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The ST-mincut problem

@ Suppose we have a graph G = {V, E, C}, with vertices V, Edges E and
costs C.

[Source: P. Kohli]
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The ST-mincut problem

@ An st-cut (S,T) divides the nodes between source and sink.

@ The cost of a st-cut is the sum of cost of all edges going from S to T

5+1+9=15

[Source: P. Kohli]
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The ST-mincut problem

@ The st-mincut is the st-cut with the minimum cost

2+2+4-=28

[Source: P. Kohli]
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Back to our energy minimization

Construct a graph such that
1 Any st-cut corresponds to an assignment of x

2 The cost of the cut is equal to the energy of x : E(x)

[Source: P. Kohli]
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St-mincut and Energy Minimization

E(x) = iZGi () + iZjeu (xi»xj)

Forallij ©(0,1) +8;(1,0) >6,(0.0)+6;(1,1)

I Equivalent (transformable)

E(x) = Z € X+ Zcij x(1-x;)
i i,j

[Source: P. Kohli]
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How are they equivalent?

A=6,(00) B=6,0,1) €=6,(10) D=8, (1)

1 0 1 0 1
B
0 0 0 D-C 0 0 +C-
+ +
A-D
C-A 1| 0 |D-C 1
0 0

if x;=1 addC- if x, = 1 add

A D-C
- 8,0.0
+ (6,(1,0)-8;(0,0)) x; + (6,(1,0)-6;(0,0)) x;
+ (8;(1,0) + 6,(0,1) - 6;(0,0) - §;(1,1)) (1-x) x;

B+C-A-D = O is true from the submodularity of 6;

[Source: P. Kohli]
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Graph Construction

I:l Source (0)

@ @

[Source: P. Kohli]
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Graph Construction

Source (0)

2

@ @

[Source: P. Kohli]
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Graph Construction

E(ﬁl,az) = 2&1 + 5&1

Source (0)

2

@ @
5

[ ] sink (1)
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Graph Construction

E(ﬁl,az) = 2&1 + 5&1"‘ 902 + 4&2

Source (0)

9

[Source: P. Kohli]
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Graph Construction

E(ﬁl,az) = 2&1 + 561"' gﬁz + 4&2 + 20152

Source (0)
2 9
a; O az

/-

[] sink (1)

[Source: P. Kohli]
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Graph Construction

E(ﬁl,az) = 2&1 + 5&1"‘ 9(!2 + 462 + 20152 + alaz

Source (0)
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Graph Construction

E(Gl,az) = 21‘.11 + 561"' 9“2 + 462 + 20162 + 5102

Source (0)

[Source: P. Kohli]
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Graph Construction

E(Ql,az) = 201 + Ba, + 902 + 4 +2

D Source (0)

Cost of cut = 11

‘al=1 a; =1 ‘

E(1.1) =11

[Source: P. Kohli]
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Graph Construction

E(Gl,az) = 201 +53.+9 + 4&2 + zalaz +

Source (0)

st-mincut cost = 8

E(1.0)-= 8

[Source: P. Kohli]
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How to compute the St-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between
Source and Sink s.t.

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Min-cut\Max-flow Theorem

In every network, the maximum flow
equals the cost of the st-mincut

Assuming non-negative capacity

[Source: P. Kohli]
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How does the code look like

| Graph *g;

For all pixels p

D Source (0)

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end
for all adjacent pixels p,q

add_weights(nodelD(p), nodelD(q), cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)

[Source: P. Kohli]
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How does the code look like

Graph *g;

For all pixels p
Source (0)
/* Add a node to the graph */

nodelD(p) = g->add_node();
bgCost(a;) bgCost(a;)

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

[4] a
@ :

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost(p,q)); fgCOST(O.l) fgCOST(O.Z)
end

g->compute_maxflow(); I:‘ Sink (l)

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)

[Source: P. Kohli]
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How does the code look like

Graph *g;

For all pixels p

Source (0)

/* Add a node to the graph */
nodelD(p) = g->add_node();

bgCost(a;) bgCost(a;)
/* Set cost of terminal edges */

set_weights(nodelD(p), fgCost(p), bgCost(p)); COST(p,q)
a;
end
—

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost(p,q)); fgCOST(O.l) fgCOST(O.Z)

end
g->compute_maxflow(); I:‘ Sink (l)

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)

[Source: P. Kohli]
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How does the code look like

Graph *g;

For all pixels p

Source (0)

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q

add_weights(nodelD(p), nodelD(q), cost(p,q)); fgCosT(aI)
end

g->compute_maxflow(); D Sink (l)

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1) ‘ a; = bg a; = fg ‘

[Source: P. Kohli]
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Graph cuts for multi-label problems

@ Exact Transformation to QPBF [Roy and Cox 98] [Ishikawa 03] [Schlesinger
et al. 06] [Ramalingam et al. 08]

So what is the problem?

