
Visual Recognition: Filtering and Transformations

Raquel Urtasun

TTI Chicago

Jan 15, 2012

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 1 / 65

Today’s lecture ...

More on Image Filtering

Additional transformations

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 2 / 65

Readings

Chapter 2 and 3 of Rich Szeliski’s book

Available online here

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 3 / 65

http://szeliski.org/Book/
http://szeliski.org/Book/

Image Sub-Sampling

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 4 / 65

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 5 / 65

Image Sub-Sampling

Throw away every other row and column to create a 1/2 size image

1/4

1/8

[Source: S. Seitz]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 6 / 65

Image Sub-Sampling

Why does this look so crufty?

!"#$$%&'$())*+$!",$$%#'$())*+$!"&$

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 7 / 65

Image Sub-Sampling

[Source: F. Durand]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 8 / 65

Even worse for synthetic images

What’s happening?

[Source: L. Zhang]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 9 / 65

Aliasing

Occurs when your sampling rate is not high enough to capture the amount
of detail in your image

To do sampling right, need to understand the structure of your signal/image

The minimum sampling rate is called the Nyquist rate

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 10 / 65

Aliasing

Occurs when your sampling rate is not high enough to capture the amount
of detail in your image

To do sampling right, need to understand the structure of your signal/image

The minimum sampling rate is called the Nyquist rate

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 10 / 65

Aliasing

Occurs when your sampling rate is not high enough to capture the amount
of detail in your image

To do sampling right, need to understand the structure of your signal/image

The minimum sampling rate is called the Nyquist rate

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 10 / 65

Aliasing problems

Shannons Sampling Theorem shows that the minimum sampling

fs ≥ 2fmax

If you haven’t seen this... take a class on Fourier analysis... everyone should
have at least one!

Figure: example of a 1D signal [R. Szeliski et al.]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 11 / 65

Nyquist limit 2D example

Good sampling

Bad sampling

[Source: N. Snavely]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 12 / 65

Going back to Downsampling ...

When downsampling by a factor of two, the original image has frequencies
that are too high

How can we fix this?

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 13 / 65

Going back to Downsampling ...

When downsampling by a factor of two, the original image has frequencies
that are too high

How can we fix this?

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 13 / 65

Gaussian pre-filtering

Solution: filter the image, then subsample

G 1/4

G 1/8

Gaussian 1/2

[Source: S. Seitz]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 14 / 65

Subsampling with Gaussian pre-filtering

G 1/4 G 1/8 Gaussian 1/2

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 15 / 65

Compare with ...

1/4 (2x zoom) 1/8 (4x zoom) 1/2

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 16 / 65

And in 2D...

Figure: (a) Example of a 2D signal. (b–d) downsampled with different filters

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 17 / 65

Gaussian pre-filtering

Solution: filter the image, then subsample

!"#$%

!"###$#&%

'#!'()*"+% !"#$% '#!'()*"+% ,%
!%#

!%###$#&%

!&#
!"#

[Source: N. Snavely]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 18 / 65

Gaussian pre-filtering

!"#$%

!"###$#&%

'#!'()*"+% !"#$% '#!'()*"+% ,%
!%#

!%###$#&%

!&#
!"#

{ !"#$$%"&'
()*"+%,'

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 19 / 65

Gaussian Pyramids [Burt and Adelson, 1983]

In computer graphics, a mip map [Williams, 1983]

A precursor to wavelet transform

How much space does a Gaussian pyramid take compared to the original
image?

[Source: S. Seitz]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 20 / 65

Gaussian Pyramids [Burt and Adelson, 1983]

In computer graphics, a mip map [Williams, 1983]

A precursor to wavelet transform

How much space does a Gaussian pyramid take compared to the original
image?

[Source: S. Seitz]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 20 / 65

Example of Gaussian Pyramid

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 21 / 65

Decimation or Sub-sampling

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k , l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist to do this.

What would you use?

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 22 / 65

Decimation or Sub-sampling

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k , l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist to do this.

What would you use?

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 22 / 65

Decimation or Sub-sampling

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k , l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist to do this.

What would you use?

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 22 / 65

Image Up-Sampling

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 23 / 65

Image Up-Sampling

This image is too small, how can we make it 10 times as big?

