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Readings

Chapter 2.1, 3.6, 4.3 and 6.1 of Szeliski’s book

Chapter 1 of Forsyth & Ponce
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What did we see in class last week?
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What is the geometric relationship between these images?

!"

[Source: N. Snavely]
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What is the geometric relationship between these images?

Very important for creating mosaics!

[Source: N. Snavely]
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Image Warping

Image filtering: change range of image

g(x) = h(f (x))

!"

#"

$"
%"

#"

Image warping: change domain of image

g(x) = f (h(x))

!"

#"

$"
%"

#"

[Source: R. Szeliski]
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Parametric (global) warping

!"

!!"!#$%&'! !"!"!#$(%&('!

Transformation T is a coordinate-changing machine:

p′ = T (p)

What does it mean that T is global?

Is the same for any point p
Can be described by just a few numbers (parameters)

[Source: N. Snavely]
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Forward and Inverse Warping

Forward Warping: Send each pixel f (x) to its corresponding location
(x ′, y ′) = T (x , y) in g(x ′, y ′)

Inverse Warping: Each pixel at the destination is sampled from the original
image
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All 2D Linear Transformations

Linear transformations are combinations of

Scale,

Rotation

Shear

Mirror [
x ′

y ′

]
=

[
a b
c d

] [
x
y

]
[Source: N. Snavely]
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All 2D Linear Transformations

Properties of linear transformations:

Origin maps to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition[
x ′

y ′

]
=

[
a b
c d

] [
e f
g h

] [
i j
k l

] [
x
y

]
What about the translation?

[Source: N. Snavely]
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Affine Transformations

Affine transformations are combinations of

Linear transformations, and

Translations x ′y ′
w

 =

a b c
d e f
0 0 1

xy
w


Properties of affine transformations:

Origin does not necessarily map to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition

[Source: N. Snavely]
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Projective Transformations

Affine transformations and Projective warpsx ′y ′
w ′

 =

a b c
d e f
g h i

xy
w


Properties of affine transformations:

Origin does not necessarily map to origin

Lines map to lines

Parallel lines do not necessarily remain parallel

Ratios are not preserved

Closed under composition

[Source: N. Snavely]
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2D Image Tranformations

These transformations are a nested set of groups

Closed under composition and inverse is a member
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Computing transformations

Given a set of matches between images A and B

How can we compute the transform T from A to B?

Find transform T that best agrees with the matches

[Source: N. Snavely]
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Least squares formulation

For each point (xi , yi ) we have

xi + xt = x ′i
yi + yt = y ′i

We define the residuals as

rxi (xt) = xi + xt − x ′i
ryi (yt) = yi + yt − y ′i

Goal: minimize sum of squared residuals

C (xt , yt) =
n∑

i=1

(rxi (xt)
2 + ryi (yt)

2)

The solution is called the least squares solution

For translations, is equal to mean displacement

[Source: N. Snavely]
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Matrix Formulation

We can also write as a matrix equation

!!""#!# !""#$# !!""#$#

Solve for t by looking at the fixed-point equation
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Affine Transformations

When we are dealing with an affine transformationx ′y ′
w ′

 =

a b c
d e f
0 0 1

xy
w


How many unknowns?

How many equations per match?

How many matches do we need?

Why to use more?

[Source: N. Snavely]
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Affine Transformation Cost Function

We can write the residuals as

rxi (a, b, c , d , e, f ) = (axi + byi + c)− x ′i
ryi (a, b, c , d , e, f ) = (dxi + eyi + f )− y ′i

Cost function

C (a, b, c , d , e, f ) =
N∑
i=1

(
rxi (a, b, c , d , e, f )2 + ryi (a, b, c , d , e, f )2

)

And in matrix form ...

[Source: N. Snavely]
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Matrix form

!!""#$# $""#%# !!""#%#

[Source: N. Snavely]
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General Formulation

Let x ′ = f (x ; p) be a parametric transformation

In the case of translation, similarity and affine, there is a linear relationship
between the amount of motion ∆x = x ′ − x and the unknown parameters

∆x = x ′ − x = J(x)p

with J = ∂f
∂p is the Jacobian of the transformation f with respect to the

motion parameters p
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General Formulation

Let’s do a couple on the board!