En(yiva. . Yo) = B, (X% ... Xp)
Multi-label Problem Binary label Problem

such that:
LetY and X be the set of feasible solutions, then

1. One-One encoding function T:X->Y

2. arg min E_(y) =T(arg min Ej,(x))

@ Very high computational cost

[Source: P. Kohli]
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Computing the Optimal Move

Current Solution

Search
Neighbourhood

-------- » Optimal Move

Key Property

Move Space

+«————— SolutionSpace =~ ——

Bigger move > Better solutions

Space * Finding the optimal move hard

[Source: P. Kohli]
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Move Making Algorithms

Minimizing Pairwise Functions
[Boykov Veksler and Zabih, PAMI 2001]

+ Series of locally optimal moves
+ Each move reduces energy
« Optimal move by minimizing submodular function

® Current Solution

]
I:l Search Neighbourhood

Move Space (t) : 2"

1] Number of Variables
L Number of Labels

Space of Solutions (x) : L"

[Source: P. Kohli]
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Energy Minimization

@ Consider pairwise MRFs

E(F)= > Voglfaify) + D Dplf)

{p,a}eN

with AV defining the interactions between nodes, e.g., pixels
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Energy Minimization

@ Consider pairwise MRFs
E(f) = Z Vp,q(fpafq)"‘ZDp(fp)
{p.a}eN P

with AV defining the interactions between nodes, e.g., pixels

@ D, non-negative, but arbitrary.
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Energy Minimization

@ Consider pairwise MRFs
Z Vo,a(fo, fq) + Z Dy(f5)
{p.a}eN P
with AV defining the interactions between nodes, e.g., pixels
@ D, non-negative, but arbitrary.
@ This is the graph-cuts notation.

@ Important to notice it's the same thing.
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Metric vs Semimetric

Two general classes of pairwise interactions
@ Metric if it satisfies for any set of labels «, 3,
V(ie,) =0 + a=p

V(a,8) = V(B,«
V(ie,5) < V() + V(v,8)
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Metric vs Semimetric

Two general classes of pairwise interactions
@ Metric if it satisfies for any set of labels «, 3,
V(ia,) =0 <+ =4

V(a, ) = ( ya) >
V(e,8) < V(ay)+ (,ﬂ)

@ Semi-metric if it satisfies for any set of labels «, 3,7

V(ie,) =0 & a=p
V(Oé,ﬁ) = V(ﬁ,a) >0
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Examples for 1D label set

@ Truncated quadratic is a semi-metric
V(a, B) = min(K, |a — B)

with K a constant.
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Examples for 1D label set

@ Truncated quadratic is a semi-metric
V(a, B) = min(K, |a — B)

with K a constant.

@ Truncated absolute distance is a metric
V(a, B) = min(K, |a = S])

with K a constant.
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Examples for 1D label set

@ Truncated quadratic is a semi-metric
V(a, B) = min(K, |a — B)

with K a constant.

@ Truncated absolute distance is a metric

V(a, B) = min(K, |a = S])
with K a constant.

@ For multi-dimensional, replace | - | by any norm.
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Examples for 1D label set

@ Truncated quadratic is a semi-metric

V(a, 8) = min(K, | — BJ?)
with K a constant.

@ Truncated absolute distance is a metric

V(a, 8) = min(K, o — 3])
with K a constant.
@ For multi-dimensional, replace | - | by any norm.
@ Potts model is a metric
V(ia,B) =K - T(a # )

with T(-) = 1 if the argument is true and 0 otherwise.
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@ «a — B moves works for semi-metrics

@ « expansion works for V' being a metric

x= txt+(2-t)x2

~

New Current Second
solution Solution solution

E ()= E(tx* + (2- t) x?)

