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@ Chapter 2.1, 3.6, 4.3 and 6.1 of Szeliski's book
@ Chapter 1 of Forsyth & Ponce
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What did we see in class last week?
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What is the geometric relationship between these images?

[Source: N. Snavely]
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What is the geometric relationship between these images?

Very important for creating mosaics!

[Source: N. Snavely]
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Image Warping

@ Image filtering: change range of image

g(x) = h(f(x))

(N

X X

@ Image warping: change domain of image
g(x) = f(h(x))

X X

[Source: R. Szeliski]
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Parametric (global) warping

@ What does it mean that T is global?

@ Is the same for any point p
o Can be described by just a few numbers (parameters)

[Source: N. Snavely]
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Forward and Inverse Warping

@ Forward Warping: Send each pixel f(x) to its corresponding location
(X', y') = T(x,y) ing(x',y")

procedure forwardWarp( f, h,out g):
For every pixel = in f(x)

1. Compute the destination location ' = h(z).

2. Copy the pixel f(z) to g(z’).

@ Inverse Warping: Each pixel at the destination is sampled from the original
image

procedure imverseWarp( f, h,out g):
For every pixel @’ in g(x’)

1. Compute the source location = = h(x')

2. Resample f(x) at location  and copy to g(x")
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All 2D Linear Transformations

Linear transformations are combinations of
@ Scale,
@ Rotation
@ Shear

@ Mirror

[Source: N. Snavely]
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All 2D Linear Transformations

Properties of linear transformations:

@ Origin maps to origin
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All 2D Linear Transformations

Properties of linear transformations:
@ Origin maps to origin

@ Lines map to lines
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All 2D Linear Transformations

Properties of linear transformations:
@ Origin maps to origin
@ Lines map to lines

@ Parallel lines remain parallel
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All 2D Linear Transformations

Properties of linear transformations:
@ Origin maps to origin
@ Lines map to lines
@ Parallel lines remain parallel

@ Ratios are preserved
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All 2D Linear Transformations

Properties of linear transformations:
@ Origin maps to origin
@ Lines map to lines
@ Parallel lines remain parallel
@ Ratios are preserved

@ Closed under composition
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All 2D Linear Transformations

Properties of linear transformations:

@ Origin maps to origin

@ Lines map to lines

@ Parallel lines remain parallel

@ Ratios are preserved

@ Closed under composition
b= Al
y'| |lc d|l|lg h||k ||y

What about the translation?

[Source: N. Snavely]
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Affine Transformations

Affine transformations are combinations of
@ Linear transformations, and

@ Translations

X a b c| |x
yi=1|d e f| |y
w 0 0 1| (w

Properties of affine transformations:
@ Origin does not necessarily map to origin
@ Lines map to lines
@ Parallel lines remain parallel
@ Ratios are preserved

@ Closed under composition

[Source: N. Snavely]
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Projective Transformations

@ Affine transformations and Projective warps

X a b c| |x
y|=1|d e f| |y
w’ g h i||w

Properties of affine transformations:
@ Origin does not necessarily map to origin
@ Lines map to lines
@ Parallel lines do not necessarily remain parallel
@ Ratios are not preserved
@ Closed under composition

[Source: N. Snavely]
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2D Image Tranformations

st O projective
translation
o
_
Euclidean Ae

Transformation Matrix #DoF Preserves Icon
translation [ I ‘ t ]2 N 2 orientation D
x
rigid (Euclidean) [ R [ # ] 3 lengths O
2x3
similarity [ sR ‘ t ] 4 angles O
2x3
affine [ A ]2 A 6 parallelism D
X
projective [ H ] 8 straight lines Q
3x3

@ These transformations are a nested set of groups

@ Closed under composition and inverse is a member
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Computing transformations

Given a set of matches between images A and B
@ How can we compute the transform T from A to B?

