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What did we see in class last week?
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Image Alignment Algorithm

Given images A and B
@ Compute image features for A and B
@ Match features between A and B

© Compute homography between A and B using least squares on set of
matches

Is there a problem with this?

[Source: N. Snavely]
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RANSAC for line fitting example

@ Randomly select minimal
subset of points

[Source: R. Raguram]
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RANSAC for line fitting example

@ Randomly select minimal
subset of points

@ Hypothesize a model

[Source: R. Raguram]
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RANSAC for line fitting example

@ Randomly select minimal
subset of points

@ Hypothesize a model

© Compute error function . * i ”

[Source: R. Raguram]
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RANSAC for line fitting example

@ Randomly select minimal

subset of points
@ Hypothesize a model B .;_-..
© Compute error function . . ; ’ .=. -
@ Select points consistent @ 8 1_-‘": - §
with model o ) A -
"

[Source: R. Raguram]
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RANSAC for line fitting example

@ Randomly select minimal
subset of points

@ Hypothesize a model
© Compute error function . ™ 3

@ Select points consistent i - -
with model o A

© Repeat hypothesize and ¥ nile
verify loop

[Source: R. Raguram]
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RANSAC for line fitting example

@ Randomly select minimal
subset of points

@ Hypothesize a model
© Compute error function

© Select points consistent
with model

© Repeat hypothesize and
verify loop

[Source: R. Raguram]
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RANSAC for line fitting example

@ Randomly select minimal
subset of points

@ Hypothesize a model
© Compute error function

© Select points consistent
with model

© Repeat hypothesize and
verify loop

@ Choose model with
largest set of inliers

[Source: R. Raguram]
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Hough Transform Algorithm

With the parameterization xcosf + ysinf = r
o Let re[—R,R] and 0 € [0,7)
@ For each edge point (x;,y;), calculate: ? = x;cosf + y;sinf V8 € [0,7)

@ Increase accumulator A(?,0) = A(?,0) + 1

@ Threshold the accumulator values to get parameters for detected lines

[Source: M. Kazhdan]
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Modeling projection

(% ¥, 2)

The coordinate system

@ We will use the pinhole model as an approximation
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Modeling projection

(% ¥, 2)

The coordinate system
@ We will use the pinhole model as an approximation

@ Put the optical center (Center Of Projection) at the origin
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Modeling projection

(% ¥, 2)

The coordinate system
@ We will use the pinhole model as an approximation
@ Put the optical center (Center Of Projection) at the origin
@ Put the image plane (Projection Plane) in front of the COP. Why?

[Source: N. Snavely]
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Modeling projection

y

(% ¥, 2)

The coordinate system
@ We will use the pinhole model as an approximation
@ Put the optical center (Center Of Projection) at the origin
@ Put the image plane (Projection Plane) in front of the COP. Why?
@ The camera looks down the negative z axis, for right-handed-coordinates

[Source: N. Snavely]
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Modeling projection

PP

(x.¥.2)

Projection Equations

@ Compute intersection with PP of ray from (x,y,z) to COP. How?
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Modeling projection

(%, 2)

Projection Equations
@ Compute intersection with PP of ray from (x,y,z) to COP. How?

@ Derived using similar triangles

X y
(X,y,Z) - (7d;a 7d;7 7d)

[Source: N. Snavely]
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Modeling projection

(%, 2)

Projection Equations
@ Compute intersection with PP of ray from (x,y,z) to COP. How?

@ Derived using similar triangles

X y
(X,y,Z) - (7d;a 7d;7 7d)

@ Get the projection by throwing the last coordinate

[Source: N. Snavely]
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3D World

Perspective Projection
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Variants of Orthographic

3D World Orthographic Projection
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Projection properties

@ Many-to-one: any points along same ray map to same point in image
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Projection properties

@ Many-to-one: any points along same ray map to same point in image

@ Points — points
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Projection properties

@ Many-to-one: any points along same ray map to same point in image
@ Points — points

@ Lines — lines
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Projection properties

@ Many-to-one: any points along same ray map to same point in image

Points — points

Lines — lines

But line through focal point projects to a point. Why?

Raquel Urtasun (TTI-C) Computer Vision Feb 5, 2013 10 / 65



Projection properties

@ Many-to-one: any points along same ray map to same point in image

Points — points

Lines — lines

But line through focal point projects to a point. Why?

@ Planes — planes

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Feb 5, 2013 10 / 65



Projection properties

@ Many-to-one: any points along same ray map to same point in image
@ Points — points

@ Lines — lines

@ But line through focal point projects to a point. Why?

@ Planes — planes

@ But plane through focal point projects to line. Why?

[Source: N. Snavely]
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Camera Parameters

How many numbers do we need to describe a camera?