Minimize over move variables t

Figure: Figure from P. Kohli tutorial on graph-cuts

@ For certain x! and x?, the move energy is sub-modular QPBF
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Swap Move

* Variables labeled a, £ can swap their labels

Tree
Ground
Swap Sky, House —> [l House
—_— Sky

[Source: P. Kohli]
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Swap Move

* Variables labeled a, f can swap their labels

= Move energy is submodular if:
= Unary Potentials: Arbitrary
= Pairwise potentials: Semi-metric

8;(.lt) 20
©;(.lt) =0 «<——» a=b

Examples: Potts model, Truncated Convex

[Source: P. Kohli]
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Expansion Move

e Variables take label & or retain current label

— Tree
—p - Ground
L — - House
— Sky

[Source: P. Kohli]
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Expansion Move

e Variables take label & or retain current label

Semi metric
+

= Unary Potentials: Arbitrary Triangle
Inequality

= Move energy is submodular if:

= Pairwise potentials: Metric

6, (la.p) + 6, (1,.1.) > 6, (l..1.)
Examples: Potts model, Truncated linear

Cannot solve truncated quadratic

[Source: P. Kohli]
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.

@ The only difference between P and P’ is that some pixels that were labeled
in P are now labeled in P’, and vice-versa.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.

@ The only difference between P and P’ is that some pixels that were labeled
in P are now labeled in P’, and vice-versa.

@ Given a label /, a move from a partition P (labeling f) to a new partition P’
(labeling ') is called an a-expansion if P, C P/, and P; C P;.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.

@ The only difference between P and P’ is that some pixels that were labeled
in P are now labeled in P’, and vice-versa.

@ Given a label /, a move from a partition P (labeling f) to a new partition P’
(labeling ') is called an a-expansion if P, C P/, and P; C P;.

@ An a-expansion move allows any set of image pixels to change their labels
to a.
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Example

Figure: (a) Current partition (b) local move (c) oo — S-swap (d) a-expansion.
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Algorithms

L. Start with an arbitrary labeling f
Set success := 0
3. For each pair of labels {a,f} C L
3.1. Find f=argminE(f') among f' within one a-j swap of f

3.2. If E(f}(E(f), set f := f and success := 1
4. TIf success = 1 goto 2

Return f

[

o

1. Start with an arbitrary labeling f
2. Set success := 0
3. For each label e L
3.1. Find f = argmin E(f') among f' within one a-expansion of f
3.2, If E(f) < E(f), set f := f and success :

=1
4, If success = 1 goto 2
5. Return [
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Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap
of f.
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Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap

of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gog = Vag, Eap)-
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Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap
of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gog = Vag, Eap)-

@ The structure of this graph is dynamically determined by the current
partition P and by the labels «, §3.
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Graph Construction

@ The set of vertices includes the two terminals « and 3, as well as image
pixels p in the sets P, and Pj (i.e., f, € {a, 5}).

@ Each pixel p € P,g is connected to the terminals o and 3, called t-links.

@ Each set of pixels p, g € P,z which are neighbors is connected by an edge
€p.q

edge weight for
ty | Dp(e) + T aewy Ve, fy) | P € Pag
9€Pag
ti Dy(8) +% usy V(B8,1y) | p € Pas
€ Pag
Eipa} Ve, B) oy

P:q€Pag
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Computing the Cut

@ Any cut must have a single t-link not cut.

@ This defines a labeling

a if £ €C for p € Puy
fe g if tffEC for p € Pus
fp for peP, pé& Pus.

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, " fast approximate energy minimization via graph cuts’
PAMI 2001.
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@ For any cut, then

(a) If t5,ty €C then egq ¢C.
(b) If t)eC then epqy &C.
(c) If 42 eC then epqy €C.
(d) If 5.t7eC then epq €C.
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Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.
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Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph G, = (Va, a)-
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Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph G, = (Va, a)-

@ The structure of this graph is dynamically determined by the current
partition P and by the label a.
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Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph G, = (Va, a)-

@ The structure of this graph is dynamically determined by the current
partition P and by the label a.

@ Different graph than the o — 3 swap.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.

@ Each set of pixels p, g which are neighbors and f, = f;, we connect with and
n-link.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.

@ Each set of pixels p, g which are neighbors and f, = f;, we connect with and
n-link.

@ For each pair of neighboring pixels such that f, # f;, we create a triplet
{ep.a: €2, t5 -

o= { U Ut U com |

P {pateN {pateN
re Tty =Ty
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.

@ Each set of pixels p, g which are neighbors and f, = f;, we connect with and
n-link.