@ Find transform T that best agrees with the matches

[Source: N. Snavely]
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L east squares formulation

@ For each point (x;, y;) we have

Xi+Xt = X
Yitye =y
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L east squares formulation

@ For each point (x;, y;) we have

Xi+Xe = X
Yitye = i
@ We define the residuals as
re(Xe) = Xi+x—x!
r(ye) = yvitye—y
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L east squares formulation

@ For each point (x;, y;) we have

Xi+Xe = X
Yitye = i
@ We define the residuals as
re(Xe) = Xi+x—x!
r(ye) = yvitye—y

@ Goal: minimize sum of squared residuals

n

Cxe, ye) = Z(rx,-(xt)2 + 1, (7))

i=1
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L east squares formulation

@ For each point (x;, y;) we have

Xi+Xe = X
Yitye = i
@ We define the residuals as
re(Xe) = Xi+x—x!
r(ye) = yvitye—y

@ Goal: minimize sum of squared residuals
n
Cxe, ye) = Z(rx,-(xt)2 + 1, (7))

i=1

@ The solution is called the least squares solution
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L east squares formulation

@ For each point (x;, y;) we have

Xi+Xe = X
Yitye = i
@ We define the residuals as
re(Xe) = Xi+x—x!
r(ye) = yvitye—y

@ Goal: minimize sum of squared residuals

n

Cxe, ye) = Z(rx,-(xt)2 + 1, (7))

i=1
@ The solution is called the least squares solution
@ For translations, is equal to mean displacement

[Source: N. Snavely]
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L east squares formulation

@ For each point (x;, y;) we have

Xi+Xe = X
Yitye = i
@ We define the residuals as
re(Xe) = Xi+x—x!
r(ye) = yvitye—y

@ Goal: minimize sum of squared residuals

n

Cxe, ye) = Z(rx,-(xt)2 + 1, (7))

i=1
@ The solution is called the least squares solution
@ For translations, is equal to mean displacement

[Source: N. Snavely]
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Matrix Formulation

@ We can also write as a matrix equation

1 0 T] — 1
01 YL — Y
1 0 xh — o
0 1 Lol | va—y2
Yt .
1 0 T, — Ty,
L 01 i L y;z_yn i

2nx2 2x1 2nx1

@ Solve for t by looking at the fixed-point equation
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Affine Transformations

When we are dealing with an affine transformation

X a b c| |x
y'|=1d e f| |y
w’ 0 0 1| |w
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Affine Transformations

When we are dealing with an affine transformation

X a b c| |x
y'|=1d e f| |y
w’ 0 0 1| |w

@ How many unknowns?

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 16 / 44



Affine Transformations

When we are dealing with an affine transformation

X a b c| |x
y'|=1d e f| |y
w’ 0 0 1| |w

@ How many unknowns?

@ How many equations per match?
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Affine Transformations

When we are dealing with an affine transformation

X a b c| |x
y'|=1d e f| |y
w’ 0 0 1| |w

@ How many unknowns?
@ How many equations per match?

@ How many matches do we need?

[Source: N. Snavely]
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Affine Transformations

When we are dealing with an affine transformation

x' a b c| [x
y'|=1d e f| |y
w’ 0 0 1| |w

@ How many unknowns?
@ How many equations per match?
@ How many matches do we need?

@ Why to use more?

[Source: N. Snavely]
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Affine Transformation Cost Function

@ We can write the residuals as

ri(a, b,c,d, e, f) = (axi+ by, +c)—x
r}’/‘(a7bacadve7f) = (dXi+eyf+f)_yi/
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Affine Transformation Cost Function

@ We can write the residuals as
rx;(aa b,c,d,e, f) = (ax,-—|— by,'+C) B
r.(a,b,c,d, e, f) = (dxi+ey,+f)—

@ Cost function

N
C(a,b,c,d, e, f) Z rw(a,b,c.d, e, f)*+r,(a b,c,d ef)?)
i=1

[Source: N. Snavely]
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Affine Transformation Cost Function

@ We can write the residuals as

rxi(a7 b7 c, d7 €, f) - (ax,- + by, + C) -
r}’/‘(a7 b7 c, dv €, f) = (dXi + ey + f) -

@ Cost function

N
C(a,b,c,d, e, f) Z rw(a,b,c.d, e, f)*+r,(a b,c,d ef)?)
i=1

@ And in matrix form ...

