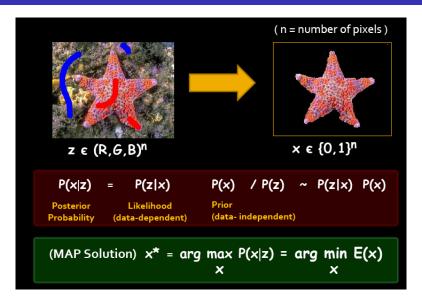
Visual Recognition: Examples of Graphical Models

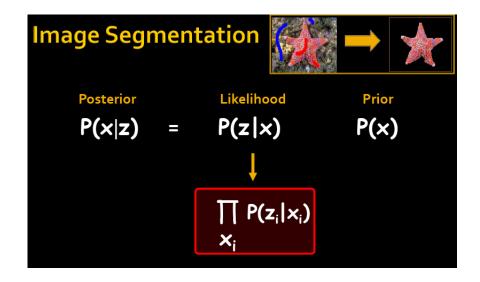
Raquel Urtasun

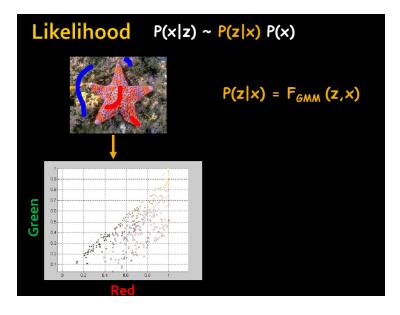
TTI Chicago

March 8, 2012

Example: Segmentation from Scribles







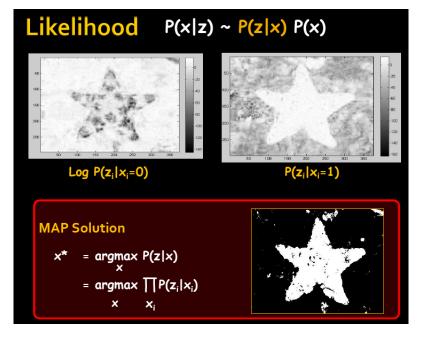


Image Segmentation

Posterior

Likelihood

$$P(x|z) =$$

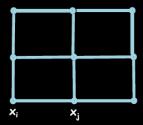
Prior P(x)

Encourages consistency between labelling of adjacent pixels

$$\prod_{x_i,x_i} f(x_i,x_j)$$

Prior

$P(x|z) \sim P(z|x) P(x)$



$$P(x) = \prod_{i,j \in N} f_{ij}(x_i, x_j)$$

$$= \prod_{i,j \in N} exp\{-|x_i-x_j|\} \quad "MRF Ising prior"$$

Posterior and Energy Functions

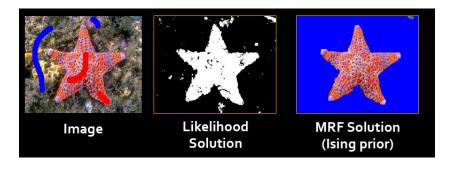
$$P(x|z) = \prod_{\substack{\text{Posterior} \\ \text{Probability}}} P(z_i|x_i) \prod_{\substack{x_i, x_j \\ \text{-ve log}}} P(x_i, x_j)$$

$$-\text{ve log}$$

$$E(x, z, w) = \sum_{i} \theta_i (x_i, z_i) + w \sum_{i,j} \theta_{ij} (x_i, x_j, z_i, z_j)$$

$$Energy$$

Results of the Ising Model



Conditional Random Fields

$$P(x|z) = \prod_{x_i} P(z_i|x_i) \prod_{x_i,x_j} P(x_i,x_j,z_i,z_j)$$

$$-\text{ve log}$$

$$E(x,z,w) = \sum_{i} \theta_i (x_i,z_i) + w \sum_{i,j} \theta_{ij} (x_i,x_j,z_i,z_j)$$

$$[\text{Boykov and Jolly `o1}] [\text{Blake et al. `o4}] [\text{Rother, Kolmogorov and Blake `o4}]$$

Conditional Random Fields

$$E(x,z,w) = \sum_{i} \theta_{i} (x_{i},z_{i}) + w \sum_{i,j} \theta_{ij} (x_{i},x_{j},z_{i},z_{j})$$

$$Pairwise Cost$$

$$[Boykov and Jolly `o1] [Blake et al. `o4] [Rother, Kolmogorov and Blake `o4]$$

Conditional Random Fields

$$E(x,z,w) = \sum_{i} \theta_{i} (x_{i},z_{i}) + w \sum_{i,j} \theta_{ij} (x_{i},x_{j},z_{i},z_{j})$$