Simplest approach: repeat each row and column 10 times (Nearest neighbor
interpolation)

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 24 / 65

Image Interpolation

!" #" $" %" &"

d = 1 in this
example

Recall how a digital image is formed

F [x , y] = quantize{f (xd , yd)}

It is a discrete point-sampling of a continuous function

If we could somehow reconstruct the original function, any new image could
be generated, at any resolution and scale

[Source: N. Snavely, S. Seitz]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 25 / 65

Image Interpolation

!" #" $" %" &"

d = 1 in this
example

Recall how a digital image is formed

F [x , y] = quantize{f (xd , yd)}

It is a discrete point-sampling of a continuous function

If we could somehow reconstruct the original function, any new image could
be generated, at any resolution and scale

[Source: N. Snavely, S. Seitz]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 25 / 65

Image Interpolation

!" #" $" %" &"

d = 1 in this
example

Recall how a digital image is formed

F [x , y] = quantize{f (xd , yd)}

It is a discrete point-sampling of a continuous function

If we could somehow reconstruct the original function, any new image could
be generated, at any resolution and scale

[Source: N. Snavely, S. Seitz]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 25 / 65

Image Interpolation

!" #" $" %" &"#'&"

!" d = 1 in this
example

What if we don’t know f ?

Guess an approximation: Can be done in a principled way via filtering

Convert F to a continuous function

fF (x) =

{
F (x

d) if x
d is an integer

0 otherwise

Reconstruct by convolution with a reconstruction filter, h

f̂ = h ∗ fF

[Source: N. Snavely, S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 26 / 65

Image Interpolation

!" #" $" %" &"#'&"

!" d = 1 in this
example

What if we don’t know f ?

Guess an approximation: Can be done in a principled way via filtering

Convert F to a continuous function

fF (x) =

{
F (x

d) if x
d is an integer

0 otherwise

Reconstruct by convolution with a reconstruction filter, h

f̂ = h ∗ fF

[Source: N. Snavely, S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 26 / 65

Image Interpolation

!" #" $" %" &"#'&"

!" d = 1 in this
example

What if we don’t know f ?

Guess an approximation: Can be done in a principled way via filtering

Convert F to a continuous function

fF (x) =

{
F (x

d) if x
d is an integer

0 otherwise

Reconstruct by convolution with a reconstruction filter, h

f̂ = h ∗ fF

[Source: N. Snavely, S. Seitz]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 26 / 65

Image Interpolation

!" #" $" %" &"#'&"

!" d = 1 in this
example

What if we don’t know f ?

Guess an approximation: Can be done in a principled way via filtering

Convert F to a continuous function

fF (x) =

{
F (x

d) if x
d is an integer

0 otherwise

Reconstruct by convolution with a reconstruction filter, h

f̂ = h ∗ fF

[Source: N. Snavely, S. Seitz]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 26 / 65

Image Interpolation

!"#$%&'()$*+,-.)/*0+,(

1$%)$-.2,$3456+)(
3,.$)7+&%0+,(

83,$%)(3,.$)7+&%0+,(

9%/--3%,()$*+,-.)/*0+,(

:+/)*$;(<=(>/)&$--(

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 27 / 65

Reconstruction filters

What does the 2D version of this hat function look like?

!"#$%#&'((
)*+",#(*+-"#!%),.%+(

/-"+-($0+1.%+2(!"#$%#&'((
!"#"$%&'("$)%'*+#&,+$(

Often implemented without cross-correlation, e.g.,
http://en.wikipedia.org/wiki/Bilinear_interpolation

Better filters give better resampled images: Bicubic is a common choice

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 28 / 65

http://en.wikipedia.org/wiki/Bilinear_interpolation

Reconstruction filters

What does the 2D version of this hat function look like?

!"#$%#&'((
)*+",#(*+-"#!%),.%+(

/-"+-($0+1.%+2(!"#$%#&'((
!"#"$%&'("$)%'*+#&,+$(

Often implemented without cross-correlation, e.g.,
http://en.wikipedia.org/wiki/Bilinear_interpolation

Better filters give better resampled images: Bicubic is a common choice

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 28 / 65

http://en.wikipedia.org/wiki/Bilinear_interpolation

Reconstruction filters

What does the 2D version of this hat function look like?

!"#$%#&'((
)*+",#(*+-"#!%),.%+(

/-"+-($0+1.%+2(!"#$%#&'((
!"#"$%&'("$)%'*+#&,+$(

Often implemented without cross-correlation, e.g.,
http://en.wikipedia.org/wiki/Bilinear_interpolation

Better filters give better resampled images: Bicubic is a common choice

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 28 / 65

http://en.wikipedia.org/wiki/Bilinear_interpolation

Image Interpolation

Original image

Interpolation results

!"#$"%&'(")*+,-$.)(&"$/-0#1-(. 2)0)("#$.)(&"$/-0#1-(. 2)34,)3.)(&"$/-0#1-(.

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 29 / 65

Image Interpolation

What operation have we done?