[Source: N. Snavely]
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rxy oy 10 0 07 T o) ]
0O 0 0 xy w1 1| _ . Y
2 y2 10 0 O b )
0O 0 0 a9 9y 1 c | yh
g =
e
Tn Yo 1 0 0 O L x,
L 0 0 0 =, vy, 1 Ly,

[e)]
x
[y
N
S
x
[y

2nx 6

[Source: N. Snavely]
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General Formulation

@ Let x’ = f(x; p) be a parametric transformation
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General Formulation

@ Let x’ = f(x; p) be a parametric transformation

@ In the case of translation, similarity and affine, there is a linear relationship
between the amount of motion Ax = x’ — x and the unknown parameters

Ax =x"—x=J(x)p

with J = g—; is the Jacobian of the transformation f with respect to the
motion parameters p
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General Formulation

Transform Matrix Parameters p Jacobian J
10 t, [1 0
translation 0 1 t (tz.ty) 1
cg —sg g [ 1 0 —spz—cpy
Euclidean 30 cp by (testy,0) 1 cqr — gy
I+a —b t (1 0 = —y
similarity b 1+a ty (te,ty,a,b) 01y =z
14 ago an ty 10 2z y 00
affine ain 1+an iy (tx:ty:ﬂﬂﬂaaﬂlsﬂ'lﬂvﬂllj 1 00 z y

@ Let's do a couple on the board!
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General Formulation

@ The sum of square residuals is then
Eus = Z [H(xi)p — Axil[3

- T[ZJT x:)]p — 2pT[ZJT x,)AX]JrZHAX:lIz
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General Formulation

@ The sum of square residuals is then
Eus = Z [H(xi)p — Axil[3
= p' D_IT(x)Ix)p —2p"[D_IT(x)Ax)] + Y || Axill2

= p’Ap-2p'b+c
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General Formulation

@ The sum of square residuals is then
Eus = Z [H(xi)p — Axil[3
= p' D_IT(x)Ix)p —2p"[D_IT(x)Ax)] + Y || Axill2

= p'Ap—2p'b+c

@ We can compute the solution by looking for a fixed point, yielding
Ap=b

with A =3".37(x;)J(x;) the Hessian and b =", J7(x;)Ax;
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Uncertainty Weighting

@ The above solution assumes that all feature points are matched with same
accuracy.
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Uncertainty Weighting

@ The above solution assumes that all feature points are matched with same
accuracy.

@ If we associate a scalar variance 0,-2 with each correspondence, we can
minimize the weighted least squares problem

Ewis = ZU;_QH":'H%
i
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Uncertainty Weighting

@ The above solution assumes that all feature points are matched with same
accuracy.

@ If we associate a scalar variance 0,-2 with each correspondence, we can
minimize the weighted least squares problem

Ewis = ZU;_QH":'H%
i

@ If the o2 are fixed, then the solution is simply
p=(X"ATAY) " Ab

with X, the matrix containing for each observation the noise level
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Uncertainty Weighting

@ The above solution assumes that all feature points are matched with same
accuracy.

@ If we associate a scalar variance 0,-2 with each correspondence, we can
minimize the weighted least squares problem

Ewis = ZU;_QH":'H%
i

@ If the o2 are fixed, then the solution is simply
p=(X"ATAY) " Ab
with X, the matrix containing for each observation the noise level

@ What if we don't know 27
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Uncertainty Weighting

@ The above solution assumes that all feature points are matched with same
accuracy.

