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What did we see in class last week?
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Local features

@ Detection: Identify the interest points.
@ Description: Extract vector feature descriptor around each interest point.

@ Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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Detecting features

@ Harris corner detector: looks at the singular values of the autocorrelation
matrix

@ Laplacian of Gaussians: Detects blobs

o Difference of Gaussians: fast approximation of the LOG
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Properties of the ideal feature

@ Local: features are local, so robust to occlusion and clutter (no prior
segmentation).
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Properties of the ideal feature

@ Local: features are local, so robust to occlusion and clutter (no prior
segmentation).

@ Invariant: to certain transformations, e.g, scale, rotation.

@ Robust: noise, blur, discretization, compression, etc. do not have a big
impact on the feature.

@ Distinctive: individual features can be matched to a large database of
objects.

@ Quantity: many features can be generated for even small objects.
@ Accurate: precise localization.

o Efficient: close to real-time performance.
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Describing features

Normalized gray-scale
o SIFT

PCA-SIFT

e GLOH
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The ideal feature descriptor

Repeatable (invariant/robust)

Distinctive

Compact

Efficient
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Matching local features

Once we have extracted features and their descriptors, we need to match the
features between these images.

@ Matching strategy: which correspondences are passed on to the next stage

@ Devise efficient data structures and algorithms to perform this matching

Figure: Images from K. Grauman
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Matching local features

@ To generate candidate matches, find patches that have the most similar
appearance (e.g., lowest SSD)

@ Simplest approach: compare them all, take the closest (or closest k, or
within a thresholded distance)

[Source: K. Grauman]
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Feature Distance

How to define the difference between two features f1, »?
@ Simple approach: L2 distance, ||fi — f2]|2

@ can give good scores to ambiguous (incorrect) matches

[Source: N. Snavely]
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Feature Distance

Better approach: ratio distance %
2

@ f> is best SSD match to f; in b
@ f, is 2nd best SSD match to f; in

@ gives large values for ambiguous matches

[Source: N. Snavely]
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Matching Example

51 matches

[Source: N. Snavely]
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Matching Example

58 matches

[Source: N. Snavely]
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How to measure performance

@ How can we measure the performance of a feature matcher?

feature distance

[Source: N. Snavely]
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Measuring performance

@ Area under the curve (AUC) is a way to summarize ROC with 1 number.

@ Mean average precision, which is the average precision (PPV) as you vary
the threshold, i.e., area under the curve in the precision-recall curve.

@ The equal error rate is sometimes used as well.

2qual error
rate

. random chance

true positive rate

Lootoooooooooooooos

false positive rate

Figure: Images from R. Szeliski
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Let's look at image alignment
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@ Chapter 3.6, 4.3 and 6.1 of Szeliski's book
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Image Alignment

Why don't this images line up exactly?

[Source: N. Snavely]
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What is the geometric relationship between these images?

@ Answer: Similarity transformation (translation, rotation, uniform scale)

SCOTT McCLOUD

[Source: N. Snavely]
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What is the geometric relationship between these images?

[Source: N. Snavely]
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What is the geometric relationship between these images?

Very important for creating mosaics!

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 19 / 67



Image Warping

@ Image filtering: change range of image

I

[Source: R. Szeliski]

X

g(x) = h(f(x))

I~
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Image Warping

@ Image filtering: change range of image

g(x) = h(f(x))

(N

X X

@ Image warping: change domain of image
g(x) = f(h(x))

X X

[Source: R. Szeliski]
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Image Warping

@ Image filtering: change range of image

g(x) = h(f(x))

@ Image warping: change domain of image
g(x) = f(h(x))

[Source: R. Szeliski]
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Parametric (global) warping

@ Examples of parametric warps:

translation rotation

@ Why is it call parametric?
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Parametric (global) warping

@ What does it mean that T is global?