!"#$%&#'(%)$*%!"#$%&'()*+

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 30 / 65

Depixelating Pixel Art

Published by [Kopt et al., SIGGRAPH 2011]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 31 / 65

http://research.microsoft.com/en-us/um/people/kopf/pixelart/supplementary/video_multi_comparison_4x_h264.mp4

More Examples

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 32 / 65

http://research.microsoft.com/en-us/um/people/kopf/pixelart/supplementary/video_multi_comparison_4x_h264.mp4

When are Pyramids Useful?

We might want to change resolution of an image before processing.

We might not know which scale we want, e.g., when searching for a face
in an image.

In this case, we will generate a full pyramid of different image sizes.

Can also be used to accelerate the search, by first finding at the coarser
level of the pyramid and then at the full resolution.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 33 / 65

When are Pyramids Useful?

We might want to change resolution of an image before processing.

We might not know which scale we want, e.g., when searching for a face
in an image.

In this case, we will generate a full pyramid of different image sizes.

Can also be used to accelerate the search, by first finding at the coarser
level of the pyramid and then at the full resolution.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 33 / 65

When are Pyramids Useful?

We might want to change resolution of an image before processing.

We might not know which scale we want, e.g., when searching for a face
in an image.

In this case, we will generate a full pyramid of different image sizes.

Can also be used to accelerate the search, by first finding at the coarser
level of the pyramid and then at the full resolution.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 33 / 65

When are Pyramids Useful?

We might want to change resolution of an image before processing.

We might not know which scale we want, e.g., when searching for a face
in an image.

In this case, we will generate a full pyramid of different image sizes.

Can also be used to accelerate the search, by first finding at the coarser
level of the pyramid and then at the full resolution.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 33 / 65

Image Pyramid

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 34 / 65

Interpolation and Decimation

To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i , j) =
∑
k,l

f (k , l)h(i − rk, j − rl)

with r the up-sampling rate.

The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

More complex kernels, e.g., B-splines.

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k, l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist as well.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 35 / 65

Interpolation and Decimation

To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i , j) =
∑
k,l

f (k , l)h(i − rk, j − rl)

with r the up-sampling rate.

The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

More complex kernels, e.g., B-splines.

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k, l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist as well.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 35 / 65

Interpolation and Decimation

To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i , j) =
∑
k,l

f (k , l)h(i − rk, j − rl)

with r the up-sampling rate.

The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

More complex kernels, e.g., B-splines.

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k , l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist as well.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 35 / 65

Interpolation and Decimation

To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i , j) =
∑
k,l

f (k , l)h(i − rk, j − rl)

with r the up-sampling rate.

The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

More complex kernels, e.g., B-splines.

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k , l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist as well.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 35 / 65

Interpolation and Decimation

To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i , j) =
∑
k,l

f (k , l)h(i − rk, j − rl)

with r the up-sampling rate.

The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

More complex kernels, e.g., B-splines.

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k , l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist as well.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 35 / 65

Multi-Resolution Representations

The most used one is the Laplacian pyramid:

We first blur and subsample the original image by a factor of two and store
this in the next level of the pyramid.

Subtract then this low-pass version from the original to yield the band-pass
Laplacian image.

The pyramid has perfect reconstruction: the Laplacian images plus the
base-level Gaussian are sufficient to exactly reconstruct the original image.

Wavelets are alternative pyramids. We will not see them here.

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 36 / 65

Multi-Resolution Representations

The most used one is the Laplacian pyramid:

We first blur and subsample the original image by a factor of two and store
this in the next level of the pyramid.

Subtract then this low-pass version from the original to yield the band-pass
Laplacian image.

The pyramid has perfect reconstruction: the Laplacian images plus the
base-level Gaussian are sufficient to exactly reconstruct the original image.

Wavelets are alternative pyramids. We will not see them here.

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 36 / 65

Multi-Resolution Representations

The most used one is the Laplacian pyramid:

We first blur and subsample the original image by a factor of two and store
this in the next level of the pyramid.

Subtract then this low-pass version from the original to yield the band-pass
Laplacian image.

The pyramid has perfect reconstruction: the Laplacian images plus the
base-level Gaussian are sufficient to exactly reconstruct the original image.

Wavelets are alternative pyramids. We will not see them here.

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 36 / 65

Multi-Resolution Representations

The most used one is the Laplacian pyramid:

We first blur and subsample the original image by a factor of two and store
this in the next level of the pyramid.

Subtract then this low-pass version from the original to yield the band-pass
Laplacian image.

The pyramid has perfect reconstruction: the Laplacian images plus the
base-level Gaussian are sufficient to exactly reconstruct the original image.

Wavelets are alternative pyramids. We will not see them here.

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 36 / 65

Laplacian Pyramid Construction

How do we reconstruct back?