@ If we associate a scalar variance 0,-2 with each correspondence, we can
minimize the weighted least squares problem

Ewis = ZU;_QH":'H%
i

@ If the o2 are fixed, then the solution is simply
p=(X"ATAY) " Ab
with X, the matrix containing for each observation the noise level

@ What if we don't know 27

@ Solve using iteratively reweighted least squares (IRLS)
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Homographies

To unwarp (rectify) and image
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Homographies

To unwarp (rectify) and image

@ solve for homography H given p and p’
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Homographies

To unwarp (rectify) and image
@ solve for homography H given p and p’

@ solve equations of the form: wp’ = Hp
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Homographies

To unwarp (rectify) and image
@ solve for homography H given p and p’
@ solve equations of the form: wp’ = Hp

o linear in unknowns: w and coefficients of H
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Homographies

To unwarp (rectify) and image
@ solve for homography H given p and p’
@ solve equations of the form: wp’ = Hp

o linear in unknowns: w and coefficients of H
o H is defined up to an arbitrary scale factor

[Source: N. Snavely]
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Homographies

To unwarp (rectify) and image
@ solve for homography H given p and p’
@ solve equations of the form: wp’ = Hp

@ linear in unknowns: w and coefficients of H
o H is defined up to an arbitrary scale factor
e how many points are necessary to solve for H?

[Source: N. Snavely]
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Solving for Homographies

ax| hoo hor hoo| X
ay/| = |ho hu ho| |yi
a ho ha ho| |1
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Solving for Homographies

ax! hoo ho1  ho2| |xi
ayl| = |ho hii hi2| |yi
a ho ha ho| |1

@ To get to non-homogenous coordinates

;_ hooxi + horyi + ho2
Xi e

hooxi + ho1y; + hao

) = hiox; + hi1yi + hio

hooxi + ho1y; + hao
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Solving for Homographies

ax! hoo ho1  ho2| |xi
ayl| = |ho hii hi2| |yi
a ho ha ho| |1

@ To get to non-homogenous coordinates

;_ hooxi + horyi + ho2
Xi e

hooxi + ho1y; + hao

) = hiox; + hi1yi + hio

hooxi + ho1y; + hao

@ Warning: This is non-linear!!!
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Solving for Homographies

ax! hoo ho1  ho2| |xi
ayl| = |ho hii hi2| |yi
a ho ha ho| |1

@ To get to non-homogenous coordinates

;_ hooxi + horyi + ho2
Xi e

hooxi + ho1y; + hao

) = hiox; + hi1yi + hio

hooxi + ho1y; + hao

@ Warning: This is non-linear!!!
@ But wait a minute!

xi (hooxi + horyi + h2) = hooxi + horyi + ho2
¥i (hooxi + horyi + h22) = hioxi + b1y + ho
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Solving for homographies

xj (haox; + ho1yi + h) = hoox; + horyi + ho2
i (hoxi 4 horyi + h2a) = hioxi + hiryi + hio

@ This is still linear in the unknowns

hoo
ho1
hoo
z; y; 1 0 0 0 —zle; —aly, —a! ZlO To
0 0 0 z, v; 1 —yll-xi _ygyi _yg hi;

h21
hoo
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Solving for homographies

@ Taking all the observations into account

Raquel Urtasun (TTI-C)

1 Y1
0 0

Tn Yn
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1

1

0O 0O 71011171 7:L';ly1
1y 1 —yien —yiyn

/ ’
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Yn
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Solving for homographies

@ Taking all the observations into account

hoo
ho1
z; yy 1 0 0 O 710/1171 710'1;1/1 710/1 hoo 0
0 0 0 a1 y1 1 —vhor —vhm -9 hio 0
H hiy | = | ¢
Tn yn 1 0 0 O —ahan —alyn —al, h1o 0
0 0 0 zn yn 1 —ypon —Ynyn —uh h2o 0
hoy
hoo
2nx9 l;1 2n

@ Defines a least squares problem:

min |Ah|
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Solving for homographies

@ Taking all the observations into account

hoo
ho1
z; yy 1 0 0 O 710/1171 710'1;1/1 710/1 hoo 0
0 0 0 a1 y1 1 —vhor —vhm -9 hio 0
H hiy | = | ¢
Tn yn 1 0 0 O —ahan —alyn —al, h1o 0
0 0 0 zn yn 1 —ypon —Ynyn —uh h2o 0
hoy
hoo
2nx9 l;l 2n

@ Defines a least squares problem:

min |Ah|

@ Since h is only defined up to scale, solve for unit vector
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Solving for homographies