Raquel Urtasun (TTI-C) Computer Vision Feb 5, 2013 11 / 65



Camera Parameters

How many numbers do we need to describe a camera?

@ We need to describe its pose in the world
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Camera Parameters

How many numbers do we need to describe a camera?
@ We need to describe its pose in the world

@ We need to describe its internal parameters

[Source: N. Snavely]
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Camera Parameters

How many numbers do we need to describe a camera?
@ We need to describe its pose in the world
@ We need to describe its internal parameters

@ How many then?

[Source: N. Snavely]
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Projection Equations

@ The projection matrix models the cumulative effect of all intrinsic and
extrinsic parameters

ax X

Y

X = a;/ =P 7
1
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Projection Equations

@ The projection matrix models the cumulative effect of all intrinsic and
extrinsic parameters

ax X
Y
X = a;/ =P 7
1
@ It can be computed as
—f -5 0 111 0 0 0
pP— 0 f.s ;5 010 0 [R3><3 03><1:| [|3><3 T3x1]
0 o 1llo o1 ofl0s 1 ][0ns 1
— T~ rotation translation
intrinsics projection
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Projection Equations

@ The projection matrix models the cumulative effect of all intrinsic and
extrinsic parameters

ax X
Y
X = a;/ =P 7
1
@ It can be computed as
—f -5 0 111 0 0 0
pP— 0 f.s ;5 010 0 [R3><3 03><1:| [|3><3 T3x1]
0 o 1llo o1 ofl0s 1 ][0ns 1
— T~ rotation translation
intrinsics projection

@ No standard definition of intrinsics and extrinsics
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Extrinsics

How do we get the camera to canonical form?

Step 1: Translate by -c
y p y

X C

[Source: N. Snavely]
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Extrinsics

How do we get the camera to canonical form?

Step 1: Translate by -c

How do we represent
translation as a matrix
multiplication?

7| Isx3 —¢C

0 0 0 1
X

[Source: N. Snavely]
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Extrinsics

How do we get the camera to canonical form?

Step 1: Translate by -c
Step 2: Rotate by R

R = vl

/ w!

3x3 rotation matrix

X

[Source: N. Snavely]
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Extrinsics

How do we get the camera to canonical form?

y Step 1: Translate by -c
Step 2: Rotate by R

X

[Source: N. Snavely]
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Perspective Projection

(converts from 3D rays in camera

(intrinsics) coordinate system to pixel coordinates)

_f S Cy
i K — 0 — c (upper triangular
in general, [ ooy i,
0 0 1

() : aspect ratio (1 unless pixels are not square)
S : skew (0 unless pixels are shaped like rhombi/parallelograms)

: principal point ((0,0) unless optical axis doesn’t intersect projection plane at origin)

@ Simplifications used in practice

[Source: N. Snavely]
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Today's Readings

@ Chapter 9 of Szeliski's book
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Let's look at panoramas again
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Can we use homography to create a 360 panorama?

[Source: N Snavely]
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Can we use homography to create a 360 panorama?

@ Idea: projecting images onto a common plane

each image is warped
with a homography H

We'll see what this homograph means later.

First -- Can’t create a 360 panorama this way...

SIS mosaic PP

[Source: N Snavely]
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Creating Panoramas

@ Before we can register and align images, we need mathematical relationships
that map pixel coordinates from one image to another
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Creating Panoramas

@ Before we can register and align images, we need mathematical relationships
that map pixel coordinates from one image to another

@ A variety of such parametric motion models are possible from

Raquel Urtasun (TTI-C) Computer Vision Feb 5, 2013 19 / 65



Creating Panoramas

@ Before we can register and align images, we need mathematical relationships
that map pixel coordinates from one image to another

@ A variety of such parametric motion models are possible from

e simple 2D transforms
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Creating Panoramas
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that map pixel coordinates from one image to another

@ A variety of such parametric motion models are possible from

e simple 2D transforms
e planar perspective models
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Creating Panoramas

@ Before we can register and align images, we need mathematical relationships
that map pixel coordinates from one image to another

@ A variety of such parametric motion models are possible from

e simple 2D transforms
e planar perspective models
e 3D camera rotations
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Creating Panoramas

@ Before we can register and align images, we need mathematical relationships
that map pixel coordinates from one image to another

@ A variety of such parametric motion models are possible from

simple 2D transforms
planar perspective models
3D camera rotations

o
o
o
o lens distortions
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Creating Panoramas

@ Before we can register and align images, we need mathematical relationships
that map pixel coordinates from one image to another

@ A variety of such parametric motion models are possible from

simple 2D transforms

planar perspective models

3D camera rotations

lens distortions

mapping to non-planar (e.g., cylindrical) surfaces

(a) translation [2 dof] ~ (b) affine [6 dof]  (c) perspective [8 dof]  (d) 3D rotation [3+ dof]
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Creating Panoramas