@ Is the same for any point p
o Can be described by just a few numbers (parameters)

[Source: N. Snavely]
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Image Warping

@ Given a transformation specified by x’ = h(x) and a source image f(x), how
do we compute the values of the pixels in the new image

g(x) = f(h(x))
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Forward Warping

@ Send each pixel f(x) to its corresponding location (x’,y’) = T(x,y) in
g(x,y’)

procedure forwardWarp(f, h, out g):
For every pixel z in f(x)

1. Compute the destination location =’ = h(z).

2. Copy the pixel f(z) to g(z).

@ What are the problems with this?
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Problems of Forward-Warp

© What it the value of h(x) is non-integer? What do we do?
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T(x, ’
y (xy) y i

==

fixy) a(x3y’)
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Problems of Forward-Warp

© What it the value of h(x) is non-integer? What do we do?

e Round the value of x’ to the nearest integer coordinate and copy the
pixel there, but severe aliasing and pixels that jump around

o Distribute the value among its nearest neighbors in a weighted
(bilinear) fashion, keeping track of the per-pixel weights and
normalizing at the end.

e This is call splatting, it suffers from both moderate amounts of
aliasing and a fair amount of blur

@ Appearance of cracks and holes, especially when magnifying an image

e Filling such holes with their nearby neighbors can lead to further
aliasing and blurring

y T(x,y) y
O fy) X gy

What should we do?
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Inverse-Warping

procedure inverseWarp( f, h,out g):

For every pixel ' in g(z’)

1. Compute the source location @ = f(a')

2. Resample f(a) at location x and copy to g(z')

@ Each pixel at the destination is sampled from the original image
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Inverse-Warping

procedure inverseWarp( f, h,out g):

For every pixel ' in g(z’)

1. Compute the source location @ = f(a')

2. Resample f(a) at location x and copy to g(z')

@ Each pixel at the destination is sampled from the original image
@ How does this differ from forward mapping?
@ Since h(x') is defined for all pixels in g(x’), we no longer have holes

@ What if pixel comes from between two pixels?
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Inverse-Warping

@ What if pixel comes from between two pixels?

@ Resampling an image at non-integer locations is a well-studied problem (i.e.,
image interpolation) high-quality filters that control aliasing can be used
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How to computer the inverse-warping?

@ Often h(x’) can simply be computed as the inverse of h(x).
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How to computer the inverse-warping?

Often h(x’) can simply be computed as the inverse of h(x).

@ In other cases, it is preferable to formulate as resampling a source image
f(x) given a mapping x = h(x’) from destination pixels x’ to source pixels x.

Let's see some examples of the former

Lets consider linear transformations (can be represented by a 2D matrix):

SR b
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Common linear transformations

@ Uniform scaling by s

@ What's the inverse?

[Source: N. Snavely]
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Common linear transformations

@ Rotation by an angle 6 (about the origin)

R— {cos& —sin 0}

sinf  cosf

@ What's the inverse?

[Source: N. Snavely]
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What types of transformations can be represented with a 2 X 2 matrix?

@ 2D mirror about Y axis?

x' = —x -1 0
y o=y T_{O 1}

[Source: N. Snavely]
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What types of transformations can be represented with a 2 X 2 matrix?

@ 2D mirror about Y axis?
x = —x -1 0
y o=y = {0 1}

@ 2D mirror across line y = x?

xX' =y 01
y = x T[lO]

[Source: N. Snavely]
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What types of transformations can be represented with a 2 X 2 matrix?

@ 2D Translation?
X = x4ty

y'oo= v+t

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013



What types of transformations can be represented with a 2 X 2 matrix?

@ 2D Translation?
x' = x4+t
y'oo= v+t

@ Translation is NOT a linear operation on 2D coordinates

[Source: N. Snavely]
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What types of transformations can be represented with a 2 X 2 matrix?
@ 2D Translation?
x' = x4+t
y'oo= v+t
@ Translation is NOT a linear operation on 2D coordinates

@ What can we do?