@ For each pair of neighboring pixels such that f, # f;, we create a triplet
{ep.a: €2, t5 -

@ The set of edges is then

o= { U Ut U com |

P {pateN {pateN
re Tty =Ty
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Graph Construction

edge | weight for
ty oo pE€ Py
tf Dp (fﬂ) P é Pa
| Dol peEP

epa} | V)
eg | Viefo) | {n, @} N, f# 1y

te | Vi fo)
epa | Vfpa) [{Dd} €N, fr=1,
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@ There is a one-to-one correspondences between a cut and a labeling.

a if tHeC
fg: VpeP

f it hec

@ The energy of the cut is the energy of the labeling.

@ See Boykov et al, " fast approximate energy minimization via graph cuts’
PAMI 2001.

Property 5.2. If {p,q} € N and f, # f,, then a minimum cut C
on G, satisfies:

(@) If t2,t3eC then CNEpy =0

(b) If tp,t7€C then CNé&pg =1t

(e) If t;’,t; €C then CNE&pg = efpa)-

(d) If f.7€C then CNEgy = ey
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Global Minimization Techniques

Ways to get an approximate solution typically
@ Dynamic programming approximations

@ Sampling

Simulated annealing

Graph-cuts: imposes restrictions on the type of pairwise cost functions

@ Message passing: iterative algorithms that pass messages between nodes in
the graph.

Now we can solve for the MAP (approximately) in general energies. We can solve
for other problems than stereo
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Let's look at data/bechmarks
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Two benchmarks with very different characteristics
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Middlebury Dataset

Middlebury Stereo Evaluation — Version 2

@ Laboratory
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Middlebury Stereo Evaluation — Version 2

Laboratory
Lambertian

Rich in texture
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Middlebury Dataset

Middlebury Stereo Evaluation — Version 2

Laboratory
Lambertian
Rich in texture

Medium-size label set

Largely fronto-parallel
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Benchmarks for Stereo and m

Middlebury Stereo Evaluation — Version 2

Error Threshold = 1

Algerithm Avg. g%h gr::nlll::th gr;ruer\d truth g:uon:et:nn
CoopRegion [41 66 | 0874 1961 4613 | 0114 0213 1547 [51616 83111 13043 ) 27897 7184 8012
AdaptingBP [17] 90 (1111 1377 57919 0103 0214 1445 | 4222 706s6 11890 | 2487 792mn 73210
ADCensus [94] 73 | 107+ 14613 57397 0092 0257 1153 | 4108 6223 109s | 2425 7255 6934
SurfaceSteren [79] | 182 | 12832 16521 67837 | 0181w 028w 26132 | 3122 5101 8651 | 289~ 7851 826

GCtSegmBorder [S7] | 27.1 | 14745 18232 7865 | 01910 03112z 24426 | 425¢ 5552 1097 | 49977 5781 86637
WarpMat [55] 208 | 11620 1356 6042 | 0187 0246 24426 | 5.0213 93017 13.015| 34930 84722 9014
RDP [102 125 | 097w 139¢ 5000 | 0212 0381w 1891|4841 9941 12611 | 253 769: 7381

::u

0059 14211 498s 116 02811 1071

o

8821 11631 15427 | 2353 7616 6815

RVbased [116 1186

@ Best methods < 3% errors (for all non-occluded regions)
@ http://vision.middlebury.edu/stereo/data/

Computer Vision


http://vision.middlebury.edu/stereo/data/

Benchmarks: KITTI Data Collection

e Two stereo rigs (1392 x 512 px, 54 cm base, 90° opening)
o Velodyne laser scanner, GPS+1IMU localization

@ 6 hours at 10 frames per second!

360° Velodyne Laserscanner
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The KITTI Vision Benchmark Suite
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Novel Challenges

Fast guided cost-volume filtering (Rhemann et al., CVPR 2011)

Middlebury, Errors: 2.7%
B—

@ Error threshold: 1 px (Middlebury)
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Novel Challenges

Fast guided cost-volume filtering (Rhemann et al., CVPR 2011)

Middlebury, Errors: 2.7% KITTI, Errors: 46.3%

SR e Ty

y

@ Error threshold: 1 px (Middlebury) / 3 px (KITTI)
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Novel Challenges

So what is the difference?

Middlebury

g

@ Laboratory @ Moving vehicle
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Novel Challenges

So what is the difference?

Middlebury

@ Laboratory @ Moving vehicle
o Lambertian @ Specularities
@ Rich in texture @ Sensor saturation
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Novel Challenges

So what is the difference?

Middlebury

Laboratory Moving vehicle

Lambertian Specularities

Rich in texture Sensor saturation

Medium-size label set Large label set
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Novel Challenges

So what is the difference?