@ Before we can register and align images, we need mathematical relationships
that map pixel coordinates from one image to another

@ A variety of such parametric motion models are possible from

simple 2D transforms

planar perspective models

3D camera rotations

lens distortions

mapping to non-planar (e.g., cylindrical) surfaces

(a) translation [2 dof] ~ (b) affine [6 dof]  (c) perspective [8 dof]  (d) 3D rotation [3+ dof]

@ Deciding which model is a model selection problem.
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Simple Motion Model

@ Consists of 2D rotation and translation
@ In a panography, images are translated, rotated and scaled.
@ We saw the case of linear transformations, where we used least squares

@ To be more robust we employed RANSAC or Hough transform

Raquel Urtasun (TTI-C) Computer Vision Feb 5, 2013 20 / 65



Estimating the Motion

@ Consider, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points.

@ If we parameterize this transformation by the translation (t;t,) and the
rotation angle 6, the Jacobian of this transformation, depends on the
current value of 6.

@ Is this problematic?

Transform Matrix Parameters p Jacobian .J
10 ¢ [1 0
translation 01 ¢, (tz.ty) 0 1
cg —sg g [ 1 0 —spz—cpy
Euclidean 89 cp by (tosty, @) 0 1  cyr — sgy
similarity b lt+a ty (tz,ty,a,b) 01y =z
14+aw  an  ta [1 0 2 4y 0 0
affine ain 1+an ty (tx:ty: apq, @o1 5 G105 @11 ) 0100 z vy
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Minimizing the non-linear least-squares

@ lteratively update Ap to the current parameter estimate Ap by minimizing

Encs(Ap) =Y ||f(xiip+ Ap) — x/|I3

1
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Minimizing the non-linear least-squares

@ lteratively update Ap to the current parameter estimate Ap by minimizing

Encs(Ap) =Y ||f(xiip+ Ap) — x/|I3

i
@ We can approximate this by

Enis(Ap) =~ ZHJ (xi:p)Ap — 1[5
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Minimizing the non-linear least-squares

@ lteratively update Ap to the current parameter estimate Ap by minimizing

Encs(Ap) =Y ||f(xiip+ Ap) — x/|I3

i
@ We can approximate this by

Enis(Ap) =~ ZHJ (xi:p)Ap — 1[5

@ Expanding this we have
Enis(Ap) ~ AJ AAp —2Ap b+ ¢
with A = >".J7J the Hessian and

b=> J7(x)r
is a Jacobian-weighted sum of residual vectors
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Minimizing the non-linear least-squares

@ The parameters are pulled in the direction of the prediction error with
strength proportional to the Jacobian
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Minimizing the non-linear least-squares

@ The parameters are pulled in the direction of the prediction error with
strength proportional to the Jacobian

@ Once A and b are computed, one solves for Ap by solving
(A + Mdiag(A))Ap =b

with X\ a damping parameter
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Minimizing the non-linear least-squares

@ The parameters are pulled in the direction of the prediction error with
strength proportional to the Jacobian

@ Once A and b are computed, one solves for Ap by solving
(A + Mdiag(A))Ap =b
with X\ a damping parameter

@ Thus the algorithm looks like

repeat
1. Compute A and b at current solution
2. Solve for Ap,
3.p+—~p+Ap
end
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Minimizing the non-linear least-squares

@ The parameters are pulled in the direction of the prediction error with
strength proportional to the Jacobian

@ Once A and b are computed, one solves for Ap by solving
(A + Mdiag(A))Ap =b
with X\ a damping parameter

@ Thus the algorithm looks like

repeat
1. Compute A and b at current solution
2. Solve for Ap,
3.p+—~p+Ap
end

@ How to initialize?
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Initialization

@ For the case of our 2D translation—+rotation, we end up with a 3 x 3 set of
normal equations in the unknowns ¢t dt,, 66
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Initialization

@ For the case of our 2D translation—+rotation, we end up with a 3 x 3 set of
normal equations in the unknowns ¢t dt,, 66

@ An initial guess for translation can be obtained by fitting a four-parameter
similarity transform in (tx; t,; c;s) and then setting 6 = tan=!(s/c).

Feb 5, 2013 24 / 65
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Initialization

@ For the case of our 2D translation—+rotation, we end up with a 3 x 3 set of
normal equations in the unknowns ¢t dt,, 66

@ An initial guess for translation can be obtained by fitting a four-parameter
similarity transform in (tx; t,; c;s) and then setting 6 = tan=!(s/c).

