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What did we see in class last week?
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Local features

Detection: Identify the interest points.

Description: Extract vector feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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Detecting features

Harris corner detector: looks at the singular values of the autocorrelation
matrix

Laplacian of Gaussians: Detects blobs

Difference of Gaussians: fast approximation of the LOG
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Properties of the ideal feature

Local: features are local, so robust to occlusion and clutter (no prior
segmentation).

Invariant: to certain transformations, e.g, scale, rotation.

Robust: noise, blur, discretization, compression, etc. do not have a big
impact on the feature.

Distinctive: individual features can be matched to a large database of
objects.

Quantity: many features can be generated for even small objects.

Accurate: precise localization.

Efficient: close to real-time performance.
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Describing features

Normalized gray-scale

SIFT

PCA-SIFT

GLOH
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The ideal feature descriptor

Repeatable (invariant/robust)

Distinctive

Compact

Efficient
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Matching local features

Once we have extracted features and their descriptors, we need to match the
features between these images.

Matching strategy: which correspondences are passed on to the next stage

Devise efficient data structures and algorithms to perform this matching

Figure: Images from K. Grauman
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Matching local features

To generate candidate matches, find patches that have the most similar
appearance (e.g., lowest SSD)

Simplest approach: compare them all, take the closest (or closest k, or
within a thresholded distance)

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 9 / 67



Feature Distance

How to define the difference between two features f1, f2?

Simple approach: L2 distance, ||f1 − f2||2
can give good scores to ambiguous (incorrect) matches

I1 I2 

f1 f2 

[Source: N. Snavely]
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Feature Distance

Better approach: ratio distance ||f1−f2||2||f1−f ′2 ||2

f2 is best SSD match to f1 in I2

f ′2 is 2nd best SSD match to f1 in I2

gives large values for ambiguous matches

f1 f2 f2' 

I1 I2 

[Source: N. Snavely]
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Matching Example

!"#$%&'()*#

[Source: N. Snavely]
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Matching Example

!"#$%&'()*#

[Source: N. Snavely]
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How to measure performance

How can we measure the performance of a feature matcher?

50 
75 

200 false match 

true match 

!"#$%&"'()*$#+,"'

[Source: N. Snavely]
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Measuring performance

Area under the curve (AUC) is a way to summarize ROC with 1 number.

Mean average precision, which is the average precision (PPV) as you vary
the threshold, i.e., area under the curve in the precision-recall curve.

The equal error rate is sometimes used as well.

Figure: Images from R. Szeliski
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Let’s look at image alignment
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Readings

Chapter 3.6, 4.3 and 6.1 of Szeliski’s book
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Image Alignment

Why don’t this images line up exactly?

[Source: N. Snavely]
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What is the geometric relationship between these images?

Answer: Similarity transformation (translation, rotation, uniform scale)

!"

[Source: N. Snavely]
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What is the geometric relationship between these images?

!"

[Source: N. Snavely]
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What is the geometric relationship between these images?

Very important for creating mosaics!

[Source: N. Snavely]
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Image Warping

Image filtering: change range of image

g(x) = h(f (x))

!"

#"

$"
%"

#"

[Source: R. Szeliski]
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Parametric (global) warping

Examples of parametric warps:

!"#$%&#'($) "(!#'($) #%*+,!)

Why is it call parametric?
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Parametric (global) warping

!"

!!"!#$%&'! !"!"!#$(%&('!

Transformation T is a coordinate-changing machine:

p′ = T (p)

What does it mean that T is global?

Is the same for any point p
Can be described by just a few numbers (parameters)

[Source: N. Snavely]
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Image Warping

Given a transformation specified by x ′ = h(x) and a source image f (x), how
do we compute the values of the pixels in the new image

g(x) = f (h(x))

!!"#$"# %!"&#$&"#
"# "&#

'!"#$"#$# $&#
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Forward Warping

Send each pixel f (x) to its corresponding location (x ′, y ′) = T (x , y) in
g(x ′, y ′)

What are the problems with this?
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Problems of Forward-Warp

1 What it the value of h(x) is non-integer? What do we do?

Round the value of x ′ to the nearest integer coordinate and copy the
pixel there, but severe aliasing and pixels that jump around

Distribute the value among its nearest neighbors in a weighted
(bilinear) fashion, keeping track of the per-pixel weights and
normalizing at the end.
This is call splatting, it suffers from both moderate amounts of
aliasing and a fair amount of blur

2 Appearance of cracks and holes, especially when magnifying an image

Filling such holes with their nearby neighbors can lead to further
aliasing and blurring

!!"#$"# %!"&#$&"#
"# "&#

'!"#$"#$# $&#

What should we do?
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Inverse-Warping

Each pixel at the destination is sampled from the original image

How does this differ from forward mapping?

