accelerate the search, by first finding at the coarser
level of the pyramid and then at the full resolution.
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Image Pyramid

AN
/ [\ \
coarse E\ =2
AN
/
medium / \ \ =1
AN
/]
/ \ \
fine =0
/ 7 o o
Vs o o o o o o &

[Source: R. Szeliski]
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Interpolation and Decimation

@ To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i.j) =" _f(k,I)h(i — rk,j — rl)
k.l

with r the up-sampling rate.
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Interpolation and Decimation

@ To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i.j) =" _f(k,I)h(i — rk,j — rl)
k.l

with r the up-sampling rate.

@ The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.
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Interpolation and Decimation

@ To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i.j) =" _f(k,I)h(i — rk,j — rl)
k.l

with r the up-sampling rate.

@ The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

@ More complex kernels, e.g., B-splines.
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Interpolation and Decimation

@ To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i.j) =" _f(k,I)h(i — rk,j — rl)
k.l

with r the up-sampling rate.

@ The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

@ More complex kernels, e.g., B-splines.

@ Decimation: reduces resolution

g(i)y =2 f(k, (i —k/r.j—1/r)

with r the down-sampling rate.
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Interpolation and Decimation

@ To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i.j) =" _f(k,I)h(i — rk,j — rl)
k.l

with r the up-sampling rate.

@ The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

@ More complex kernels, e.g., B-splines.

@ Decimation: reduces resolution

g(i)y =2 f(k, (i —k/r.j—1/r)

with r the down-sampling rate.

@ Different filters exist as well.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012



Multi-Resolution Representations

The most used one is the Laplacian pyramid:

@ We first blur and subsample the original image by a factor of two and store
this in the next level of the pyramid.
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Multi-Resolution Representations

The most used one is the Laplacian pyramid:

@ We first blur and subsample the original image by a factor of two and store
this in the next level of the pyramid.

@ Subtract then this low-pass version from the original to yield the band-pass
Laplacian image.
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Multi-Resolution Representations

The most used one is the Laplacian pyramid:

@ We first blur and subsample the original image by a factor of two and store
this in the next level of the pyramid.

@ Subtract then this low-pass version from the original to yield the band-pass
Laplacian image.

@ The pyramid has perfect reconstruction: the Laplacian images plus the
base-level Gaussian are sufficient to exactly reconstruct the original image.

space: - =

frequency: _

EAVAN

low-pass lower-pass

[Source: R. Szeliski]
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Multi-Resolution Representations

The most used one is the Laplacian pyramid:

@ We first blur and subsample the original image by a factor of two and store
this in the next level of the pyramid.

@ Subtract then this low-pass version from the original to yield the band-pass
Laplacian image.

@ The pyramid has perfect reconstruction: the Laplacian images plus the
base-level Gaussian are sufficient to exactly reconstruct the original image.

@ Wavelets are alternative pyramids. We will not see them here.

space: -

frequency:

EAVAN

low-pass lower-pass

[Source: R. Szeliski]
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Laplacian Pyramid Construction
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Laplacian Pyramid Construction

i

@ How do we reconstruct back?
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Laplacian Pyramid Re-construction
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Laplacian Pyramid Re-construction

@ When is this useful?
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More Complex Filters
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Steerable Filters

@ Oriented filters are used in many vision and image processing tasks:
texture analysis, edge detection, image data compression, motion analysis.
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Steerable Filters

@ Oriented filters are used in many vision and image processing tasks:
texture analysis, edge detection, image data compression, motion analysis.

@ One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.
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Steerable Filters

@ Oriented filters are used in many vision and image processing tasks:
texture analysis, edge detection, image data compression, motion analysis.

@ One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

@ More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.
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Steerable Filters

@ Oriented filters are used in many vision and image processing tasks:
texture analysis, edge detection, image data compression, motion analysis.

@ One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

@ More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

@ One then needs to know how many filters are required and how to
properly interpolate between the responses.
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Steerable Filters

@ Oriented filters are used in many vision and image processing tasks:
texture analysis, edge detection, image data compression, motion analysis.

@ One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

@ More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

@ One then needs to know how many filters are required and how to
properly interpolate between the responses.

@ With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.
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Steerable Filters

@ Oriented filters are used in many vision and image processing tasks:
texture analysis, edge detection, image data compression, motion analysis.

@ One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

@ More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

@ One then needs to know how many filters are required and how to
properly interpolate between the responses.