@ An alternative approach is to estimate the translation parameters using the
centroids of the 2D points and to then estimate the rotation angle using
polar coordinates
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Planar Perspective Motion

@ The mapping between two camera viewing a common plane can be
described with a 3 x 3 homography.
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Planar Perspective Motion

@ The mapping between two camera viewing a common plane can be
described with a 3 x 3 homography.

@ Consider My, the matrix that arises from mapping a pixel in one image to a
3D point and then back onto the second image

%1 ~ P1Py %0 = Myo%o
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Planar Perspective Motion

@ The mapping between two camera viewing a common plane can be
described with a 3 x 3 homography.

@ Consider My, the matrix that arises from mapping a pixel in one image to a
3D point and then back onto the second image

%1 ~ P1Py %0 = Myo%o

@ When the last row of the Po matrix is replaced with a plane equation
g - p + ¢o and points are assumed to lie on this plane, i.e., their disparity is
d = 0 we can ignore the last column of M1y and also its last row, since we
do not care about the final z-buffer depth

X1 ~ Hioko
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Planar Perspective Motion

@ The mapping between two camera viewing a common plane can be
described with a 3 x 3 homography.

@ Consider My, the matrix that arises from mapping a pixel in one image to a
3D point and then back onto the second image

%1 ~ P1Py %0 = Myo%o

@ When the last row of the Po matrix is replaced with a plane equation
g - p + ¢o and points are assumed to lie on this plane, i.e., their disparity is
d = 0 we can ignore the last column of M1y and also its last row, since we
do not care about the final z-buffer depth

X1 ~ Hioko

@ You will show this in an exercise
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Planar Perspective Motion

The mapping between two camera viewing a common plane can be
described with a 3 x 3 homography.

Consider My, the matrix that arises from mapping a pixel in one image to a
3D point and then back onto the second image

%1 ~ P1Py %0 = Myo%o

When the last row of the Py matrix is replaced with a plane equation

g - p + ¢o and points are assumed to lie on this plane, i.e., their disparity is
d = 0 we can ignore the last column of M1y and also its last row, since we
do not care about the final z-buffer depth

X1 ~ Hioko

You will show this in an exercise

More recent algorithms use robust methods such as RANSAC
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Planar Perspective Motion

@ The mapping between two camera viewing a common plane can be
described with a 3 x 3 homography.

@ Consider My, the matrix that arises from mapping a pixel in one image to a
3D point and then back onto the second image

%1 ~ P1Py %0 = Myo%o

@ When the last row of the Po matrix is replaced with a plane equation
g - p + ¢o and points are assumed to lie on this plane, i.e., their disparity is
d = 0 we can ignore the last column of M1y and also its last row, since we
do not care about the final z-buffer depth

X1 ~ Hioko

@ You will show this in an exercise
@ More recent algorithms use robust methods such as RANSAC

@ How do we align multiple images? Is there a problem?
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Rotational Panoramas

@ Assume the camera is doing pure 3D rotation
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Rotational Panoramas

@ Assume the camera is doing pure 3D rotation

@ The most common panoramic image stitching, e.g., when taking images of
the Grand Canyon

Il
(0,0,0.,1)p=0

Xp= (xo,yoﬁ) X = (x1,y1f1)
Ry
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Rotational Panoramas

@ Assume the camera is doing pure 3D rotation

@ The most common panoramic image stitching, e.g., when taking images of
the Grand Canyon

@ Assumes that all points are very far from the camera

Il
(0,0,0.,1)p=0

Xp= (xo,yoﬁ) X = (x1,y1f1)
Ry
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Rotational Panoramas

I,
(0,0,0,1)p=0

Xo= (xo,yoﬁ) X =(x byl;fl)
Rio

@ In this case simplified homography
Hi = KlRlRo_lKo_l = KlRloKO_1

with K the camera intrinsic matrix assuming ¢, = ¢, =0
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Rotational Panoramas

@ In this case simplified homography
Hio = KiRiR; 'Ky = KiRyoK; !

with K the camera intrinsic matrix assuming ¢, = ¢, =0
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Rotational Panoramas

@ In this case simplified homography
Hi = KiRiR; 'Ky ! = KiRoK; !
with K the camera intrinsic matrix assuming ¢, = ¢, =0

@ This can be rewritten as

T f fol xp
[m]f“[ fi Ryp fol ][yo]
1 1 1 1
T 0
y1 | ~ R | w
f1 fo
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Rotational Panoramas

@ In this case simplified homography
Hi = KiRiR; 'Ky ! = KiRoK; !
with K the camera intrinsic matrix assuming ¢, = ¢, =0

@ This can be rewritten as

1 f fo! Ty
v~ fi Ry £l Yo
1 1 1 1
@ Or more explicitly
Ty 0
v1 | ~Rw| w
1 fo
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Rotational Panoramas

@ In this case simplified homography
Hi = KiRiR; 'Ky ! = KiRoK; !
with K the camera intrinsic matrix assuming ¢, = ¢, =0

@ This can be rewritten as

1 f fo! Ty
v~ fi Ry £l Yo
1 1 1 1
@ Or more explicitly
Ty 0
v1 | ~Rw| w
1 fo

@ We have 3, 4 or 5 parameters depending if the focal length is known, fixed
or variable
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Rotational Panoramas

Figure: Four images taken with a hand-held camera registered using a 3D
rotation motion model (Szeliski and Shum 1997)
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ENEINE

@ What if you want a 360 field of view?