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 37 / 65

Laplacian Pyramid Construction

How do we reconstruct back?

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 37 / 65

Laplacian Pyramid Re-construction

When is this useful?

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 38 / 65

Laplacian Pyramid Re-construction

When is this useful?

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 38 / 65

More Complex Filters

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 39 / 65

Steerable Filters

Oriented filters are used in many vision and image processing tasks:
texture analysis, edge detection, image data compression, motion analysis.

One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

One then needs to know how many filters are required and how to
properly interpolate between the responses.

With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 40 / 65

Steerable Filters

Oriented filters are used in many vision and image processing tasks:
texture analysis, edge detection, image data compression, motion analysis.

One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

One then needs to know how many filters are required and how to
properly interpolate between the responses.

With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 40 / 65

Steerable Filters

Oriented filters are used in many vision and image processing tasks:
texture analysis, edge detection, image data compression, motion analysis.

One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

One then needs to know how many filters are required and how to
properly interpolate between the responses.

With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 40 / 65

Steerable Filters

Oriented filters are used in many vision and image processing tasks:
texture analysis, edge detection, image data compression, motion analysis.

One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

One then needs to know how many filters are required and how to
properly interpolate between the responses.

With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 40 / 65

Steerable Filters

Oriented filters are used in many vision and image processing tasks:
texture analysis, edge detection, image data compression, motion analysis.

One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

One then needs to know how many filters are required and how to
properly interpolate between the responses.

With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 40 / 65

Steerable Filters

Oriented filters are used in many vision and image processing tasks:
texture analysis, edge detection, image data compression, motion analysis.

One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

One then needs to know how many filters are required and how to
properly interpolate between the responses.

With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 40 / 65

Example of Steerable Filter

2D symmetric Gaussian with σ = 1 and assume constant is 1

G (x , y , σ) = exp
(
−x2 + y2

)
The directional derivative operator is steerable.

The first derivative

G 0
1 =

∂

∂x
exp

(
−x2 + y2

)
= −2x exp

(
−x2 + y2

)
and the same function rotated 90 degrees is

G 90
1 =

∂

∂y
exp

(
−x2 + y2

)
= −2y exp

(
−x2 + y2

)
A filter of arbitrary orientation θ can be synthesized by taking a linear
combination of G 0

1 and G 90
1

G θ1 = cos θG 0
1 + sin θG 90

1

G 0
1 and G 90

1 are the basis filters and cos θ and sin θ are the interpolation
functions

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 41 / 65

Example of Steerable Filter

2D symmetric Gaussian with σ = 1 and assume constant is 1

G (x , y , σ) = exp
(
−x2 + y2

)
The directional derivative operator is steerable.

The first derivative

G 0
1 =

∂

∂x
exp

(
−x2 + y2

)
= −2x exp

(
−x2 + y2

)
and the same function rotated 90 degrees is

G 90
1 =

∂

∂y
exp

(
−x2 + y2

)
= −2y exp

(
−x2 + y2

)

A filter of arbitrary orientation θ can be synthesized by taking a linear
combination of G 0

1 and G 90
1

G θ1 = cos θG 0
1 + sin θG 90

1

G 0
1 and G 90

1 are the basis filters and cos θ and sin θ are the interpolation
functions

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 41 / 65

Example of Steerable Filter

2D symmetric Gaussian with σ = 1 and assume constant is 1

G (x , y , σ) = exp
(
−x2 + y2

)
The directional derivative operator is steerable.

The first derivative

G 0
1 =

∂

∂x
exp

(
−x2 + y2

)
= −2x exp

(
−x2 + y2

)
and the same function rotated 90 degrees is

G 90
1 =

∂

∂y
exp

(
−x2 + y2

)
= −2y exp

(
−x2 + y2

)
A filter of arbitrary orientation θ can be synthesized by taking a linear
combination of G 0

1 and G 90
1

G θ1 = cos θG 0
1 + sin θG 90

1

G 0
1 and G 90

1 are the basis filters and cos θ and sin θ are the interpolation
functions

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 41 / 65

Example of Steerable Filter

2D symmetric Gaussian with σ = 1 and assume constant is 1

G (x , y , σ) = exp
(
−x2 + y2

)
The directional derivative operator is steerable.