[Source: N. Snavely]
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All 2D Linear Transformations

Linear transformations are combinations of
@ Scale,
@ Rotation
@ Shear

@ Mirror

[Source: N. Snavely]
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All 2D Linear Transformations

Properties of linear transformations:

@ Origin maps to origin
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All 2D Linear Transformations

Properties of linear transformations:
@ Origin maps to origin
@ Lines map to lines
@ Parallel lines remain parallel
@ Ratios are preserved

@ Closed under composition

=L el AL I
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All 2D Linear Transformations

Properties of linear transformations:

@ Origin maps to origin

@ Lines map to lines

@ Parallel lines remain parallel

@ Ratios are preserved

@ Closed under composition
b= Al
y'| |lc d|l|lg h||k ||y

What about the translation?

[Source: N. Snavely]
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Homogeneous coordinates

il
w ,’
,I
Trick: add one more coordinate: —~ homogeneous plane
/
x J
(%11) =Y /ZX/W y/w, 1)
1 w=1 / ! !
L4
. 5 X

homogeneous image
coordinates

Y

Converting from homogeneous coordinates

T
y | = (@/w y/w)

[Source: N. Snavely]
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Translation

@ Solution: homogeneous coordinates to the rescue

1 0 t
T=10 1 ¢
00 1

Thus we can write

1 0 ty X X+ ty
01 ¢t |y|l=|y+t
0 0 1 1 1

[Source: N. Snavely]
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Affine Transformations

any transformation with
lastrow [00 1] we call an
affine transformation

a b ¢
d e f
0 0 1

—
I
oo
o= o

by
ty
1

[Source: N. Snavely]
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Basic Affine Transformations

X 1 0 ¢t [x x! s, 0 0] |x
y'1 =10 1 t| |y y'|=10 s 0] |y
1 0 0 1|1 1 0 0 1|1
Translation Scale
x' cosf@ —sinf 0| [x x' 1 she Of [x
y'| = |sin@ cosf Of |y y'| =|shy, 1 0} |y
1 0 0 1] |1 1 0 0 1] |1
2D in-plane rotation Shear

[Source: N. Snavely]
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Affine Transformations

Affine transformations are combinations of
@ Linear transformations, and

@ Translations

X a b c| |x
yi=1|d e f| |y
w 0 0 1| (w

Properties of affine transformations:
@ Origin does not necessarily map to origin
@ Lines map to lines
@ Parallel lines remain parallel
@ Ratios are preserved

@ Closed under composition

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013



Is this an affine Tranformation?

[Source: N. Snavely]
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What's next?

a b c
d e f
0 O 1 what happens when we

mess with this row?

affine transformation

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013



Homography

@ Also called Projective Transformation or Planar Perspective Map

a b c
H=|d e f
g h 1

Called a homography
(or planar perspective map)

[Source: N. Snavely]
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Image warping with homographies

image plane in front

black area
where no pixel
maps to

[Source: N. Snavely]
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Homographies

[Source: N. Snavely]
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Projective Transformations

@ Affine transformations and Projective warps

X a b c| |x
y|=1|d e f| |y
w’ g h i||w

Properties of affine transformations:
@ Origin does not necessarily map to origin
@ Lines map to lines
@ Parallel lines do not necessarily remain parallel
@ Ratios are not preserved
@ Closed under composition

[Source: N. Snavely]
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2D Image Tranformations

st O projective
translation
o
_
Euclidean Ae

Transformation Matrix #DoF Preserves Icon
translation [ I ‘ t ]2 N 2 orientation D
x
rigid (Euclidean) [ R [ # ] 3 lengths O
2x3
similarity [ sR ‘ t ] 4 angles O
2x3
affine [ A ]2 A 6 parallelism D
X
projective [ H ] 8 straight lines Q
3x3

@ These transformations are a nested set of groups

@ Closed under composition and inverse is a member
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Homographies

x! a b c x
y | =1d e f Y
w’ g h 1 1
ar+by+c ]
What happens when gr+hy+1
the denominator is 0? ~ drx+ey+ f
gr+hy+1
1

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 48 / 67



Points at infinity

@ Points at infinity become finite i.e., vanishing points

rY 4
1 1
1 1
1 1
1 1
[} [}
1 1
1 1
[} [}
1 1
1 1

[Source: N. Snavely]
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Image warping with homographies

image plane in front

black area
where no pixel
maps to
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Computing transformations

Given a set of matches between images A and B
@ How can we compute the transform T from A to B?