@ With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

@ Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.
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Example of Steerable Filter

@ 2D symmetric Gaussian with 0 = 1 and assume constant is 1

G(vavo-) = exp (_X2 +y2)
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Example of Steerable Filter

@ 2D symmetric Gaussian with 0 = 1 and assume constant is 1

G(vavo-) = exp (_X2 +y2)

@ The directional derivative operator is steerable.
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Example of Steerable Filter

@ 2D symmetric Gaussian with 0 = 1 and assume constant is 1

G(vavo-) = exp (_X2 +y2)

@ The directional derivative operator is steerable.

@ The first derivative

0

GY = Ix exp (—X2 + y2) = —2xexp (—X2 + y2)
X

and the same function rotated 90 degrees is

G0 = % exp (—x* + %) = =2y exp (—x* + y?)
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Example of Steerable Filter

@ 2D symmetric Gaussian with 0 = 1 and assume constant is 1

G(vavo-) = exp (_X2 +y2)

@ The directional derivative operator is steerable.

@ The first derivative

GY = % exp (—x* 4+ y%) = —2xexp (—x* + y?)

and the same function rotated 90 degrees is

G0 = % exp (—x* + %) = =2y exp (—x* + y?)

@ A filter of arbitrary orientation 6 can be synthesized by taking a linear
combination of G and G}°

GY = cosHG? + sin GO

G and G7° are the basis filters and cos @ and sin 6 are the interpolation
functions
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More on steerable filters

@ Because convolution is a linear operation, we can synthesize an image
filtered at an arbitrary orientation by taking linear combinations of the
images filtered with G? and G;°

if RO=GY«/ and RY®=G° then RY = cosOR? + sinOR°
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More on steerable filters

@ Because convolution is a linear operation, we can synthesize an image
filtered at an arbitrary orientation by taking linear combinations of the
images filtered with G? and G;°

if RO=GY«/ and RY®=G° then RY = cosOR? + sinOR°

@ Check yourself that this is the case.
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More on steerable filters

@ Because convolution is a linear operation, we can synthesize an image
filtered at an arbitrary orientation by taking linear combinations of the
images filtered with G? and G;°

if RO=GY«/ and RY®=G° then RY = cosOR? + sinOR°

@ Check yourself that this is the case.

@ See [Freeman & Adelson, 91] for the conditions on when a filter is steerable
and how many basis are necessary.
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a ) c
d e f o

Figure 2-1: Example of steerable filters. (a) (i”,'o. first derivative with respect
to « (horizontal) of a Gaussian. (b) (4%, which is (Y7, rotated by 90°. From a
linear combination of these two filters, one can create (%, an arbitrary rotation
of the first derivative of a Gaussian. (¢) (%, formed by £G4 + @(:"i’“u. The
same linear combinations nsed to synthesize 4 from the basis filters will also
synthesize the response of an image to ({ from the responses of the image to
the basis filters: (d) Image of circular disk. (e) GY° (at a smaller scale than
pictured above] convolved with the disk, (d}. (f) (i",’“n convolved with (d}. (g)
(:f?l)n 1

convolved with (d], obtained from ; [image ¢] +*§j [image f].

[Source: W. Freeman 91]
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More complex filters

What about the second order derivative?
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More complex filters

What about the second order derivative?

@ Only three basis are required
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More complex filters

What about the second order derivative?
@ Only three basis are required
Gaa = U* Gy +2uvGyy + V3G,

with & = (u, v)
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Other transformations
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin
i g
s(ij) =D D k1)

k=0 /=0
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin
i g
s(ij) =D D k1)

k=0 /=0

@ This can be efficiently computed using a recursive (raster-scan) algorithm

s(i,j))=s(i—=1,))+s(i,j—1)—s(i—1,j— 1)+ f(i,))

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 46 / 65



Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin

s(i) =Y. fk,1)

k=0 /=0

@ This can be efficiently computed using a recursive (raster-scan) algorithm

s(i,j))=s(i—=1,))+s(i,j—1)—s(i—1,j— 1)+ f(i,))

@ The image s(/,j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin

s(i) =Y. fk,1)

k=0 /=0

@ This can be efficiently computed using a recursive (raster-scan) algorithm
s(i,j)=s(i=1,j)+s(i,j—1)—s(i—1,j— 1)+ f(i,))
@ The image s(/,j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

@ To find the summed area (integral) inside a rectangle [io, 1] X [fo, /1] we
simply combine four samples from the summed area table.