Since ĥ(x ′) is defined for all pixels in g(x ′), we no longer have holes

What if pixel comes from between two pixels?

!!"#$"# %!"&#$&"#
"# "&#

'$%!"#$"#$# $&#
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Inverse-Warping

What if pixel comes from between two pixels?

Resampling an image at non-integer locations is a well-studied problem (i.e.,
image interpolation) high-quality filters that control aliasing can be used

!!"#$"# %!"&#$&"#
"# "&#

$# $&#
'$%!"#$"#
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How to computer the inverse-warping?

Often ĥ(x ′) can simply be computed as the inverse of h(x).

In other cases, it is preferable to formulate as resampling a source image
f (x) given a mapping x = ĥ(x ′) from destination pixels x ′ to source pixels x .

Let’s see some examples of the former

Lets consider linear transformations (can be represented by a 2D matrix):

p′ = Tp

[
x ′

y ′

]
= T

[
x
y

]
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Common linear transformations

Uniform scaling by s

S =

[
s 0
0 s

]

!"#"$% !"#"$%

What’s the inverse?

[Source: N. Snavely]
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Common linear transformations

Rotation by an angle θ (about the origin)

R =

[
cos θ − sin θ
sin θ cos θ

]

!"#"$% !"#"$%
!%

What’s the inverse?
R−1 = RT

[Source: N. Snavely]
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2× 2 Matrices

What types of transformations can be represented with a 2× 2 matrix?

2D mirror about Y axis?

x ′ = −x
y ′ = y

T =

[
−1 0
0 1

]

2D mirror across line y = x?

x ′ = y
y ′ = x

T =

[
0 1
1 0

]
[Source: N. Snavely]
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2× 2 Matrices

What types of transformations can be represented with a 2× 2 matrix?

2D Translation?
x ′ = x + tx
y ′ = y + ty

Translation is NOT a linear operation on 2D coordinates

What can we do?

[Source: N. Snavely]
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All 2D Linear Transformations

Linear transformations are combinations of

Scale,

Rotation

Shear

Mirror [
x ′

y ′

]
=

[
a b
c d

] [
x
y

]
[Source: N. Snavely]
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All 2D Linear Transformations

Properties of linear transformations:

Origin maps to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition[
x ′

y ′

]
=

[
a b
c d

] [
e f
g h

] [
i j
k l

] [
x
y

]
What about the translation?

[Source: N. Snavely]
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Homogeneous coordinates

!"#$%&''())'*+,'-*",'$**")#+(.,&'

/*-*0,+,*12'#-(0,''
$**")#+(.,2'

3*+4,"5+0'!"#$'/*-*0,+,*12'$**")#+(.,2'

6'

7'

8'

%'9':' ;&<%=''<%='(>'

/*-*0,+,*12'?@(+,'

[Source: N. Snavely]
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Translation

Solution: homogeneous coordinates to the rescue

T =

1 0 tx
0 1 ty
0 0 1


Thus we can write 1 0 tx

0 1 ty
0 0 1

xy
1

 =

x + tx
y + ty

1


[Source: N. Snavely]
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Affine Transformations

!"#$%&!"'()&*!+)"$,-%.$$
/!'%$&),$0$1$1$2$3$,4$5!//$!"$$
!"#$$%&!"'()&*!+)"%

[Source: N. Snavely]
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Basic Affine Transformations

x ′y ′
1

 =

1 0 tx
0 1 ty
0 0 1

xy
1


Translationx ′y ′

1

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

xy
1


2D in-plane rotation

x ′y ′
1

 =

sx 0 0
0 sy 0
0 0 1

xy
1


Scalex ′y ′

1

 =

 1 shx 0
shy 1 0
0 0 1

xy
1


Shear

[Source: N. Snavely]
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Affine Transformations

Affine transformations are combinations of

Linear transformations, and

Translations x ′y ′
w

 =

a b c
d e f
0 0 1

xy
w


Properties of affine transformations:

Origin does not necessarily map to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition

[Source: N. Snavely]
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Is this an affine Tranformation?