@ Taking all the observations into account

hoo
ho1
z; yy 1 0 0 O 710'1;1/1 710/1 hoo 0
0 0 0z yn 1 -vhy1 -} hio 0
H hiy | = | ¢
Tn yn 1 0 0 O —ahay —alyn —al, hio 0
0 0 0 xn yn 1 —ynan —Ypyn —n hoo 0
hoy
hoo
2nx9 l;1 2n

@ Defines a least squares problem:

min |Ah|

@ Since h is only defined up to scale, solve for unit vector

@ Solution: h = eigenvector of AT A with smallest eigenvalue
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Solving for homographies

@ Taking all the observations into account

hoo
ho1
z; yy 1 0 0 O 710'1;1/1 710/1 hoo 0
0 0 0z yn 1 -vhy1 -} hio 0
H hiy | = | ¢
Tn yn 1 0 0 O —ahay —alyn —al, hio 0
0 0 0 xn yn 1 —ynan —Ypyn —n hoo 0
hoy
hoo
2nx9 l;1 2n

@ Defines a least squares problem:

min |Ah|

@ Since h is only defined up to scale, solve for unit vector
@ Solution: h = eigenvector of AT A with smallest eigenvalue

@ Works with 4 or more points
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Image Alignment Algorithm

Given images A and B
@ Compute image features for A and B
@ Match features between A and B

© Compute homography between A and B using least squares on set of
matches
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Image Alignment Algorithm

Given images A and B
@ Compute image features for A and B
@ Match features between A and B

© Compute homography between A and B using least squares on set of
matches

Is there a problem with this?

[Source: N. Snavely]
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Simple case

@ Lets consider a simpler example ... linear regression

RN

Problem: Fit a line to these datapoints
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Simple case

@ Lets consider a simpler example ... linear regression

. . . .
. .
. o . . . .
. ’ . . ’
. L4 . * .. . . . ° ..
. ‘ . . ‘ .
‘ ‘ . ° . . :: ‘ ‘ LS . L]
. . M . ¢ b ° * . N
. . o * .
Problem: Fit a line to these datapoints Least squares fit

@ How can we fix this?

[Source: N. Snavely]
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Simple case

@ Lets consider a simpler example ... linear regression
Problem: Fit a line to these datapoints Least squares fit

@ How can we fix this?

@ We need a better cost function

[Source: N. Snavely]
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More Robust Least-squares

@ Least-squares assumes that the noise follows a Gaussian distribution
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More Robust Least-squares

@ Least-squares assumes that the noise follows a Gaussian distribution

@ M-estimators are use to make least-squares more robust
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More Robust Least-squares

@ Least-squares assumes that the noise follows a Gaussian distribution
@ M-estimators are use to make least-squares more robust

@ They involve applying a robust penalty function p(r) to the residuals
Eris(Ap) = ZP [[ri[])

instead of taking the square of the resndual
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More Robust Least-squares

@ Least-squares assumes that the noise follows a Gaussian distribution
@ M-estimators are use to make least-squares more robust

@ They involve applying a robust penalty function p(r) to the residuals
Eris(Ap) = ZP [[ri[])

instead of taking the square of the resndual

@ We can take the derivative with respect to p and set it to 0
6’Ilr:ll w ||r,|| rori
=0

where 9(r) = p (r) is the derivative, called influence function
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More Robust Least-squares

Least-squares assumes that the noise follows a Gaussian distribution
M-estimators are use to make least-squares more robust

They involve applying a robust penalty function p(r) to the residuals
Eris(Ap) = ZP [[ri[])

instead of taking the square of the resndual

We can take the derivative with respect to p and set it to 0
6’Ilr:ll w ||r,|| rori
=0

where 9(r) = p (r) is the derivative, called influence function

If we introduce a weight w(r) = 4(r)/r, we observe that finding the
stationary point is equivalent to minimizing the iteratively reweighted
least squares (IRLS)

EirLs = Z w(|[ril])lIril

i
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lterative reweighted least-squares

@ We want to minimize

Eiris = Z w([lril )il

1
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lterative reweighted least-squares