S([io, i1] < [jo,j1]) = s(ir,j1) = s(ir,Jo — 1) — s(io — 1,j1) +s(io — 1,jo — 1)
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin

s(i) =Y. fk,1)

k=0 /=0

@ This can be efficiently computed using a recursive (raster-scan) algorithm

s(i,j))=s(i—=1,))+s(i,j—1)—s(i—1,j— 1)+ f(i,))

@ The image s(/,j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

@ To find the summed area (integral) inside a rectangle [io, 1] X [fo, /1] we
simply combine four samples from the summed area table.

S([io, i1] < [jo,j1]) = s(ir,j1) = s(ir,Jo — 1) — s(io — 1,j1) +s(io — 1,jo — 1)

@ Summed area tables have been used in face detection [Viola & Jones, 04]
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Example of Integral Images

3217213 s|i2]14]17 3|5 |12fz4]17

1s|1|3]a 4 (11|19 24]31 4 [11f19f24]31

sl1f3]s5]1 17] 28| 38 | 46 9 | 17| 28] 3846

1l3f2f1]e6 13| 2437|4862 13 |24(37]48] 62

2(af1fals 15[30 44| 59|81 15[30[ 44| 59|81
() S= 24 (b) s= 28 (c) S= 24

Figure 3.17 Summed area tables: (a) original image; (b) summed area table; (c) computation
of area sum. Each value in the summed area table s(z, j) (red) is computed recursively from
its three adjacent (blue) neighbors (3.31). Area sums S (green) are computed by combining
the four values at the rectangle corners (purple) (3.32). Positive values are shown in bold and
negative values in italics.
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Non-linear filters: Median filter

@ We have seen linear filters, i.e., their response to a sum of two signals is
the same as the sum of the individual responses.

ho(f+g)=hof+hog
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Non-linear filters: Median filter

@ We have seen linear filters, i.e., their response to a sum of two signals is
the same as the sum of the individual responses.

ho(f+g)=hof+hog

@ Median filter: Non linear filter that selects the median value from each
pixels neighborhood.
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Non-linear filters: Median filter

@ We have seen linear filters, i.e., their response to a sum of two signals is
the same as the sum of the individual responses.

ho(f+g)=hof+hog

@ Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

@ Robust to outliers, but not good for Gaussian noise.
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Example of non-linear filters

1211 ]2]4 1[211]2]4
211]13]5]|8 2111358
113]17]6]9 113]17]6]|9
314|867 314|867
41517]18]|°9 415]17]18]9
(Median filter) (a-trimmed mean)
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Non-linear filters: Median filter

@ We have seen linear filters, i.e., their response to a sum of two signals is
the same as the sum of the individual responses.

ho(f+g)=hof+hog

@ Maedian filter: Non linear filter that selects the median value from each
pixels neighborhood.

@ Robust to outliers, but not good for Gaussian noise.
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Non-linear filters: Median filter

@ We have seen linear filters, i.e., their response to a sum of two signals is
the same as the sum of the individual responses.

ho(f+g)=hof+hog
@ Maedian filter: Non linear filter that selects the median value from each
pixels neighborhood.
@ Robust to outliers, but not good for Gaussian noise.

@ a-trimmed mean: averages together all of the pixels except for the
fraction that are the smallest and the largest.
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Example of non-linear filters

1211 ]2]4 1[211]2]4
211]13]5]|8 2111358
113]17]6]9 113]17]6]|9
314|867 314|867
41517]18]|°9 415]17]18]9
(Median filter) (a-trimmed mean)
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Bilateral Filtering

@ Weighted filter kernel with a better outlier rejection.
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Bilateral Filtering

@ Weighted filter kernel with a better outlier rejection.

@ Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.
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Bilateral Filtering

@ Weighted filter kernel with a better outlier rejection.

@ Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

@ The output pixel value depends on a weighted combination of neighboring

pixel values o
>k Flk Dw(isj, k. 1)
Zk,l W(i>j7 ka I)

g(i,j) =
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Bilateral Filtering

@ Weighted filter kernel with a better outlier rejection.

@ Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

@ The output pixel value depends on a weighted combination of neighboring

pixel values o
>k Flk Dw(isj, k. 1)
Zk,l W(i>j7 ka I)

g(i,j) =

@ Data-dependent bilateral weight function

i o) = o (~EHELUZ 1P WG~ MDY

2 2
204 207

composed of the domain kernel and the range kernel.
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Example Bilateral Filtering

(d) @ (H

Figure: Bilateral filtering [Durand & Dorsey, 02]. (a) noisy step edge input. (b)
domain filter (Gaussian). (c) range filter (similarity to center pixel value). (d)
bilateral filter. (e) filtered step edge output. (f) 3D distance between pixels

[Source: R. Szeliski]
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Distance Transform

@ Useful to quickly precomputing the distance to a curve or a set of points.
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Distance Transform