The first derivative

G 0
1 =

∂

∂x
exp

(
−x2 + y2

)
= −2x exp

(
−x2 + y2

)
and the same function rotated 90 degrees is

G 90
1 =

∂

∂y
exp

(
−x2 + y2

)
= −2y exp

(
−x2 + y2

)
A filter of arbitrary orientation θ can be synthesized by taking a linear
combination of G 0

1 and G 90
1

G θ1 = cos θG 0
1 + sin θG 90

1

G 0
1 and G 90

1 are the basis filters and cos θ and sin θ are the interpolation
functions

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 41 / 65

More on steerable filters

Because convolution is a linear operation, we can synthesize an image
filtered at an arbitrary orientation by taking linear combinations of the
images filtered with G 0

1 and G 90
1

if R0
1 = G 0

1 ∗ I and R90
1 = G 90

1 ∗ I then Rθ1 = cos θR0
1 + sin θR90

1

Check yourself that this is the case.

See [Freeman & Adelson, 91] for the conditions on when a filter is steerable
and how many basis are necessary.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 42 / 65

More on steerable filters

Because convolution is a linear operation, we can synthesize an image
filtered at an arbitrary orientation by taking linear combinations of the
images filtered with G 0

1 and G 90
1

if R0
1 = G 0

1 ∗ I and R90
1 = G 90

1 ∗ I then Rθ1 = cos θR0
1 + sin θR90

1

Check yourself that this is the case.

See [Freeman & Adelson, 91] for the conditions on when a filter is steerable
and how many basis are necessary.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 42 / 65

More on steerable filters

Because convolution is a linear operation, we can synthesize an image
filtered at an arbitrary orientation by taking linear combinations of the
images filtered with G 0

1 and G 90
1

if R0
1 = G 0

1 ∗ I and R90
1 = G 90

1 ∗ I then Rθ1 = cos θR0
1 + sin θR90

1

Check yourself that this is the case.

See [Freeman & Adelson, 91] for the conditions on when a filter is steerable
and how many basis are necessary.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 42 / 65

[Source: W. Freeman 91]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 43 / 65

More complex filters

What about the second order derivative?

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 44 / 65

More complex filters

What about the second order derivative?

Only three basis are required

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 44 / 65

More complex filters

What about the second order derivative?

Only three basis are required

Gûû = u2Gxx + 2uvGx,y + v2Gy ,y

with û = (u, v)

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 44 / 65

Other transformations

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 45 / 65

Integral Images

If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

It is the running sum of all the pixel values from the origin

s(i , j) =
i∑

k=0

j∑
l=0

f (k , l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

The image s(i , j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

To find the summed area (integral) inside a rectangle [i0, i1]× [j0, j1] we
simply combine four samples from the summed area table.

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Summed area tables have been used in face detection [Viola & Jones, 04]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 46 / 65

Integral Images

If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

It is the running sum of all the pixel values from the origin

s(i , j) =
i∑

k=0

j∑
l=0

f (k , l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

The image s(i , j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

To find the summed area (integral) inside a rectangle [i0, i1]× [j0, j1] we
simply combine four samples from the summed area table.

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Summed area tables have been used in face detection [Viola & Jones, 04]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 46 / 65

Integral Images

If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

It is the running sum of all the pixel values from the origin

s(i , j) =
i∑

k=0

j∑
l=0

f (k , l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

The image s(i , j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

To find the summed area (integral) inside a rectangle [i0, i1]× [j0, j1] we
simply combine four samples from the summed area table.

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Summed area tables have been used in face detection [Viola & Jones, 04]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 46 / 65

Integral Images

If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

It is the running sum of all the pixel values from the origin

s(i , j) =
i∑

k=0

j∑
l=0

f (k , l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

The image s(i , j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

To find the summed area (integral) inside a rectangle [i0, i1]× [j0, j1] we
simply combine four samples from the summed area table.

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Summed area tables have been used in face detection [Viola & Jones, 04]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 46 / 65

Integral Images

If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

It is the running sum of all the pixel values from the origin

s(i , j) =
i∑

k=0

j∑
l=0

f (k , l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

The image s(i , j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

To find the summed area (integral) inside a rectangle [i0, i1]× [j0, j1] we
simply combine four samples from the summed area table.

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Summed area tables have been used in face detection [Viola & Jones, 04]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 46 / 65

Integral Images

If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

It is the running sum of all the pixel values from the origin

s(i , j) =
i∑

k=0

j∑
l=0

f (k , l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

The image s(i , j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

To find the summed area (integral) inside a rectangle [i0, i1]× [j0, j1] we
simply combine four samples from the summed area table.