\ mosaic Projection Sphere

[Source: N Snavely]
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Cylindrical and Spherical Coordinates

@ An alternative to using homographies or 3D motions to align images is to
first warp the images into cylindrical coordinates and then use a pure
translational model to align them
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Cylindrical and Spherical Coordinates

@ An alternative to using homographies or 3D motions to align images is to
first warp the images into cylindrical coordinates and then use a pure
translational model to align them

@ This only works if the images are all taken with a level camera or with a
known tilt angle.
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Cylindrical and Spherical Coordinates

@ An alternative to using homographies or 3D motions to align images is to
first warp the images into cylindrical coordinates and then use a pure
translational model to align them

@ This only works if the images are all taken with a level camera or with a
known tilt angle.

@ Assume for now that the camera is in its canonical position, i.e., R =1 and
the optical axis is aligned with the z axis and the y axis is aligned vertically
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Cylindrical and Spherical Coordinates

@ An alternative to using homographies or 3D motions to align images is to
first warp the images into cylindrical coordinates and then use a pure
translational model to align them

@ This only works if the images are all taken with a level camera or with a
known tilt angle.

@ Assume for now that the camera is in its canonical position, i.e., R =1 and
the optical axis is aligned with the z axis and the y axis is aligned vertically

@ We wish to project this image onto a cylindrical surface of unit radius

p=XY7)
(smé,h,cos6)
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Cylindrical and Spherical Coordinates

@ An alternative to using homographies or 3D motions to align images is to
first warp the images into cylindrical coordinates and then use a pure
translational model to align them

@ This only works if the images are all taken with a level camera or with a
known tilt angle.

@ Assume for now that the camera is in its canonical position, i.e., R =1 and
the optical axis is aligned with the z axis and the y axis is aligned vertically

@ We wish to project this image onto a cylindrical surface of unit radius
@ Points on this surface are parameterized by an angle € and a height h with
the 3D cylindrical given by (sin 4, h, cos8) x (x, y, f)
p=XY7)

(smé,h,cos6)
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Cylindrical and Spherical Coordinates

p=WXY27)

(smé,h,cos6)

S

@ We can compute the correspondence between warped and mapped
coordinates

x
z = sf=stan"? ?,

Y

y = sh=s

m/
r = ftanf = ftan —,
s

/ /

/
h,/x2+f2:y—f 1—|—tan2:r’/s:fy—secx—
s s s

<
I
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Cylindrical Panorama

@ Cylindrical is used if the camera is level and we have only rotation around its
vertical axis

@ Then we only need to estimate a translation

Figure: A cylindrical panorama (Szeliski and Shum 1997)
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Spherical Projection

(XY, Z)
— Map 3D point (X,Y,Z) onto sphere
S o= oy 1
(@,9,2) = \/W(Xa Y, Z)
» Convert to spherical coordinates
(sinfcose, sing, cosfcosp) = (2,7, 2)
: » Convert to spherical image coordinates
unit sphere (7,7) = (50, 56) + (e, Ge)
— s defines size of the final image
» often convenient to set s = camera focal length
in pixels
(Fe.i0) O
unwrapped sphere ﬂ[

T  Spherical image

Raquel Urtasun (TTI-C) Computer Vision Feb 5, 2013 34 / 65



Spherical Projection

/p=(X,Y,Z)

E (sind cosg, sing,

A,
N

/

z
¥ = sh=stant

Fa
Y

Vil + 2

y = sd=stan"!

while the inverse is given by

2
r = ftanf = ftan —,
s

' / /
y = \/rz+f2tanqb=tany—f\/1+tan23:’/s=ftany—secm—
s s s
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Spherical Re-Projection

input f = 200 (pixels) f= 400 f=800

@ It is desirable if the global motion model is translation

@ For a pure panning motion, if we convert two images to their cylindrical
maps with known f, the relationship between them is a translation.