@ Find transform T that best agrees with the matches

[Source: N. Snavely]
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Computing Transformations

[Source: N. Snavely]
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Computing Transformations

Can also think of as fitting a "model” to our data
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Computing Transformations

Can also think of as fitting a "model” to our data

@ The model is the transformation of a given type, e.g. a translation, affine
xform, homography etc

@ Fitting the model means solving for the parameters that best explain the
observed data
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Computing Transformations

Can also think of as fitting a "model” to our data

@ The model is the transformation of a given type, e.g. a translation, affine
xform, homography etc

@ Fitting the model means solving for the parameters that best explain the
observed data

@ Usually involves minimizing some objective / cost function

[Source: N. Snavely]
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Simple Case: Translations

' LRI |1 -
dIIWlIlIluW | w&, Ho& :i,oyvtv)e?solve for

[Source: N. Snavely]
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Simple Case: Translations

The displacement of match i is (x/ — x;,y/ — y;). We can thus solve for

1S 1~ ,
(Xtayt) - (n;Xi Xi, n Zlyl .yl)

[Source: N. Snavely]
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xXi+x = X
Yitye =y
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T

xXi+x = X
Yi + yr = y’I

System of linear equations

@ What are the knowns?
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—_ 1110 <

System of linear equations
@ What are the knowns?

@ How many unknowns?

[Source: N. Snavely]
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System of linear equations
@ What are the knowns?
@ How many unknowns?

@ How many equations (per match)?

[Source: N. Snavely]
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(X27 ¥5)

MIIIWW ' Tl

> n yl!
e TR

Xi+Xr = X
Yi+tyr = Y
Problem: more equations than unknowns

@ Overdetermined system of equations

[Source: N. Snavely]
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(X27 ¥5)

MIIIWW ' Tl

> n yl!
e TR

Xi+Xr = X
Yi+tyr = Y
Problem: more equations than unknowns

@ Overdetermined system of equations

@ We will find the least squares solution

[Source: N. Snavely]
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L east squares formulation

@ For each point (x;, y;) we have

Xi+Xxe = X
Yitye = ¥
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L east squares formulation

@ For each point (x;, y;) we have

Xi+Xxx = X
Yitye = i
@ We define the residuals as
e(xe) = Xi+x — x|
r(ye) = yvitye—yi
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L east squares formulation

@ For each point (x;, y;) we have

Xi+Xxx = X
Yitye = i
@ We define the residuals as
e(xe) = Xi+x — x|
r(ye) = yvitye—yi

@ Goal: minimize sum of squared residuals

n

Clxe,ye) = D (g () + 1, (12)%)

i=1
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L east squares formulation

@ For each point (x;, y;) we have

Xi+Xxx = X
Yitye = i
@ We define the residuals as
e(xe) = Xi+x — x|
r(ye) = yvitye—yi

@ Goal: minimize sum of squared residuals

Clxe,ye) = D (g () + 1, (12)%)

i=1

@ The solution is called the least squares solution
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L east squares formulation

@ For each point (x;, y;) we have

Xi+Xxx = X
Yitye = i
@ We define the residuals as
e(xe) = Xi+x — x|
r(ye) = yvitye—yi

@ Goal: minimize sum of squared residuals

n

Clxe,ye) = D (g () + 1, (12)%)

i=1

@ The solution is called the least squares solution

@ For translations, is equal to mean displacement

[Source: N. Snavely]
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L east squares formulation

@ For each point (x;, y;) we have

Xi+Xxx = X
Yitye = i
@ We define the residuals as
e(xe) = Xi+x — x|
r(ye) = yvitye—yi

@ Goal: minimize sum of squared residuals

n

Clxe,ye) = D (g () + 1, (12)%)

i=1

@ The solution is called the least squares solution
@ For translations, is equal to mean displacement
@ What do we do?