[Source: N. Snavely]
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What’s next?
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[Source: N. Snavely]
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Homography

Also called Projective Transformation or Planar Perspective Map
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[Source: N. Snavely]
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Image warping with homographies

image plane in front image plane below 
black area 
where no pixel 
maps to 

[Source: N. Snavely]
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Homographies

[Source: N. Snavely]
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Projective Transformations

Affine transformations and Projective warpsx ′y ′
w ′

 =

a b c
d e f
g h i

xy
w


Properties of affine transformations:

Origin does not necessarily map to origin

Lines map to lines

Parallel lines do not necessarily remain parallel

Ratios are not preserved

Closed under composition

[Source: N. Snavely]
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2D Image Tranformations

These transformations are a nested set of groups

Closed under composition and inverse is a member
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Homographies
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Points at infinity

Points at infinity become finite i.e., vanishing points

[Source: N. Snavely]
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Image warping with homographies

image plane in front image plane below 
black area 
where no pixel 
maps to 
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Computing transformations

Given a set of matches between images A and B

How can we compute the transform T from A to B?

Find transform T that best agrees with the matches

[Source: N. Snavely]
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Computing Transformations

!"

[Source: N. Snavely]
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Computing Transformations

Can also think of as fitting a ”model” to our data

The model is the transformation of a given type, e.g. a translation, affine
xform, homography etc

Fitting the model means solving for the parameters that best explain the
observed data

Usually involves minimizing some objective / cost function

[Source: N. Snavely]
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Simple Case: Translations

!"#$%"$#&$'"()&$*"+$
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[Source: N. Snavely]
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Simple Case: Translations

The displacement of match i is (x ′i − xi , y
′
i − yi ). We can thus solve for

(xt , yt) = (
1

n

n∑
i=1

x ′i − xi ,
1

n

n∑
i=1

y ′i − yi )

[Source: N. Snavely]
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Another View

xi + xt = x ′i
yi + yt = y ′i

System of linear equations

What are the knowns?

How many unknowns?

How many equations (per match)?

[Source: N. Snavely]
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Another View

xi + xt = x ′i
yi + yt = y ′i

Problem: more equations than unknowns

Overdetermined system of equations

We will find the least squares solution

[Source: N. Snavely]
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Least squares formulation

For each point (xi , yi ) we have

xi + xt = x ′i
yi + yt = y ′i

We define the residuals as

rxi (xt) = xi + xt − x ′i
ryi (yt) = yi + yt − y ′i

Goal: minimize sum of squared residuals

C (xt , yt) =
n∑

i=1

(rxi (xt)
2 + ryi (yt)

2)

The solution is called the least squares solution

For translations, is equal to mean displacement

What do we do?

[Source: N. Snavely]
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Matrix Formulation

We can also write as a matrix equation

!!""#!# !""#$# !!""#$#
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Least Squares

At = b

We want to find the optimal t by

min
t
||At− b||22

We can write

||At− b||22 = tT (ATA)t− 2tT (ATb) + ||b||22

To solve, form the normal equations

(ATA)t = ATb

and compute
t = (ATA)−1Ab
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Least squares: generalized linear regression

!"#"$%"&"'"
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[Source: N. Snavely]
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Linear regression

!"#$%&'()"!!*!)

Cost(m, b) =
n∑

i=1

|yi − (mxi + b)|2

[Source: N. Snavely]
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Linear regression

[Source: N. Snavely]
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Affine Transformations

When we are dealing with an affine transformationx ′y ′
w ′

 =

a b c
d e f
0 0 1

xy
w


How many unknowns?

How many equations per match?

How many matches do we need?

Why to use more?

[Source: N. Snavely]
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Affine Transformation Cost Function

We can write the residuals as

rxi (a, b, c , d , e, f ) = (axi + byi + c)− x ′i
ryi (a, b, c , d , e, f ) = (dxi + eyi + f )− y ′i

Cost function

C (a, b, c , d , e, f ) =
N∑
i=1

(
rxi (a, b, c , d , e, f )2 + ryi (a, b, c , d , e, f )2

)

And in matrix form ...

[Source: N. Snavely]
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Matrix form

!!""#$# $""#%# !!""#%#

[Source: N. Snavely]
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Next class ... more sophisticated matching
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