@ Useful to quickly precomputing the distance to a curve or a set of points.

o Let d(k, /) be some distance metric between pixel offsets, e.g., Manhattan

distance
d(k, 1) = [k + 1]

d(k,)) = VK2 + P2

or Euclidean distance
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Distance Transform

@ Useful to quickly precomputing the distance to a curve or a set of points.

o Let d(k, /) be some distance metric between pixel offsets, e.g., Manhattan

distance
d(k, 1) = [k + 1]

d(k,)) = VK2 + P2

or Euclidean distance

@ The distance transform D(i,j) of a binary image b(/,) is defined as

DY — ki
(i,J) cmin (i—k,j—=1)

it is the distance to the nearest pixel whose value is 0.
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Distance Transform Algorithm

@ The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.
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Distance Transform Algorithm

@ The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.

@ Forward pass: each non-zero pixel in b is replaced by the minimum of 1 +
the distance of its north or west neighbor.

ofofofof1]o]o ofofofof1]o]o oflofofof1]o]o ofofofof1]o]o
oflof1|1f1o]o olo|1]|1]z2]ofo olo[1]1]2]0]0 oloft|1]1]o]0
of1|1]af1]1]o 012 310 o|1]2]2|3|1]0 o1 10
ol1|1]afa|1]o0 01 3 0| 1]2]2 1] 0 o1 110
oft|1]1]ofofo o|1]2 olo]o o1 1|ofo]o
olo|1]ofo|o]o oflo[1]ofo]0]0 olof|1]ofo|o]0
olololololo]o of[ofo]ofo]o]o olofofofofo]o
(a) (b) (c) (d

[Source: R. Szeliski]
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Distance Transform Algorithm

@ The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.

@ Forward pass: each non-zero pixel in b is replaced by the minimum of 1 +
the distance of its north or west neighbor.

@ Backward pass: the same, but the minimum is both over the current value
D and 1 + the distance of the south and east neighbors.

ofofofof1]o]o ofofofof1]o]o oflofofof1]o]o ofofofof1]o]o
oflof1|1f1o]o olo|1]|1]z2]ofo olo[1]1]2]0]0 oloft|1]1]o]0
of1|1]af1]1]o 012 310 o|1]2]2|3|1]0 o1 10
ol1|1]afa|1]o0 01 3 0| 1]2]2 1] 0 o1 110
oft|1]1]ofofo o|1]2 olo]o o1 1|ofo]o
olo|1]ofo|o]o oflo[1]ofo]0]0 olof|1]ofo|o]0
olololololo]o of[ofo]ofo]o]o olofofofofo]o
(a) (b) (c) (d

Figure: City block distance transform: (a) original binary image; (b) top to bottom (forward)
raster sweep: green values are used to compute the orange value; (c) bottom to top (backward)
raster sweep: green values are merged with old orange value; (d) final distance transform.

[Source: R. Szeliski]
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Example of Distance Transform

@ More complicated in the Euclidean case.

@ Example of a distance transform

-

@ The ridges is the skeleton or medial axis.

@ Extension: Signed distance transform.

[Source: P. Felzenszwalb]
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Fourier Transform

@ Fourier analysis could be used to analyze the frequency characteristics of
various filters.
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Fourier Transform

@ Fourier analysis could be used to analyze the frequency characteristics of

various filters.

@ How can we analyze what a given filter does to high, medium, and low
frequencies?
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Fourier Transform

@ Fourier analysis could be used to analyze the frequency characteristics of
various filters.

@ How can we analyze what a given filter does to high, medium, and low
frequencies?

@ Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2rfx + ¢;) = sin(wx + ¢;)

with frequency f, angular frequency w and phase ¢;.
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Fourier Transform

@ Fourier analysis could be used to analyze the frequency characteristics of
various filters.

@ How can we analyze what a given filter does to high, medium, and low
frequencies?

@ Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2rfx + ¢;) = sin(wx + ¢;)

with frequency f, angular frequency w and phase ¢;.