@ We want to minimize

EirLs = Z w(|lri| )]l

1

@ A simple algorithm works by iterating between

@ Solving for the parameters p
@ Solving for the weights w
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lterative reweighted least-squares

@ We want to minimize

EirLs = Z w(|lri| )]l

1

@ A simple algorithm works by iterating between

@ Solving for the parameters p
@ Solving for the weights w

@ When the number of outliers is very high, IRLS does not work well (will not
converge to the global optima)
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Simple Idea

@ Given a hypothesized line, count the number of points that agree with the
line
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Simple Idea

@ Given a hypothesized line, count the number of points that agree with the
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@ Agree = within a small distance of the line i.e., the inliers to that line

[Source: N. Snavely]
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Simple Idea

@ Given a hypothesized line, count the number of points that agree with the
line

@ Agree = within a small distance of the line i.e., the inliers to that line

@ For all possible lines, select the one with the largest number of inliers

[Source: N. Snavely]
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Counting Inliers

N

Inliers: 3

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013 33/ 44



Counting Inliers

Inliers: 20

[Source: N. Snavely]
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Counting Inliers

Inliers: 20

What's the problem with this approach?
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How do we find the best line?

@ Unlike least-squares, no simple closed-form solution
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@ Unlike least-squares, no simple closed-form solution
@ Hypothesize-and-test

@ Try out many lines, keep the best one
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How do we find the best line?

@ Unlike least-squares, no simple closed-form solution
@ Hypothesize-and-test
@ Try out many lines, keep the best one

@ Which lines?
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Translations

e

[Source: N. Snavely]
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RAndom SAmple Consensus

Select one match at random, count inliers

[Source: N. Snavely]
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RAndom SAmple Consensus

Select another match at random, count inliers

[Source: N. Snavely]
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RAndom SAmple Consensus

Ry

A o]

ny wr

Output the translation with the highest number of inliers

[Source: N. Snavely]
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RANSAC

@ All the inliers will agree with each other on the translation vector; the
(hopefully small) number of outliers will (hopefully) disagree with each other
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RANSAC

@ All the inliers will agree with each other on the translation vector; the
(hopefully small) number of outliers will (hopefully) disagree with each other

@ RANSAC only has guarantees if there are < 50% outliers

[Source: N. Snavely]
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RANSAC

@ All the inliers will agree with each other on the translation vector; the
(hopefully small) number of outliers will (hopefully) disagree with each other

@ RANSAC only has guarantees if there are < 50% outliers

@ "All good matches are alike; every bad match is bad in its own way." —
[Tolstoy via Alyosha Efros]

[Source: N. Snavely]
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RANSAC for line fitting example

@ Randomly select minimal
subset of points

[Source: R. Raguram]
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RANSAC for line fitting example

@ Randomly select minimal
subset of points

@ Hypothesize a model

[Source: R. Raguram]
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RANSAC for line fitting example

@ Randomly select minimal
subset of points

@ Hypothesize a model

© Compute error function . * i ”

[Source: R. Raguram]
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RANSAC for line fitting example

@ Randomly select minimal

subset of points
@ Hypothesize a model B .;_-..
© Compute error function . . ; ’ .=. -
@ Select points consistent @ 8 1_-‘": - §
with model o ) A -
"

[Source: R. Raguram]
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RANSAC for line fitting example

@ Randomly select minimal
subset of points

@ Hypothesize a model
© Compute error function . ™ 3

@ Select points consistent i - -
with model o A

© Repeat hypothesize and ¥ nile
verify loop

[Source: R. Raguram]
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RANSAC for line fitting example

@ Randomly select minimal
subset of points

@ Hypothesize a model i ', ’

© Compute error function

@ Select points consistent gt <

with model

© Repeat hypothesize and - g
verify loop

[Source: R. Raguram]
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RANSAC for line fitting example

@ Randomly select minimal
subset of points

@ Hypothesize a model
© Compute error function

© Select points consistent
with model

© Repeat hypothesize and
verify loop

@ Choose model with
largest set of inliers

[Source: R. Raguram]
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RANSAC

@ Inlier threshold related to the amount of noise we expect in inliers
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RANSAC