@ Similarly, we can map an image to its longitude/latitude spherical
coordinates as well if f is given
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Modeling Distorsion with Panoramas

@ Project point to normalized image coordinates

Xn =

NISN X

Yn =
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Modeling Distorsion with Panoramas

@ Project point to normalized image coordinates

X
Xy = -
z
_ Yy
Yn = =
z
@ Apply radial distorsion
o= xty,
Xg = Xp(1+k1r? + kor®)
Yd = y,,(1+f£1r2+nzr4)
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Modeling Distorsion with Panoramas

@ Project point to normalized image coordinates

X
Xy = -
z
_ Yy
Yn = =
z
@ Apply radial distorsion
o= xty,
Xg = Xp(1+k1r? + kor®)
Yd = y,,(1+f£1r2+nzr4)

@ Apply focal length and translate image center
fXd + Xc

X
y/ = ﬂ/d"'}/c
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Modeling Distorsion with Panoramas

@ Project point to normalized image coordinates

X
Xy = -
z
_ Yy
Yn = =
z
@ Apply radial distorsion
o= xty,
Xg = Xp(1+k1r? + kor®)
Yd = y,,(1+f£1r2+nzr4)

@ Apply focal length and translate image center
x' g + Xc
y/ = ﬂ/d + Ye

@ To model lens distortion with panoramas, use above projection operation
after projecting onto a sphere
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Aligning spherical images

@ Suppose we rotate the camera by 6 about the vertical axis

@ How does this change the spherical image?

[Source: N. Snavely]
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Aligning spherical images

@ Suppose we rotate the camera by 8 about the vertical axis
@ How does this change the spherical image?

@ This means that we can align spherical images by translation

[Source: N. Snavely]
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Assembling the panorama

@ Stitch pairs together, blend, then crop

[Source: N. Snavely]
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Problem: Drift

@ Small errors accumulate over time

[Source: N. Snavely]
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Solutions to Drift

(X4,y4) —I —4‘—‘

]

(Xn’yl'l)

©

copy of first image

@ Add another copy of first image at the end, giving a constraint: y, = y;
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Solutions to Drift

(X4,y4) —I —4‘—‘

]

(Xn’yl'l)

©

copy of first image

@ Add another copy of first image at the end, giving a constraint: y, = y;

@ There are a bunch of ways to solve this problem

o add displacement of (y; — y,)/(n — 1) to each image after the first
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Solutions to Drift

(X4,y4) —I —4‘—‘

]

(Xn’yl'l)

©

copy of first image

@ Add another copy of first image at the end, giving a constraint: y, = y;

@ There are a bunch of ways to solve this problem

o add displacement of (y; — y,)/(n — 1) to each image after the first

o apply an affine warp: y' = y + ax

[Source: N. Snavely]
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Solutions to Drift

(X4,y4) —I —4‘—‘

]

(Xn’yl'l)

©

copy of first image

@ Add another copy of first image at the end, giving a constraint: y, = y;

@ There are a bunch of ways to solve this problem

o add displacement of (y; — y,)/(n — 1) to each image after the first

o apply an affine warp: y' = y + ax

e Bundle Adjustment: run a big optimization problem, incorporating this

constraint

[Source: N. Snavely]
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Dealing with multiple images

@ Extend the pairwise matching criteria to deal with multiple images
@ Typical pipeline include

o Panorama recognition: Decide which images to align
e Global alignment
e Local adjustments
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Bundle Adjustment

@ Goal: Find a globally consistent set of alignment parameters that minimize
the mis-registration between all pairs of images
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Bundle Adjustment

@ Goal: Find a globally consistent set of alignment parameters that minimize
the mis-registration between all pairs of images

@ The process of simultaneously adjusting pose parameters for a large
collection of overlapping images is called bundle adjustment
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Bundle Adjustment

@ Goal: Find a globally consistent set of alignment parameters that minimize
the mis-registration between all pairs of images

@ The process of simultaneously adjusting pose parameters for a large
collection of overlapping images is called bundle adjustment

@ In the case of a single pair of images, we have feature-based alignment
problem

Epairwise—Ls = Z il 3 = [I%i(xis p) — i[5
i
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Bundle Adjustment

@ Goal: Find a globally consistent set of alignment parameters that minimize
the mis-registration between all pairs of images

@ The process of simultaneously adjusting pose parameters for a large
collection of overlapping images is called bundle adjustment

@ In the case of a single pair of images, we have feature-based alignment
problem

Epairwise—Ls = Z il 3 = [I%i(xis p) — i[5
i

@ For multi-alignment, instead of n correspondences {x;, X}, we have nj
correspondences for every pair of images.
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Bundle Adjustment

@ Goal: Find a globally consistent set of alignment parameters that minimize
the mis-registration between all pairs of images

@ The process of simultaneously adjusting pose parameters for a large
collection of overlapping images is called bundle adjustment

@ In the case of a single pair of images, we have feature-based alignment
problem

Epairwise—Ls = Z il 3 = [I%i(xis p) — i[5
i

@ For multi-alignment, instead of n correspondences {x;, X}, we have nj
correspondences for every pair of images.