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 20 / 44



General Formulation

The sum of square residuals is then

ELLS =
∑
i

||J(xi )p−∆xi ||22

= pT [
∑
i

JT (xi )J(xi )]p− 2pT [
∑
i

JT (xi )∆xi )] +
∑
i

||∆xi ||2

= pTAp− 2pTb + c

We can compute the solution by looking for a fixed point, yielding

Ap = b

with A =
∑

i JT (xi )J(xi ) the Hessian and b =
∑

i JT (xi )∆xi
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Uncertainty Weighting

The above solution assumes that all feature points are matched with same
accuracy.

If we associate a scalar variance σ2
i with each correspondence, we can

minimize the weighted least squares problem

EWLS =
∑
i

σ−2i ||ri ||
2
2

If the σ2
i are fixed, then the solution is simply

p = (ΣTATAΣ)−1ΣTAb

with Σ, the matrix containing for each observation the noise level

What if we don’t know Σ?

Solve using iteratively reweighted least squares (IRLS)
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Homographies

!"
!#"

To unwarp (rectify) and image

solve for homography H given p and p′

solve equations of the form: wp′ = Hp

linear in unknowns: w and coefficients of H
H is defined up to an arbitrary scale factor
how many points are necessary to solve for H?

[Source: N. Snavely]
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Solving for Homographies

ax ′iay ′i
a

 =

h00 h01 h02
h10 h11 h12
h20 h21 h22

xiyi
1


To get to non-homogenous coordinates

x ′i =
h00xi + h01yi + h02
h20xi + h21yi + h22

y ′i =
h10xi + h11yi + h12
h20xi + h21yi + h22

Warning: This is non-linear!!!

But wait a minute!

x ′i (h20xi + h21yi + h22) = h00xi + h01yi + h02

y ′i (h20xi + h21yi + h22) = h10xi + h11yi + h12
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x ′i (h20xi + h21yi + h22) = h00xi + h01yi + h02

y ′i (h20xi + h21yi + h22) = h10xi + h11yi + h12
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Solving for homographies

x ′i (h20xi + h21yi + h22) = h00xi + h01yi + h02

y ′i (h20xi + h21yi + h22) = h10xi + h11yi + h12

This is still linear in the unknowns
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Solving for homographies

Taking all the observations into account

!"#$#%# %# !"#

Defines a least squares problem:

min
h
||Ah||22

Since h is only defined up to scale, solve for unit vector

Solution: ĥ = eigenvector of ATA with smallest eigenvalue

Works with 4 or more points
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Image Alignment Algorithm

Given images A and B

1 Compute image features for A and B

2 Match features between A and B

3 Compute homography between A and B using least squares on set of
matches

Is there a problem with this?

[Source: N. Snavely]
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Robustness

!"#$%&'()

%*$%&'()

[Source: N. Snavely]
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Simple case

Lets consider a simpler example ... linear regression

!"#$%&'()*+,)-)%+.&),#),/&0&)1-,-2#+.,0) 3&-0,)045-"&0)6,)

How can we fix this?

We need a better cost function

[Source: N. Snavely]
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More Robust Least-squares

Least-squares assumes that the noise follows a Gaussian distribution

M-estimators are use to make least-squares more robust

They involve applying a robust penalty function ρ(r) to the residuals

ERLS(∆p) =
∑
i

ρ(||ri ||)

instead of taking the square of the residual

We can take the derivative with respect to p and set it to 0∑
i

ψ(||ri ||)
∂||ri ||
∂p

=
∑
i

ψ(||ri ||)
||ri ||

rTi
∂ri
∂p

= 0

where ψ(r) = ρ′(r) is the derivative, called influence function

If we introduce a weight w(r) = ψ(r)/r , we observe that finding the
stationary point is equivalent to minimizing the iteratively reweighted
least squares (IRLS)