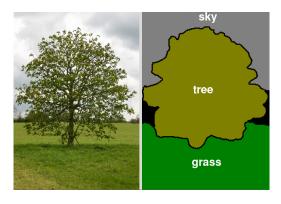
Pairwise Cost

Global Minimum (x*)

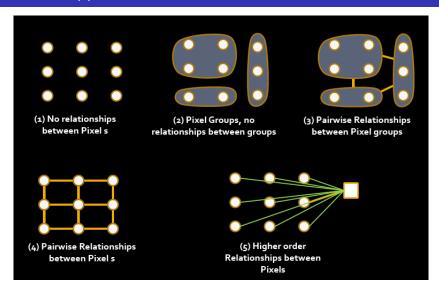
[Boykov and Jolly 'o1] [Blake et al. 'o4] [Rother, Kolmogorov and Blake 'o4]

Example: Supervised Semantic Segmentation

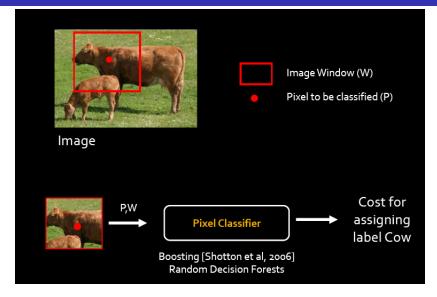
Assign a label to every pixel



Different Approaches



Building Unitary Potentials



Segmentation

Image Segmentation

n = number of pixels

E:
$$\{0,1\}^n \rightarrow R$$

 $0 \rightarrow fq$, $1 \rightarrow bq$

$$E(X) = \sum_{i} c_{i} x_{i} + \sum_{i,j} d_{ij} |x_{i} - x_{j}|$$

Image

Unary Cost

Segmentation

[Boykov and Jolly 'o1] [Blake et al. 'o4] [Rother, Kolmogorov and Blake 'o4]

High order patch potentials

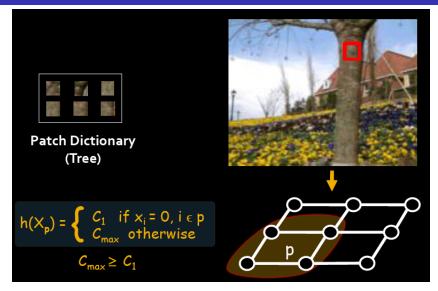


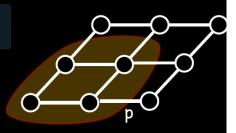
Image Segmentation

E:
$$\{0,1\}^n \rightarrow R$$

 $0 \rightarrow fg$, $1 \rightarrow bg$

$$E(X) = \sum_{i} c_{i} x_{i} + \sum_{i,j} d_{ij} |x_{i} - x_{j}| + \sum_{p} h_{p} (X_{p})$$

$$h(X_p) = \begin{cases} C_1 & \text{if } x_i = 0, i \in p \\ C_{max} & \text{otherwise} \end{cases}$$



[Kohli et al. '07]

Image Segmentation

n = number of pixels

E: $\{0,1\}^n \rightarrow R$ $0 \rightarrow fq$, $1 \rightarrow bq$

$$E(X) = \sum_{i} c_{i} x_{i} + \sum_{i,j} d_{ij} |x_{i} - x_{j}| + \sum_{p} h_{p} (X_{p})$$

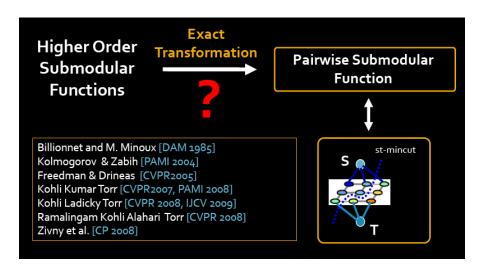
Image

Pairwise Segmentation

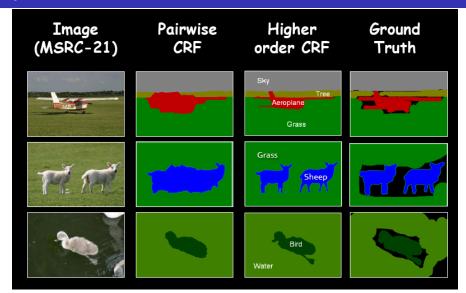
Final Segmentation

[Kohli et al. '07]

Minimizing higher order terms



Qualitative Results



Example: Holistic Scene Understanding

For an image we would like to reason about:

- Objects: which class, where, how many?
- **Segmentation**: which semantic label does each pixel take?
- Scene classification: which scene am I looking at?