@ If we convolve the sinusoidal signal s(x) with a filter whose impulse response
is h(x), we get another sinusoid of the same frequency but different
magnitude and phase

o(x) = h(x) * s(x) = Asin(wx + ¢,)
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Filtering and Fourier

@ Convolution can be expressed as a weighted summation of shifted input
signals (sinusoids); so it is just a single sinusoid at that frequency.

o(x) = h(x) * s(x) = Asin(wx + ¢,)

A is the gain or magnitude of the filter, while the phase difference
A¢p = ¢, — ¢; is the shift or phase

<
S

h(x) >
s(x) o(x)

Y

Figure 3.24 The Fourier Transform as the response of a filter h(z) to an input sinusoid
s(z) = e1“* yielding an output sinusoid o(z) = h(z) * s(x) = Aefwr+9,
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Complex notation

@ The sinusoid is express as s(x) = /% = coswx + jsinwx and the filter
sinusoid as _
0(x) = h(x) * s(x) = A<+
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Complex notation

@ The sinusoid is express as s(x) = /% = coswx + jsinwx and the filter
sinusoid as _
o(x) = h(x) * s(x) = Ael*+
@ The Fourier transform pair is

h(x) «— H(w)
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Complex notation

@ The sinusoid is express as s(x) = /% = coswx + jsinwx and the filter
sinusoid as _
o(x) = h(x) * s(x) = Ael*+
@ The Fourier transform pair is

h(x) «— H(w)

@ The Fourier transform in continuous domain

H(w) = / " h(x)e % dx

— 00
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Complex notation

@ The sinusoid is express as s(x) = /% = coswx + jsinwx and the filter
sinusoid as _
0(x) = h(x) * s(x) = A<+

@ The Fourier transform pair is

h(x) «— H(w)

@ The Fourier transform in continuous domain

H(w) = / " h(x)e % dx

— 00

@ The Fourier transform in discrete domain

H(k) = Z h(x)e %

where N is the length of the signal.
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Complex notation

The sinusoid is express as s(x) = e/“* = coswx + jsinwx and the filter
sinusoid as _
0(x) = h(x) * s(x) = A<+

The Fourier transform pair is

h(x) «— H(w)

The Fourier transform in continuous domain

H(w) = / " h(x)e % dx

— 00

The Fourier transform in discrete domain

H(k) = 2 h(x)e %

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).
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Properties Fourier Transform

Property Signal Transform
superposition filz) + fa(x) Fi(w) + Fa(w)
shift flz — ) F(w)edweo
reversal fl—xz) F*(w)
convolution flz)xh(z) F(w)H(w)
correlation flz)® hz) F(w)H*(w)
multiplication f(z)h(z) F(w) = H(w)
differentiation f(z) jwF(w)
domain scaling flaz) 1/aF(w/a)
real images flz)=f*2) < Flw)=F(-w)
Parseval’s Theorem > _[f(z)]* = S IF(w)]?

[Source: R. Szeliski]
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Name Signal Transform

impulse . . é(x) o 1 .
shifted - p .
impulse ———— 8z —u) = e—iwe — 7
box filter ] box(x/a) o asinc(aw)
tent ’ tent(x/a) o asinc? (aw)
Gaussian ~ __ | _ G(w;a) o @G’[w; ]
Laplacian i | VG (z: VI 20 -1
of Gaussian ~ +———— b —=lClzio) o = wio™) ST
Gabor e .. . cos(wyz)CG(z;0) o J@G’{uiwg; a
unsharp ] (14 ~)8(x) (1+~)— ]
mask — —7G(z;0) = @G(w: o 1) . )
windowed - reos(x/(aW)) .
sinc e sinc(z/a) o (see Figure 3.29) . B

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 61 / 65



Name

Kernel

Transform

Plot

box-3

box-5

linear

(1 +2cosw)

+(1+ 2cosw + 2cos 2w)

1(1+cosw)

binomial w n L(1 4 cosw)?

Sobel

corner

&l

sinw

11— cosw)

[Source: R. Szeliski]
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2D Fourier Transform

@ Same as 1D, but in 2D. Now the sinusoid is

s(x,y) = sin(wxx + wyy)
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2D Fourier Transform

@ Same as 1D, but in 2D. Now the sinusoid is

s(x,y) = sin(wxx + wyy)

@ The 2D Fourier in continuous domain is then
H(wy, wy) = / / h(x, y)e @) dxdy

and in the discrete domain

1 M—

~ MN
x=0

._.
2
._.

H(kx, k h 7271_1 kxx+kyy

i
o

where M and N are the width and height of the image.
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2D Fourier Transform

@ Same as 1D, but in 2D. Now the sinusoid is

s(x,y) = sin(wxx + wyy)

@ The 2D Fourier in continuous domain is then
H(wy, wy) = / / h(x, y)e @) dxdy

and in the discrete domain

1 M—

~ MN
x=0

._.
2
._.

H(kx, k h 7271_1 kxx+kyy

i
o

where M and N are the width and height of the image.

@ All the properties carry over to 2D.
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Example of 2D Fourier Transform

[Source: A. Jepson]
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Next class ... image features
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