@ We will look into the case of pose expressed by rotation.
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Bundle Adjustment

@ Goal: Find a globally consistent set of alignment parameters that minimize
the mis-registration between all pairs of images

@ The process of simultaneously adjusting pose parameters for a large
collection of overlapping images is called bundle adjustment

@ In the case of a single pair of images, we have feature-based alignment
problem

Epairwise—Ls = Z il 3 = [I%i(xis p) — i[5
i

@ For multi-alignment, instead of n correspondences {x;, X}, we have nj
correspondences for every pair of images.

@ We will look into the case of pose expressed by rotation.

@ Look at (Szeliski and Shum, 97) for the case of homographies
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Bundle Adjustment

@ We can relate a 3D point x; into a point x;; in frame j as
~ —1yy—1~
Xjj ~ KjRjX,‘ and X ~ Rj Kj Xijj

with K; = diag(f;, fj,1)
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Bundle Adjustment

@ We can relate a 3D point x; into a point x;; in frame j as
%j ~ KiRjx; and x; ~ R7K'%;
with K; = diag(f;, f;, 1)
@ The motion mapping a point x;; from frame j into a point xj in frame k is

similarly given by B
%ix ~ HRj = K RRTTK TR
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Bundle Adjustment

@ We can relate a 3D point x; into a point x;; in frame j as
%j ~ KiRjx; and x; ~ R7K'%;
with K; = diag(f;, f;, 1)

@ The motion mapping a point x;; from frame j into a point xj in frame k is
similarly given by

~ YO —1lpe—1g.
Xik ~ HX,'J' = KkRkRj Kj Xjj

@ Given an initial set of {(Rj, f;)} estimates obtained from chaining pairwise
alignments, how do we refine these estimates?
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Bundle Adjustment

@ We can relate a 3D point x; into a point x;; in frame j as
%j ~ KiRjx; and x; ~ R7K'%;
with K; = diag(f;, f;, 1)
@ The motion mapping a point x;; from frame j into a point xj in frame k is

similarly given by B
%ix ~ HRj = K RRTTK TR

@ Given an initial set of {(Rj, f;)} estimates obtained from chaining pairwise
alignments, how do we refine these estimates?

@ We can extend the pairwise energy to the multiview formulation

Eall—pairs—2D = Z Z CUCIk”XIk 17 Ja Rka fk) - xlk||2

with )”(fJ the predicted location of feature i in frame k, X;; observed location.
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Bundle Adjustment

@ We can relate a 3D point x; into a point x;; in frame j as
%j ~ KiRjx; and x; ~ R7K'%;
with K; = diag(f;, f;, 1)
@ The motion mapping a point x;; from frame j into a point xj in frame k is

similarly given by B
%ix ~ HRj = K RRTTK TR

@ Given an initial set of {(Rj, f;)} estimates obtained from chaining pairwise
alignments, how do we refine these estimates?

@ We can extend the pairwise energy to the multiview formulation

Eall—pairs—2D = Z Z CUCIk”XIk 17 Ja Rka fk) - xlk||2

with )”(fJ the predicted location of feature i in frame k, X;; observed location.

@ The 2D subscript indicates that we minimize the image-plane error
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Bundle Adjustment

@ We can relate a 3D point x; into a point x;; in frame j as
%j ~ KiRjx; and x; ~ R7K'%;
with K; = diag(f;, f;, 1)

@ The motion mapping a point x;; from frame j into a point xj in frame k is
similarly given by
~ PN 1y —1a
Xik ~ HX,'J' = KkRkRj Kj xij

@ Given an initial set of {(Rj, f;)} estimates obtained from chaining pairwise
alignments, how do we refine these estimates?

@ We can extend the pairwise energy to the multiview formulation

Eall—pairs—2D = Z Z CUCIk”XIk 17 Ja Rka fk) - xlk||2

with )”(fJ the predicted location of feature i in frame k, X;; observed location.
@ The 2D subscript indicates that we minimize the image-plane error
@ We can use non-linear least squares if we have enough features
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The multiview formulation

Eal—pairs—20 = Y _ Y _ CiiCik| [ (Ry, £, Ruc, fic) — i [3
ik

has two potential disadvantages:

@ Since a summation is taken over all pairs with corresponding features,
features that are observed many times are overweighted in the final solution

. my . .
(a feature observed m times gets counted ) instead of m times).