EIRLS =
∑
i

w(||ri ||)||ri ||2

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 30 / 44



More Robust Least-squares

Least-squares assumes that the noise follows a Gaussian distribution

M-estimators are use to make least-squares more robust

They involve applying a robust penalty function ρ(r) to the residuals

ERLS(∆p) =
∑
i

ρ(||ri ||)

instead of taking the square of the residual

We can take the derivative with respect to p and set it to 0∑
i

ψ(||ri ||)
∂||ri ||
∂p

=
∑
i

ψ(||ri ||)
||ri ||

rTi
∂ri
∂p

= 0

where ψ(r) = ρ′(r) is the derivative, called influence function

If we introduce a weight w(r) = ψ(r)/r , we observe that finding the
stationary point is equivalent to minimizing the iteratively reweighted
least squares (IRLS)

EIRLS =
∑
i

w(||ri ||)||ri ||2

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 30 / 44



More Robust Least-squares

Least-squares assumes that the noise follows a Gaussian distribution

M-estimators are use to make least-squares more robust

They involve applying a robust penalty function ρ(r) to the residuals

ERLS(∆p) =
∑
i

ρ(||ri ||)

instead of taking the square of the residual

We can take the derivative with respect to p and set it to 0∑
i

ψ(||ri ||)
∂||ri ||
∂p

=
∑
i

ψ(||ri ||)
||ri ||

rTi
∂ri
∂p

= 0

where ψ(r) = ρ′(r) is the derivative, called influence function

If we introduce a weight w(r) = ψ(r)/r , we observe that finding the
stationary point is equivalent to minimizing the iteratively reweighted
least squares (IRLS)

EIRLS =
∑
i

w(||ri ||)||ri ||2

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 30 / 44



More Robust Least-squares

Least-squares assumes that the noise follows a Gaussian distribution

M-estimators are use to make least-squares more robust

They involve applying a robust penalty function ρ(r) to the residuals

ERLS(∆p) =
∑
i

ρ(||ri ||)

instead of taking the square of the residual

We can take the derivative with respect to p and set it to 0∑
i

ψ(||ri ||)
∂||ri ||
∂p

=
∑
i

ψ(||ri ||)
||ri ||

rTi
∂ri
∂p

= 0

where ψ(r) = ρ′(r) is the derivative, called influence function

If we introduce a weight w(r) = ψ(r)/r , we observe that finding the
stationary point is equivalent to minimizing the iteratively reweighted
least squares (IRLS)

EIRLS =
∑
i

w(||ri ||)||ri ||2

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 30 / 44



More Robust Least-squares

Least-squares assumes that the noise follows a Gaussian distribution

M-estimators are use to make least-squares more robust

They involve applying a robust penalty function ρ(r) to the residuals

ERLS(∆p) =
∑
i

ρ(||ri ||)

instead of taking the square of the residual

We can take the derivative with respect to p and set it to 0∑
i

ψ(||ri ||)
∂||ri ||
∂p

=
∑
i

ψ(||ri ||)
||ri ||

rTi
∂ri
∂p

= 0

where ψ(r) = ρ′(r) is the derivative, called influence function

If we introduce a weight w(r) = ψ(r)/r , we observe that finding the
stationary point is equivalent to minimizing the iteratively reweighted
least squares (IRLS)

EIRLS =
∑
i

w(||ri ||)||ri ||2

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 30 / 44



Iterative reweighted least-squares

We want to minimize

EIRLS =
∑
i

w(||ri ||)||ri ||2

A simple algorithm works by iterating between

1 Solving for the parameters p
2 Solving for the weights w

When the number of outliers is very high, IRLS does not work well (will not
converge to the global optima)
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Simple Idea

Given a hypothesized line, count the number of points that agree with the
line

Agree = within a small distance of the line i.e., the inliers to that line

For all possible lines, select the one with the largest number of inliers

[Source: N. Snavely]
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Counting Inliers

!"#$%&'()*)

[Source: N. Snavely]
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!"#$%&'()*+)

[Source: N. Snavely]
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Counting Inliers

!"#$%&'()*+)

What’s the problem with this approach?
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How do we find the best line?