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Summed area tables have been used in face detection [Viola & Jones, 04]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 46 / 65

Example of Integral Images

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 47 / 65

Non-linear filters: Median filter

We have seen linear filters, i.e., their response to a sum of two signals is
the same as the sum of the individual responses.

h ◦ (f + g) = h ◦ f + h ◦ g

Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

Robust to outliers, but not good for Gaussian noise.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 48 / 65

Non-linear filters: Median filter

We have seen linear filters, i.e., their response to a sum of two signals is
the same as the sum of the individual responses.

h ◦ (f + g) = h ◦ f + h ◦ g

Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

Robust to outliers, but not good for Gaussian noise.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 48 / 65

Non-linear filters: Median filter

We have seen linear filters, i.e., their response to a sum of two signals is
the same as the sum of the individual responses.

h ◦ (f + g) = h ◦ f + h ◦ g

Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

Robust to outliers, but not good for Gaussian noise.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 48 / 65

Example of non-linear filters

(Median filter) (α-trimmed mean)

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 49 / 65

Non-linear filters: Median filter

We have seen linear filters, i.e., their response to a sum of two signals is
the same as the sum of the individual responses.

h ◦ (f + g) = h ◦ f + h ◦ g

Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

Robust to outliers, but not good for Gaussian noise.

α-trimmed mean: averages together all of the pixels except for the α
fraction that are the smallest and the largest.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 50 / 65

Non-linear filters: Median filter

We have seen linear filters, i.e., their response to a sum of two signals is
the same as the sum of the individual responses.

h ◦ (f + g) = h ◦ f + h ◦ g

Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

Robust to outliers, but not good for Gaussian noise.

α-trimmed mean: averages together all of the pixels except for the α
fraction that are the smallest and the largest.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 50 / 65

Example of non-linear filters

(Median filter) (α-trimmed mean)

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 51 / 65

Bilateral Filtering

Weighted filter kernel with a better outlier rejection.

Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

The output pixel value depends on a weighted combination of neighboring
pixel values

g(i , j) =

∑
k,l f (k, l)w(i , j , k, l)∑

k,l w(i , j , k, l)

Data-dependent bilateral weight function

w(i , j , k, l) = exp

(
− (i − k)2 + (j − l)2

2σ2
d

− ||f (i , j)− f (k, l)||2

2σ2
r

)
composed of the domain kernel and the range kernel.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 52 / 65

Bilateral Filtering

Weighted filter kernel with a better outlier rejection.

Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

The output pixel value depends on a weighted combination of neighboring
pixel values

g(i , j) =

∑
k,l f (k , l)w(i , j , k , l)∑

k,l w(i , j , k , l)

Data-dependent bilateral weight function

w(i , j , k, l) = exp

(
− (i − k)2 + (j − l)2

2σ2
d

− ||f (i , j)− f (k, l)||2

2σ2
r

)
composed of the domain kernel and the range kernel.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 52 / 65

Bilateral Filtering

Weighted filter kernel with a better outlier rejection.

Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

The output pixel value depends on a weighted combination of neighboring
pixel values

g(i , j) =

∑
k,l f (k , l)w(i , j , k , l)∑

k,l w(i , j , k , l)

Data-dependent bilateral weight function

w(i , j , k , l) = exp

(
− (i − k)2 + (j − l)2

2σ2
d

− ||f (i , j)− f (k, l)||2

2σ2
r

)
composed of the domain kernel and the range kernel.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 52 / 65

Bilateral Filtering

Weighted filter kernel with a better outlier rejection.

Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

The output pixel value depends on a weighted combination of neighboring
pixel values

g(i , j) =

∑
k,l f (k , l)w(i , j , k , l)∑

k,l w(i , j , k , l)

Data-dependent bilateral weight function

w(i , j , k , l) = exp

(
− (i − k)2 + (j − l)2

2σ2
d

− ||f (i , j)− f (k, l)||2

2σ2
r

)
composed of the domain kernel and the range kernel.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 52 / 65

Example Bilateral Filtering

Figure: Bilateral filtering [Durand & Dorsey, 02]. (a) noisy step edge input. (b)
domain filter (Gaussian). (c) range filter (similarity to center pixel value). (d)
bilateral filter. (e) filtered step edge output. (f) 3D distance between pixels

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 53 / 65

Distance Transform

Useful to quickly precomputing the distance to a curve or a set of points.

Let d(k, l) be some distance metric between pixel offsets, e.g., Manhattan
distance

d(k , l) = |k |+ |l |

or Euclidean distance
d(k , l) =

√
k2 + l2

The distance transform D(i , j) of a binary image b(i , j) is defined as

D(i , j) = min
k,l ;b(k,l)=0

d(i − k , j − l)

it is the distance to the nearest pixel whose value is 0.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 54 / 65

Distance Transform

Useful to quickly precomputing the distance to a curve or a set of points.

Let d(k, l) be some distance metric between pixel offsets, e.g., Manhattan
distance

d(k , l) = |k |+ |l |

or Euclidean distance
d(k , l) =

√
k2 + l2

The distance transform D(i , j) of a binary image b(i , j) is defined as

D(i , j) = min
k,l ;b(k,l)=0

d(i − k , j − l)

it is the distance to the nearest pixel whose value is 0.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 54 / 65

Distance Transform

Useful to quickly precomputing the distance to a curve or a set of points.