2

@ Second, the derivatives of X;; with respect to {(R}, f;)} are a little
cumbersome
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Alternative Formulation

@ Use true bundle adjustment solving for pose {Rj, f;} and 3D positions {x;}

EBA—2D:ZZCIJ||XL1(X“ . 1) — Rill3
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Alternative Formulation

@ Use true bundle adjustment solving for pose {Rj, f;} and 3D positions {x;}

EBA—2D:ZZCIJ||XL1(X“ . 1) — Rill3

@ The disadvantage is that there are more variables to solve for

Raquel Urtasun (TTI-C) Computer Vision Feb 5, 2013 47 / 65



Alternative Formulation

@ Use true bundle adjustment solving for pose {Rj, f;} and 3D positions {x;}

Ea—ap =Y > cill%i(xii Ry, ;) — Kilf3
i

@ The disadvantage is that there are more variables to solve for

@ Another alternative is to minimize the error in 3D

Esa-3p =Y > cll%i(%i Ry, ;) — xill3
P

i Y —_— _1 _1 ..
with X; = Rj Kj Xjj
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Alternative Formulation

@ Use true bundle adjustment solving for pose {Rj, f;} and 3D positions {x;}

Sl S 112
Esaap = Y Y cill%j(xii Ry, ) — %[5
PJ
@ The disadvantage is that there are more variables to solve for
@ Another alternative is to minimize the error in 3D
S (o 2
Esasp = Y Y cill%i(%y Ry, ) — xil[5
P
e p-lpe—1
with X; = R_[ K_[ Xjj
@ This has bias towards longer focal lengths since the angles between rays
become smaller as f increases
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Alternative Formulation

@ Use true bundle adjustment solving for pose {Rj, f;} and 3D positions {x;}

S .- S 112
Ea—ap =Y > cill%i(xii Ry, ;) — Kilf3
PJ
@ The disadvantage is that there are more variables to solve for
@ Another alternative is to minimize the error in 3D
S (% 2
Esasp = Y Y cill%i(%y Ry, ) — xil[5
P
e plpe—1
with X; = R_[ K_[ Xjj
@ This has bias towards longer focal lengths since the angles between rays
become smaller as f increases
@ We can eliminate the 3D rays x; and derive a 3D pairwise energy
< (S S (s 2
Ean—pairs—30 = Y _ Y _ CijCikl[%i(Xij, Ry, ) — %i(Rik, R, fi) |13
ik

@ This is the simplest
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Unwrapping a sphere

Credit: JHT’s Planetary Pixel Emporium
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Spherical panoramas

Microsoft Lobby: http://www.acm.org/pubs/citations/proceedings/
graph/258734/p251-szeliski

Raquel Urtasun (TTI-C) Computer Vision Feb 5, 2013 49 / 65


http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski
http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski

Different projections are possible

[Source: N. Snavely]
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Blending

@ We want to seamlessly blend them together

[Source: N. Snavely]
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Blending

@ We want to seamlessly blend them together

[Source: N. Snavely]
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Image Blending

[Source: N. Snavely]
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Take the average value at each pixel

[Source: N. Snavely]
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Effect of window size

Use window to do average

[Source: N. Snavely]
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Effect of window size

Use window to do average

[Source: N. Snavely]
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Good window size

@ Optimal window: smooth but not ghosted

@ It doesn’t always work

[Source: N. Snavely]
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Pyramid Blending

(d) (h)
Create a Laplacian pyramid, blend each level

e Burt, P.J. and Adelson, E. H., A multiresolution spline with applications to image mosaics, ACM Transactions on
Graphics, 42(4), October 1983, 217-236.

Source: N. Snavel
Raquel Urtasun (TTI-C) Computer Vision Feb 5, 2013 58 / 65



Laplacian Pyramid

L; = G; - expand(G,,,)
Gaussian Pyramid GI. = Li a5 expand(Gm) Laplacian Pyramid

gL =G,

£
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Alpha Blending

I

Encoding blend weights: I(x,y) = (R, aG, aB, o)

(a1R1, a1G1, a1B1) + (agRa, agGa, a2Bs) + (agRz, azGs, azBsz)
a;+az+asz

coloratp =

Implement this in two steps:
1. accumulate: add up the (a premultiplied) RGBa values at each pixel
2. normalize: divide each pixel's accumulated RGB by its o value
Q: whatif o = 0?
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Poisson Image Editing

@ Gradient domain reconstruction can be used to do object insertion in image
editing applications

cloning

Figure: Perez et al. SIGGRAPH 2003

Raquel Urtasun (TTI-C) Computer Vision Feb 5, 2013 61 /



Panorama Examples

@ Every image on Google Streetview

[Source: N. Snavely]
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Ghost Removal

Figure: Uyttendaele et al. ICCVO01

[Source: N. Snavely]
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Ghost Removal

Figure: Uyttendaele et al. ICCVO01

[Source: N. Snavely]
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Other Types

@ Can mosaic onto any surface if you know the geometry

@ See NASAs Visible Earth project for some stunning earth mosaics

[Source: N. Snavely]
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