@ Inlier threshold related to the amount of noise we expect in inliers
@ Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

@ Number of rounds related to the percentage of outliers we expect, and the
probability of success we'd like to guarantee
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RANSAC

@ Inlier threshold related to the amount of noise we expect in inliers
@ Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

@ Number of rounds related to the percentage of outliers we expect, and the
probability of success we'd like to guarantee

Suppose there are 20% outliers, and we want to find the correct answer with
99% probability
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RANSAC

@ Inlier threshold related to the amount of noise we expect in inliers
@ Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

@ Number of rounds related to the percentage of outliers we expect, and the
probability of success we'd like to guarantee

@ Suppose there are 20% outliers, and we want to find the correct answer with
99% probability

@ How many rounds do we need?
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How many rounds?

@ Sufficient number of trials S must be tried.
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How many rounds?

@ Sufficient number of trials S must be tried.

@ Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.
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How many rounds?
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@ Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.

@ The likelihood in one trial that all k random samples are inliers is p*
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How many rounds?

@ Sufficient number of trials S must be tried.

@ Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.

@ The likelihood in one trial that all k random samples are inliers is p*

@ The likelihood that S such trials will all fail is

1-P=(1-p°
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How many rounds?

@ Sufficient number of trials S must be tried.

@ Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.

The likelihood in one trial that all k random samples are inliers is p*

@ The likelihood that S such trials will all fail is

1-P=(1-p°

@ The required minimum number of trials is
_ log(1—-P)
- log(1 - p*)
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How many rounds?

@ Sufficient number of trials S must be tried.

@ Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.

The likelihood in one trial that all k random samples are inliers is p*

@ The likelihood that S such trials will all fail is

1-P=(1-p°

The required minimum number of trials is
_ log(1—-P)
- log(1 - p*)

The number of trials grows quickly with the number of sample points used.
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How many rounds?

@ Sufficient number of trials S must be tried.

@ Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.

The likelihood in one trial that all k random samples are inliers is p*

@ The likelihood that S such trials will all fail is

1-P=(1-p°

The required minimum number of trials is
_ log(1—-P)
- log(1 - p*)

The number of trials grows quickly with the number of sample points used.

Use the minimum number of sample points k possible for any given trial
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How big is the number of samples?

@ For alignment, depends on the motion model

@ Each sample is a correspondence (pair of matching points)

Transformation Matrix #DoF Preserves

translation [ I ‘ t ] 2 orientation
2x3

rigid (Euclidean) [ Rt ]2 .3 lengihy
x

MO CE

similarity [ sR ‘ t ] 4 angles
2x3
affine [ A ] 6 parallelism
2x3
projective [ H ] 8 straight lines
3x3
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RANSAC pros and cons

Pros

@ Simple and general
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Cons
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RANSAC pros and cons

Pros
@ Simple and general
@ Applicable to many different problems
@ Often works well in practice

Cons

@ Parameters to tune
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@ Applicable to many different problems
@ Often works well in practice
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@ Parameters to tune
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RANSAC pros and cons

Pros
@ Simple and general
@ Applicable to many different problems
@ Often works well in practice
Cons
@ Parameters to tune
@ Sometimes too many iterations are required

@ Can fail for extremely low inlier ratios

[Source: N. Snavely]
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RANSAC pros and cons

Pros
@ Simple and general
@ Applicable to many different problems
@ Often works well in practice
Cons
@ Parameters to tune
@ Sometimes too many iterations are required
@ Can fail for extremely low inlier ratios
@ We can often do better than brute-force sampling

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 24, 2013



RANSAC as Voting

@ An example of a "voting"-based fitting scheme
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RANSAC as Voting

@ An example of a "voting"-based fitting scheme

@ Each hypothesis gets voted on by each data point, best hypothesis wins

[Source: N. Snavely]
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RANSAC as Voting

@ An example of a "voting"-based fitting scheme
@ Each hypothesis gets voted on by each data point, best hypothesis wins

@ There are many other types of voting schemes, e.g., Hough transforms

[Source: N. Snavely]
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Next class ... more on cameras and projection
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