Moving vehicle

Laboratory
Lambertian Specularities
Rich in texture Sensor saturation

Medium-size label set Large label set

Largely fronto-parallel Strong slants
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Stereo Evaluation

Rank  Method Setting Out-Noc Out-All' Avg-Noc' Avg-All Density 'Runtime: Envirenment Compare |

1 PCBP 4.13% 15.45% 0.9px | 1.2px 100.00% 5min :4cores @ 2.5 Ghz (Matlab + C/C++) m]
Koichira Yamaguchi, Tamir Hazan, David McAllester and Raqual Urtasin, Continuos Markow Randem Fields for Rabust Stera Estimation, ECCV 2011

2 iSGM 5.16% 7.19% 1.2px 21px 94.70% 8s 2 cores @ 2.5 Ghz (C/C++) O
Simon Hermann and Reirhard Kiette, lterative Semi “Global Matching for Robust Driver Assistance Systems, ACCY 2012.

3 SGM 5.83% 7.08%: 1.2px 13px 85.80%: 37s i 1 core @ 3.0 Ghz (C/C++) a
Heika Siereo Processing by Semi-Giohal Matching and Watual Information. IEEE Transactions on Patter Aralysis and Machine Intelligence 2008

4 SNCC 6.27% | 7.33% 1.4px  1.5px 100.00% 0.27s | 1 core @ 3.0 Ghz (C/C++) O
W, Einacke and 1. Eggert. A Too-Stage Carrel hod for Stereoscopic Depth Estimation. DICTA 2010,

5 TGV 6.31% | 7.40%  1.3px 1.5px100.00% 7s !1core @ 3.0Ghz (Matlab + C/Crv) m]
Rene Ranftl Stafan Gehrig, Thomas Pock and Horst Bischof, Pushing tha Limits of Stereo Using Variational Steres Estimation. IEEE Intalligant Vehicles Symposiurm 2012

6 BSSM 750% 8.89% 14px 16px 94.87% 20.7s 1 core @ 3.5 Ghz (C/C++) O
‘Ancrymous submissian

7 OCV-SGBM 7.64% 913% 1 1.8px 2.0pxi 86.50% 11s ! 1 core @ 2.5 Ghz (C/C++) a
Heiho Stereo processing by semigiobal matching and mutual information PAMI 2008,

8 ELAS 8.24% 9.95% 14px 1.6px 94.55% 035 1 core @ 2.5 Ghz (C/C++) O
Andress Geiger, Martin Raser and Raquel Urtasun, Efficient Large-Scals Steren Matching, ACCV 2010

9 MS-DsI 10.68% 12.11% 1.9px ' 2.2px 100.00% 10.3s !  >Bcores @ .5 Ghz (C/C+r) m]
Anomymous submission

10 SDM 10.98% 12.19% 2.0px  2.3px; 63.58% 1min 1 core @ 2.5 Ghz (C/C++) O
Jana Kostkova, Stratified dense matching for stereopsis in complex scenes. EMVC 2003

1 GCSF 12.06% 13.26% 1.9px 2.1px 60.77% 245 ! 1 core @ 2.5 Ghz (C/C++) a
Jam Coch, Jordi Sanchez. Riera and Radu P, Horaod . Scene Flow Estimation by Growing Seeds. CVPR 2011

12 GCs 13.37% 1454% 2.1px  2.3px; 51.06% 225 1 core @ 2.5 Ghz (C/C++) m]
Jam Cach and Radim Sara. Efficient Sampling of Disparity Space for Fast And hing. BenC0S 2007

13 CostFilter 19.96% 21.05% 5.0px ' 5.4px 100.00% 4min ! 1 core @ 2.5 Ghz (Matlab) O
‘Christoph Rhemann, Asmaa Hosni, Michal Bleyer, Carsten Rother and Margrit Gelautz. Fast Cost Volume Filtering for Visual G and Bevond. CVPR 2011

14 | OCV-BM 25.39% 26.72% 7.6px 7.9px 55.84% O0ds | 1 core @ 2.5 Ghz (C/C++) O
. Bradsii. The OpenCV Librand Br. Dobh s Journal of Software Tools 2000

15 | GC+occ 33.50% 13474% 8.6px 9.2px! 8757% 6min ! 1 core @ 2.5 Ghz (C/C++) a

‘Viadimir Kolmogorov and Ramin Zabih. Computing Visusl lusions using Graph Cuts. 1CCY 2001