Let's use a classifier for each task independently. What's in the patch?

- detector: bird
- seg classif.: water
- scene: boat

Let's use a classifier for each task independently. What's in the patch?

detector: bird

seg classif.: water

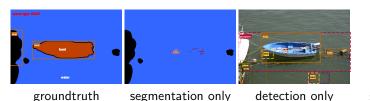
• scene: boat

Let's use a classifier for each task independently. What's in the patch?

• detector: bird

seg classif.: water

• scene: boat



boat

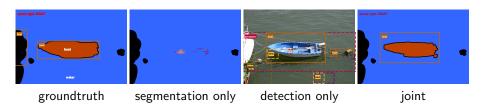
scene only

Let's use a classifier for each task independently. What's in the patch?

detector: bird

seg classif.: water

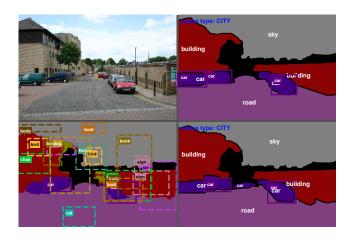
scene: boat



Holistic Scene Understanding

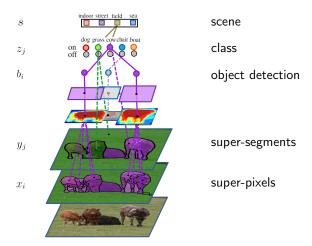
We want to reason about the scene as a whole.

- Joint inference of scene type, 2D objects and semantic segmentation
- Efficient learning and inference with structure prediction



Compact Holistic Model

- Define the problem as hierarchical CRF
- Compatibility potentials + evidence + shape prior



Compact Holistic Model

We define the problem as a holistic conditional random field

$$p(\mathbf{a}) = p(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{b}, \mathbf{s}) = \frac{1}{Z} \prod_i \psi_i(\mathbf{a}_i) \prod_{\alpha} \psi_{\alpha}(\mathbf{a}_{\alpha})$$

where $\mathbf{a} = (\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{b}, \mathbf{s})$ represents the set of all random variables

- $x_i \in \{1, \dots, C\}$: class label of the i-th super-pixel (first layer of the hierarchy)
- $y_i \in \{1, \dots, C\}$: class label of the i-th super-segment (second layer)
- $b_i \in \{0,1\}$: binary variable indicating whether an object detection is *on* or *off*
- $ullet z_i \in \{0,1\}$: binary variable indicating the presence of class i in the image
- $s \in \{1, \dots, \mathcal{S}\}$: scene type label

Compact Holistic Model

- **Learning** the weights w_i , where $w_i\phi_i = \log(\psi_i)$, is done with primal-dual approximated learning algorithm
- Joint **inference** is performed by computing the MAP estimate:

$$\max_{\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{b},\mathbf{s}} \frac{1}{Z} \prod_{i} \psi_{i}(\mathbf{a}_{i}) \prod_{\alpha} \psi_{\alpha}(\mathbf{a}_{\alpha})$$

We use a convergent message-passing algorithm without restriction to submodularity and potential specific moves

Unitary Potentials

- Super-pixel and super-segment: $\phi_i(x_i)$ and $\phi_j(y_j)$: average of TextonBoost pixel potentials inside each region
- Object detection:

$$\phi_I^{BBox}(b_i) = \begin{cases} \sigma(r_i - \lambda_I) & \text{if } b_i = 1 \land c_i = I \\ 0 & \text{otherwise.} \end{cases}$$

Here r_i is the score from Felzenswalb et al. detector, λ_l is the threshold of the detector for that class, c_i is the detector class, and $\sigma(x) = 1/(1 + \exp(-1.5 \, x))$ is a logistic function that converts the classifier score into probability.