Let d(k, l) be some distance metric between pixel offsets, e.g., Manhattan
distance

d(k , l) = |k |+ |l |

or Euclidean distance
d(k , l) =

√
k2 + l2

The distance transform D(i , j) of a binary image b(i , j) is defined as

D(i , j) = min
k,l ;b(k,l)=0

d(i − k , j − l)

it is the distance to the nearest pixel whose value is 0.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 54 / 65

Distance Transform Algorithm

The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.

Forward pass: each non-zero pixel in b is replaced by the minimum of 1 +
the distance of its north or west neighbor.

Backward pass: the same, but the minimum is both over the current value
D and 1 + the distance of the south and east neighbors.

Figure: City block distance transform: (a) original binary image; (b) top to bottom (forward)
raster sweep: green values are used to compute the orange value; (c) bottom to top (backward)
raster sweep: green values are merged with old orange value; (d) final distance transform.

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 55 / 65

Distance Transform Algorithm

The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.

Forward pass: each non-zero pixel in b is replaced by the minimum of 1 +
the distance of its north or west neighbor.

Backward pass: the same, but the minimum is both over the current value
D and 1 + the distance of the south and east neighbors.

Figure: City block distance transform: (a) original binary image; (b) top to bottom (forward)
raster sweep: green values are used to compute the orange value; (c) bottom to top (backward)
raster sweep: green values are merged with old orange value; (d) final distance transform.

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 55 / 65

Distance Transform Algorithm

The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.

Forward pass: each non-zero pixel in b is replaced by the minimum of 1 +
the distance of its north or west neighbor.

Backward pass: the same, but the minimum is both over the current value
D and 1 + the distance of the south and east neighbors.

Figure: City block distance transform: (a) original binary image; (b) top to bottom (forward)
raster sweep: green values are used to compute the orange value; (c) bottom to top (backward)
raster sweep: green values are merged with old orange value; (d) final distance transform.

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 55 / 65

Example of Distance Transform

More complicated in the Euclidean case.

Example of a distance transform

The ridges is the skeleton or medial axis.

Extension: Signed distance transform.

[Source: P. Felzenszwalb]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 56 / 65

Fourier Transform

Fourier analysis could be used to analyze the frequency characteristics of
various filters.

How can we analyze what a given filter does to high, medium, and low
frequencies?

Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2πfx + φi) = sin(ωx + φi)

with frequency f , angular frequency ω and phase φi .

If we convolve the sinusoidal signal s(x) with a filter whose impulse response
is h(x), we get another sinusoid of the same frequency but different
magnitude and phase

o(x) = h(x) ∗ s(x) = A sin(ωx + φo)

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 57 / 65

Fourier Transform

Fourier analysis could be used to analyze the frequency characteristics of
various filters.

How can we analyze what a given filter does to high, medium, and low
frequencies?

Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2πfx + φi) = sin(ωx + φi)

with frequency f , angular frequency ω and phase φi .

If we convolve the sinusoidal signal s(x) with a filter whose impulse response
is h(x), we get another sinusoid of the same frequency but different
magnitude and phase

o(x) = h(x) ∗ s(x) = A sin(ωx + φo)

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 57 / 65

Fourier Transform

Fourier analysis could be used to analyze the frequency characteristics of
various filters.

How can we analyze what a given filter does to high, medium, and low
frequencies?

Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2πfx + φi) = sin(ωx + φi)

with frequency f , angular frequency ω and phase φi .

If we convolve the sinusoidal signal s(x) with a filter whose impulse response
is h(x), we get another sinusoid of the same frequency but different
magnitude and phase

o(x) = h(x) ∗ s(x) = A sin(ωx + φo)

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 57 / 65

Fourier Transform

Fourier analysis could be used to analyze the frequency characteristics of
various filters.

How can we analyze what a given filter does to high, medium, and low
frequencies?

Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2πfx + φi) = sin(ωx + φi)

with frequency f , angular frequency ω and phase φi .