Unlike least-squares, no simple closed-form solution

Hypothesize-and-test

Try out many lines, keep the best one

Which lines?
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Translations

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 35 / 44



RAndom SAmple Consensus

!"#"$%&!"#&'(%$)&(%&*(+,-'.&$-/+%&$"%$#&'&

[Source: N. Snavely]
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!"#"$%&'()%*"+&,'%$*&'%&+'(-),.&$)/(%&!"#!$%&&

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 36 / 44



RAndom SAmple Consensus

!"#$"#%#&'%#()*+,)-.*%/0#&%#&'%&01&'+#%*"23'(%.4%0*,0'(+%

[Source: N. Snavely]
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RANSAC

All the inliers will agree with each other on the translation vector; the
(hopefully small) number of outliers will (hopefully) disagree with each other

RANSAC only has guarantees if there are < 50% outliers

”All good matches are alike; every bad match is bad in its own way.” –
[Tolstoy via Alyosha Efros]

[Source: N. Snavely]
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RANSAC for line fitting example

1 Randomly select minimal
subset of points

2 Hypothesize a model

3 Compute error function

4 Select points consistent
with model

5 Repeat hypothesize and
verify loop

6 Choose model with
largest set of inliers

[Source: R. Raguram]
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RANSAC

Inlier threshold related to the amount of noise we expect in inliers

Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

Number of rounds related to the percentage of outliers we expect, and the
probability of success we’d like to guarantee

Suppose there are 20% outliers, and we want to find the correct answer with
99% probability

How many rounds do we need?

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 39 / 44



RANSAC

Inlier threshold related to the amount of noise we expect in inliers

Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

Number of rounds related to the percentage of outliers we expect, and the
probability of success we’d like to guarantee

Suppose there are 20% outliers, and we want to find the correct answer with
99% probability

How many rounds do we need?

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 39 / 44



RANSAC

Inlier threshold related to the amount of noise we expect in inliers

Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

Number of rounds related to the percentage of outliers we expect, and the
probability of success we’d like to guarantee

Suppose there are 20% outliers, and we want to find the correct answer with
99% probability

How many rounds do we need?

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 39 / 44



RANSAC

Inlier threshold related to the amount of noise we expect in inliers

Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

Number of rounds related to the percentage of outliers we expect, and the
probability of success we’d like to guarantee

Suppose there are 20% outliers, and we want to find the correct answer with
99% probability

How many rounds do we need?

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 39 / 44



RANSAC

Inlier threshold related to the amount of noise we expect in inliers

Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

Number of rounds related to the percentage of outliers we expect, and the
probability of success we’d like to guarantee

Suppose there are 20% outliers, and we want to find the correct answer with
99% probability

How many rounds do we need?

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 39 / 44



How many rounds?

Sufficient number of trials S must be tried.

Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.

The likelihood in one trial that all k random samples are inliers is pk

The likelihood that S such trials will all fail is

1− P = (1− pk)S

The required minimum number of trials is

S =
log(1− P)

log(1− pk)

The number of trials grows quickly with the number of sample points used.

Use the minimum number of sample points k possible for any given trial
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How big is the number of samples?

For alignment, depends on the motion model

Each sample is a correspondence (pair of matching points)
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RANSAC pros and cons

Pros

Simple and general

Applicable to many different problems

Often works well in practice

Cons

Parameters to tune

Sometimes too many iterations are required

Can fail for extremely low inlier ratios

We can often do better than brute-force sampling

[Source: N. Snavely]
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RANSAC as Voting

An example of a ”voting”-based fitting scheme

Each hypothesis gets voted on by each data point, best hypothesis wins

There are many other types of voting schemes, e.g., Hough transforms

[Source: N. Snavely]
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Next class ... more on cameras and projection
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