Scene:

$$\phi^{Scene}(s=k) = \sigma(t_k)$$

where t_k denotes the classifier score for scene class k

Pairwise potentials

 Super-pixel – Super-segment: we use the Pⁿ potentials by Kohli et al.,CVPR'07:

$$\phi_{i,j}(x_i, y_j) = \begin{cases} -\infty & \text{if } x_i \neq y_j \\ 0 & \text{otherwise.} \end{cases}$$

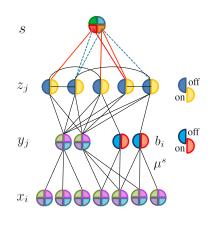
Super-segment – Class:

$$\phi_{i,j}(y_i,z_j) = \begin{cases} -\infty & \text{if } y_i = j \land z_j = 0 \\ 0 & \text{otherwise.} \end{cases}$$

Class – Scene:

$$\phi^{SC}(s,z_j) = \begin{cases} f_{s,z_j} & \text{if } z_j = 1 \land f_{s,z_j} > 0 \\ -\tau & \text{if } z_j = 1 \land f_{s,z_j} = 0 \\ 0 & \text{otherwise.} \end{cases}$$

where f_{s,z_i} represents the probability of occurrence of class z_j for scene type s



Pairwise potentials

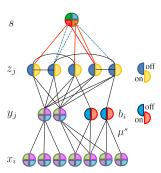
Detection – Class:

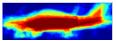
$$\phi_{i,j}^{\mathit{BClass}}(eta_i,b_i,z_j) = egin{cases} -\infty & ext{if } z_j = 0 \land c_i = j \land b_i = 1 \\ 0 & ext{otherwise}. \end{cases}$$

Detection – Super-pixel (shape prior):

$$\phi_l^{sh}(x_j, b_i, \beta_i) = \begin{cases} \mu(x_j, \beta_i) & \text{if } x_j = c_i \land b_i = 1 \\ 0 & \text{otherwise.} \end{cases}$$

where $\mu(x_j, \beta_i) = \frac{1}{|A_j|} \sum_{p \in A_j} \mu(p, m_i)$, A_j is the set of pixels in the j-th segment, $|A_j|$ is the cardinality of this set, and $\mu(p, m_i)$ is the value of the mean mask for component m_i





aeroplane

chair

car

bird

cow

flower

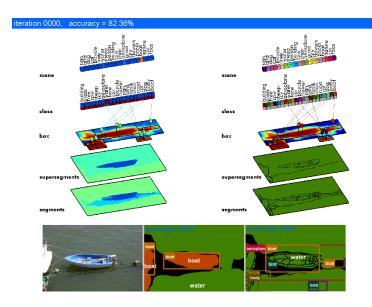
Loss function

Structure prediction problems require a specification for the loss. We define it as a weighted sum of task-specific losses, each of order at most 2.

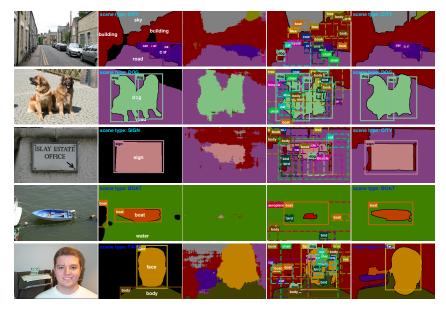
- Super-pixel and super-segment layers: loss is the total number of pixels that were wrongly predicted.
- Class: 0 − 1 loss
- Scene: 0-1 loss
- Detection:

$$\Delta_B(b_i, \hat{b}_i) = egin{cases} 1 - rac{intersection}{union} & ext{if } b_i = 1 \\ rac{intersection}{union} & ext{otherwise} \end{cases}$$

Inference example



Joint Inference Results



Segmentation Results MSRC-21

[J. Yao, S. Fidler and R. Urtasun, CVPR12]

Table: MSRC-21 segmentation results

	building	grass	tree	cow	sheep	sky	aeroplane	water	face	car	bicycle	flower	sign	bird	book	chair	road	cat	dog	body	boat	average	global
									ori	igMS	RC	data	set										
Shotton et al	49	88	79	97	97	78	82	54	87	74	72	74	36	24	93	51	78	75	35	66	18	67	72
Jiang and Tu	53	97	83	70	71	98	75	64	74	64	88	67	46	32	92	61	89	59	66	64	13	68	78
Pixel-CRF	73	92	85	75	78	92	75	76	86	79	87	96	95	31	81	34	84	53	61	60	15	72	81
Hierarch. CRF	80	96	86	74	87	99	74	87	86	87	82	97	95	30	86	31	95	51	69	66	9	75	86
HCRF+Coocc.	74	98	90	75	86	99	81	84	90	83	91	98	75	49	95	63	91	71	49	72	18	77.8	86.5
Harmony pot.	60	78	77	91	68	88	87	76	73	77	93	97	73	57	95	81	76	81	46	56	46	75	77
Segm.+Class	72	98	91	77	82	93	86	86	82	82	93	97	71	50	96	59	88	78	51	67	0	76.2	85.1
Det 15 class	69	98	90	78	86	93	88	83	90	83	94	97	73	50	96	71	89	79	54	64	8	77.8	85.3
full model	71	98	90	79	86	93	88	86	90	84	94	98	76	53	97	71	89	83	55	68	17	79.3	86.2