If we convolve the sinusoidal signal s(x) with a filter whose impulse response
is h(x), we get another sinusoid of the same frequency but different
magnitude and phase

o(x) = h(x) ∗ s(x) = A sin(ωx + φo)

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 57 / 65

Filtering and Fourier

Convolution can be expressed as a weighted summation of shifted input
signals (sinusoids); so it is just a single sinusoid at that frequency.

o(x) = h(x) ∗ s(x) = A sin(ωx + φo)

A is the gain or magnitude of the filter, while the phase difference
∆φ = φo − φi is the shift or phase

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 58 / 65

Complex notation

The sinusoid is express as s(x) = e jωx = cosωx + j sinωx and the filter
sinusoid as

o(x) = h(x) ∗ s(x) = Ae jωx+φ

The Fourier transform pair is

h(x)←→ H(ω)

The Fourier transform in continuous domain

H(ω) =

∫ ∞
−∞

h(x)e−jωxdx

The Fourier transform in discrete domain

H(k) =
1

N

N−1∑
x=0

h(x)e−j
2πkx
N

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 59 / 65

Complex notation

The sinusoid is express as s(x) = e jωx = cosωx + j sinωx and the filter
sinusoid as

o(x) = h(x) ∗ s(x) = Ae jωx+φ

The Fourier transform pair is

h(x)←→ H(ω)

The Fourier transform in continuous domain

H(ω) =

∫ ∞
−∞

h(x)e−jωxdx

The Fourier transform in discrete domain

H(k) =
1

N

N−1∑
x=0

h(x)e−j
2πkx
N

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 59 / 65

Complex notation

The sinusoid is express as s(x) = e jωx = cosωx + j sinωx and the filter
sinusoid as

o(x) = h(x) ∗ s(x) = Ae jωx+φ

The Fourier transform pair is

h(x)←→ H(ω)

The Fourier transform in continuous domain

H(ω) =

∫ ∞
−∞

h(x)e−jωxdx

The Fourier transform in discrete domain

H(k) =
1

N

N−1∑
x=0

h(x)e−j
2πkx
N

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 59 / 65

Complex notation

The sinusoid is express as s(x) = e jωx = cosωx + j sinωx and the filter
sinusoid as

o(x) = h(x) ∗ s(x) = Ae jωx+φ

The Fourier transform pair is

h(x)←→ H(ω)

The Fourier transform in continuous domain

H(ω) =

∫ ∞
−∞

h(x)e−jωxdx

The Fourier transform in discrete domain

H(k) =
1

N

N−1∑
x=0

h(x)e−j
2πkx
N

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 59 / 65

Complex notation

The sinusoid is express as s(x) = e jωx = cosωx + j sinωx and the filter
sinusoid as

o(x) = h(x) ∗ s(x) = Ae jωx+φ

The Fourier transform pair is

h(x)←→ H(ω)

The Fourier transform in continuous domain

H(ω) =

∫ ∞
−∞

h(x)e−jωxdx

The Fourier transform in discrete domain

H(k) =
1

N

N−1∑
x=0

h(x)e−j
2πkx
N

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 59 / 65

Properties Fourier Transform

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 60 / 65

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 61 / 65

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 62 / 65

2D Fourier Transform

Same as 1D, but in 2D. Now the sinusoid is

s(x , y) = sin(ωxx + ωyy)

The 2D Fourier in continuous domain is then

H(ωx , ωy) =

∫ ∞
−∞

∫ ∞
−∞

h(x , y)e−j(ωxx+ωy y)dxdy

and in the discrete domain

H(kx , ky) =
1

MN

M−1∑
x=0

N−1∑
y=0

h(x , y)e−2πj
kx x+ky y

MN

where M and N are the width and height of the image.

All the properties carry over to 2D.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 63 / 65

2D Fourier Transform

Same as 1D, but in 2D. Now the sinusoid is

s(x , y) = sin(ωxx + ωyy)

The 2D Fourier in continuous domain is then

H(ωx , ωy) =

∫ ∞
−∞

∫ ∞
−∞

h(x , y)e−j(ωxx+ωy y)dxdy

and in the discrete domain

H(kx , ky) =
1

MN

M−1∑
x=0

N−1∑
y=0

h(x , y)e−2πj
kx x+ky y

MN

where M and N are the width and height of the image.

All the properties carry over to 2D.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 63 / 65

2D Fourier Transform

Same as 1D, but in 2D. Now the sinusoid is

s(x , y) = sin(ωxx + ωyy)

The 2D Fourier in continuous domain is then

H(ωx , ωy) =

∫ ∞
−∞

∫ ∞
−∞

h(x , y)e−j(ωxx+ωy y)dxdy

and in the discrete domain

H(kx , ky) =
1

MN

M−1∑
x=0

N−1∑
y=0

h(x , y)e−2πj
kx x+ky y

MN

where M and N are the width and height of the image.

All the properties carry over to 2D.

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 63 / 65

Example of 2D Fourier Transform

[Source: A. Jepson]

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 64 / 65

Next class ... image features

Raquel Urtasun (TTI-C) Visual Recognition Jan 15, 2012 65 / 65

	Introduction