[Source: N. Snavely]
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Matrix Formulation

@ We can also write as a matrix equation

1 0 Ty — X1
0 1 yi—yl
1 0 xh — x9
0 1 Tl _ | yh—ye
Yt .
1 0 x, — Ty
L 0 1 i i y%_yn i

2nx2 2x1 2nx1
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Least Squares

At=b
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Least Squares

At=b

@ We want to find the optimal t by

min| At — b|
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Least Squares

At=b

@ We want to find the optimal t by

min| At — b|

@ We can write

At —b||3 = t"(ATA)t — 2t"(ATb) + ||b]]3
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Least Squares

At=b

@ We want to find the optimal t by

min| At — b|

@ We can write

At —b||3 = t"(ATA)t — 2t"(ATb) + ||b]]3

@ To solve, form the normal equations

(ATA)t=ATb
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Least Squares

At=b

@ We want to find the optimal t by

@ We can write

min ||At — bl[3

At —b||3 = t"(ATA)t — 2t"(ATb) + ||b]]3

@ To solve, form the normal equations

@ and compute

(ATA)t=ATb

t=(ATA)"!Ab

Raquel Urtasun (TTI-C)
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Least squares: generalized linear regression

[Source: N. Snavely]
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Linear regression

8 J

residual erfror

&
g 6 *
s

4 i

2 4

*
0 L
0 1 2 3 4 5
Time

[Source: N. Snavely]
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Linear regression

1 1 Y1

Tn 1 Un

[Source: N. Snavely]
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Affine Transformations

When we are dealing with an affine transformation

X a b c| |x
y'|=1d e f| |y
w’ 0 0 1| |w
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Affine Transformations

When we are dealing with an affine transformation

X a b c| |x
y'|=1d e f| |y
w’ 0 0 1| |w

@ How many unknowns?
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Affine Transformations

When we are dealing with an affine transformation

X a b c| |x
y'|=1d e f| |y
w’ 0 0 1| |w

@ How many unknowns?

@ How many equations per match?
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Affine Transformations

When we are dealing with an affine transformation

X a b c| |x
y'|=1d e f| |y
w’ 0 0 1| |w

@ How many unknowns?
@ How many equations per match?

@ How many matches do we need?

[Source: N. Snavely]
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Affine Transformations

When we are dealing with an affine transformation

x' a b c| [x
y'|=1d e f| |y
w’ 0 0 1| |w

@ How many unknowns?
@ How many equations per match?
@ How many matches do we need?

@ Why to use more?

[Source: N. Snavely]
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Affine Transformation Cost Function

@ We can write the residuals as

ri(a, b,c,d, e, f) = (axi+ by, +c)—x
r}’/‘(a7bacadve7f) = (dXi+eyf+f)_yi/

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013



Affine Transformation Cost Function

@ We can write the residuals as
rx;(aa b,c,d,e, f) = (ax,-—|— by,'+C) B
r.(a,b,c,d, e, f) = (dxi+ey,+f)—

@ Cost function

N
C(a,b,c,d, e, f) Z rw(a,b,c.d, e, f)*+r,(a b,c,d ef)?)
i=1

[Source: N. Snavely]
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Affine Transformation Cost Function

@ We can write the residuals as

rxi(a7 b7 c, d7 €, f) - (ax,- + by, + C) -
r}’/‘(a7 b7 c, dv €, f) = (dXi + ey + f) -

@ Cost function

N
C(a,b,c,d, e, f) Z rw(a,b,c.d, e, f)*+r,(a b,c,d ef)?)
i=1

@ And in matrix form ...

[Source: N. Snavely]
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rxy oy 10 0 07 T o) ]
0O 0 0 xy w1 1| _ 4 Y
2 y2 10 0 O b )
0 0 0 x yo 1 c | | w
g | =
e
Tn Yo 1 0 0 O | - U x,
L 0 0 0 =, vy, 1 Ly,

[e)]
x
[y
N
S
x
[y

2nx 6

[Source: N. Snavely]
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Next class ... more sophisticated matching
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