Detection and Scene Classification Results

[J. Yao, S. Fidler and R. Urtasun, CVPR12]

Table: MSRC-21 object detection results

	cow	sheep	aeroplane	face	car	bicycle	flower	sign	bird	book	chair	cat	gop	body	boat	average
						1	Recall a	at equa	I FPPI							
FPPI rate	0.03	0.02	0.00	0.01	0.05	0.03	0.04	0.02	0.02	0.01	0.00	0.02	0.04	0.04	0.02	0.02
LSVM	84.6	73.9	84.6	59.4	50.0	63.6	16.9	40.0	16.2	23.7	50.0	20.0	20.0	43.2	18.8	44.3
cont. LSVM	76.9	17.4	23.1	50.0	50.0	68.2	15.3	40.0	8.1	18.4	50.0	30.0	33.3	38.6	21.9	36.1
Detection	88.5	78.3	100.0	43.8	52.4	63.6	20.3	53.3	16.2	42.1	62.5	50.0	26.7	38.6	6.3	49.5
full model	88.5	82.6	100.0	46.9	52.4	63.6	20.3	53.3	16.2	44.7	62.5	40.0	26.7	38.6	12.5	49.9
							Avera	ge Pre	cision							
LSVM	78.6	76.5	96.2	56.4	54.1	61.7	19.9	45.0	18.5	30.0	59.2	31.4	28.0	45.5	22.1	48.2
cont.LSVM	75.8	37.0	85.1	58.2	52.1	60.8	19.1	38.5	12.3	28.6	60.5	32.1	32.1	41.7	26.2	44.0
Detection	78.1	72.7	100.0	45.5	53.1	60.9	22.9	48.9	18.2	42.9	63.6	46.0	27.3	34.3	9.1	48.2
full model	78.1	81.8	100.0	45.5	53.1	60.9	22.9	48.9	18.2	44.4	63.6	45.6	27.3	34.3	16.4	49.4

Table: MSRC-21 scene classification

	classifier	full m.
accuracy	79.5	80.6

More Results ...

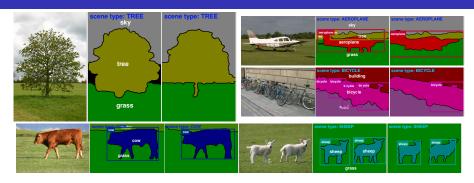


Figure: Segmentation examples: (image, groundtruth, our holistic scene model)

Figure: Examples of failure modes.

Let's talk about attributes

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

Attributes

- Long history of attributes in vision, starting in 2007.
- They are typically simple classifiers
- The score of those classifiers is an alternative representation
- They are binary

Is furry

Has four-legs

Legs shorter than horses'

Tail longer than donkeys'

Has tail

[Oliva 2001] [Ferrari 2007] [Lampert 2009] [Farhadi 2009] [Kumar 2009] [Wang 2009] [Wang 2010] [Berg 2010] [Branson 2010] [Parikh 2010] [ICCV 2011] ...

Attributes

- Long history of attributes in vision, starting in 2007.
- They are typically simple classifiers
- The score of those classifiers is an alternative representation
- They are binary

Legs shorter than horses'

Has four-legs

Tail longer than donkeys'

[Source: D. Parikh]

Has tail

Attributes

Some of them are relative

Legs shorter than horses'

Has four-legs

Tail longer than donkeys'

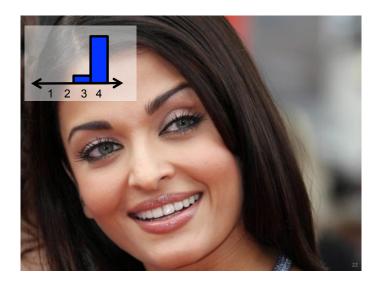
Has tail

Image Search

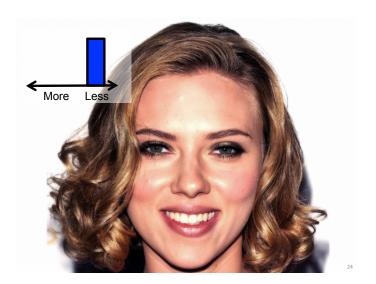
- I want to ask about an image of Chicago
- This might bee too crowded for my taste

Image Search

- I want to ask about an image of Chicago
- This might bee too crowded for my taste



But it's easy to say...