Computer Vision



MRFs for stereo

Global methods: define a Markov random field over
@ Pixel-level
@ Fronto-parallel planes

@ Slanted planes
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Plane MRFs

@ First segment an image into small regions, i.e., superpixels
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Plane MRFs

@ First segment an image into small regions, i.e., superpixels
@ Assume that the 3D world is compose of small frontal/slanted planes
@ Good representation if the superpixels are small and respect boundaries
E(xy, - ,xn) = > Cxi)+ > Y Cxi,x})
i i JEN;

with x; € R for the fronto-parallel planes, and x; € R3 for the slanted planes
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@ Good representation if the superpixels are small and respect boundaries
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i i JEN;
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Plane MRFs

@ First segment an image into small regions, i.e., superpixels
@ Assume that the 3D world is compose of small frontal/slanted planes
@ Good representation if the superpixels are small and respect boundaries
E(xy, - ,xn) = > Cxi)+ > Y Cxi,x})
i i JEN;
with x; € R for the fronto-parallel planes, and x; € R3 for the slanted planes
@ This are continuous variables. Is this a problem?
@ What can | do to solve this? Discretize the problem

@ The unitary are usually agreegation of cost over the local matching on the
pixels in that superpixel
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Plane MRFs

@ First segment an image into small regions, i.e., superpixels
@ Assume that the 3D world is compose of small frontal/slanted planes
@ Good representation if the superpixels are small and respect boundaries
E(xy, - ,xn) = > Cxi)+ > Y Cxi,x})
i i JEN;
with x; € R for the fronto-parallel planes, and x; € R3 for the slanted planes
@ This are continuous variables. Is this a problem?
@ What can | do to solve this? Discretize the problem

@ The unitary are usually agreegation of cost over the local matching on the
pixels in that superpixel

@ Pairwise is typically smoothness
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Slanted-plane MRFs
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A more sophisticated occlusion model

@ MRF on continuous variables (slanted planes) and discrete var. (boundary)
@ Combines depth ordering (segmentation) and stereo

SEgme”t Segment variable y; = (o, Bi,7:)

Slanted 3D plane of segment

Continuous variable

Boundary

3

Superpixels (UCM [Arbelaez, et al. 2011]

and SLIC [Achanta, et al. 2010])

Boundary variable 0;;
Relationship between segments

4 states
Occlusion Hinge  Coplanar

@ Takes as input disparities computed by any local algorithm

Raquel Urtasun (TTI-C)
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@ y the set of slanted 3D planes, o the set of discrete boundary variables

E(Y7 0) = Eco/or(o) + Ematch(Ya 0) + Ecompatibi/ity(Yy 0) + Ejunction(o)

Similar color |:> Likely to be coplanar

Left image

3 -
T s L AT
HA T H R TR R AR R
i HHHRT ‘ (L

t R 0, S .

X RYAvEL asTan. imilar
SR PR R U

a

aSa VATRRAVARL Svate Dissimilar
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Energy of PCBP-Stereo

@ y the set of slanted 3D planes, o the set of discrete boundary variables

E(Ya 0) = Ecolor(o) + Ematch(y: 0) + Ecompatibility(ya 0) + Ejunction(o)

Agreement with result of input disparity map

Computed by any matching method
(Modified semi-global matching)

. 2
Truncated quadratic function @7 (P, y:. K) = min (\D(p) —di(p,yi)l, K)
Disparity map Slanted plane

On boundary
“Occlusion” — Foreground segment owns boundary Q a
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Energy of PCBP-Stereo

@ y the set of slanted 3D planes, o the set of discrete boundary variables

E(Y7 0) = Ecolor(o) + Ematch(ya 0) + Ecompatibility(y~, 0) + Ejunction(o)

(1) Preference of boundary label (Coplanar > Hinge > Occlusion)

Impose penalty Agcec > Aninge > 0

(2) Boundary labels match Slanted planes

“Occlusion” e disont(P) > dback(p) Q] ﬂ j
“Hinge” &> di(p) =d;(p) on boundary

& J
“Coplanar” === d;(p) =d;(p) in both segments @ J
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Energy of PCBP-Stereo

@ y the set of slanted 3D planes, o the set of discrete boundary variables

E(y7 0) = Ecolor(o) + Ematch(yu 0) + Ecompatibility(Ya 0) + Ejunction(o)

Occlusion boundary reasoning [Malik 1987]
Penalize impossible junctions

Impossible cases
Front

—1‘— Occlusion

Back
Y YO

—f#= Coplanar

Feb 28, 2013
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