Relative Attributes [Parikh et al. 11]

Relative attributes

- Allow relating images and categories to each other
- Learn ranking function for each attribute

Novel applications

- Zero-shot learning from attribute comparisons
- Automatically generating relative image descriptions

Learning Relative Attributes

For each attribute a_m , open Supervision is

$$O_m$$
: $\{(), \cdot \}$

$$S_m: \left\{ \left\{ \begin{array}{c} \\ \\ \end{array} \right\}, \cdot \right\}$$

Learning Relative Attributes

Learn a scoring function
$$\ r_m(x_i) = m{w}_{m{m}}^T x_i$$
 Learned parameters

that best satisfies constraints:

$$\forall (i,j) \in O_m : \boldsymbol{w}_{\boldsymbol{m}}^T \boldsymbol{x}_i > \boldsymbol{w}_{\boldsymbol{m}}^T \boldsymbol{x}_j$$
$$\forall (i,j) \in S_m : \boldsymbol{w}_{\boldsymbol{m}}^T \boldsymbol{x}_i = \boldsymbol{w}_{\boldsymbol{m}}^T \boldsymbol{x}_j$$

Learning Relative Attributes

Max-margin learning to rank formulation

$$\begin{split} & \min \quad \left(\frac{1}{2}||\boldsymbol{w}_{\boldsymbol{m}}^T||_2^2 + C\left(\sum \xi_{ij}^2 + \sum \gamma_{ij}^2\right)\right) \\ & \text{s.t.} \quad \boldsymbol{w}_{\boldsymbol{m}}^T(\boldsymbol{x_i} - \boldsymbol{x_j}) \geq 1 - \xi_{ij}, \forall (i,j) \in O_m \\ & |\boldsymbol{w}_{\boldsymbol{m}}^T(\boldsymbol{x_i} - \boldsymbol{x_j})| \leq \gamma_{ij}, \forall (i,j) \in S_m \\ & \xi_{ij} \geq 0; \gamma_{ij} \geq 0 \\ & \text{Based on [Joachims 2002]} \end{split}$$



Rank Margin

Image → Relative Attribute Score

Zero Shot Learning

Training: Images from **S seen** categories and Descriptions of **U unseen** categories

Age: Hugh>Clive>Scarlett

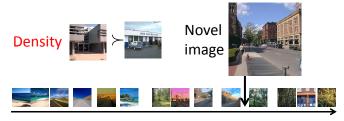
Jared≻Miley

Smiling:

Miley ≻ Jared

Need not use all attributes, or all seen categories Testing: Categorize image into one of S+U categories

Automatic Relative Description



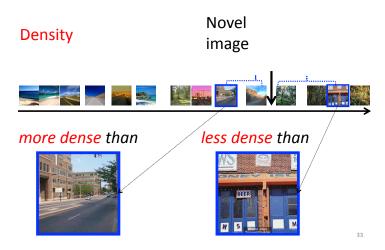
Conventional binary description: not dense

Dense:

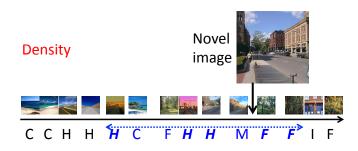
Not dense:

32

Automatic Relative Description



Automatic Relative Description



more dense than Highways, less dense than Forests

Results

Binary (existing):

Not natural

Not open

Has perspective

Relative (ours):

More natural than insidecity Less natural than highway

More open than street Less open than coast

Has more perspective than highway Has less perspective than insidecity

Results

Binary (existing):

Not natural

Not open

Has perspective

Relative (ours):

More natural than tallbuilding Less natural than forest

More open than tallbuilding Less open than coast

Has more perspective than tallbuilding

Results

Binary (existing):

Not Young

BushyEyebrows

RoundFace

Relative (ours):

More Young than CliveOwen Less Young than ScarlettJohansson

More BushyEyebrows than ZacEfron Less BushyEyebrows than AlexRodriguez

More RoundFace than CliveOwen Less RoundFace than ZacEfron

Human Studies: Which Image is described?

Binary: Smiling, Young

Relative

Automatic Relative Image Description

18 subjects

Test cases: 10 OSR, 20 PubFig

