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Which detec

Window-based

2

=\

Boosting + face
detection

NN + scene Gist SVM + person
classification detection

Viola & Jones
e.g., Hays & Efros e.g., Dalal & Triggs

BOW, pyramids ISM: voting deformable parts poselets
e.g., [Grauman et al.] e.g., [Leibe & Shiele] e.g., [Felzenszwalb et al.]  [Bourdev et al.]
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Bag-of-words model

@ Summarize entire image based on its distribution (histogram) of word
occurrences.

@ Total freedom on spatial positions, relative geometry.

@ Vector representation easily usable by most classifiers
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[Source: K. Grauman]
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Visual Categorization with Bags of Keypoints

Figure: Database of 1776 images of 7 classes: faces, building, trees, cars, phones,
bikes and books
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Visual Categorization with Bags of Keypoints

Figure: (left) All features detected. (Right) Features from 2 clusters.
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Classification

@ They try both SVM and Naive Bayes model which computes

N
max p(c|w) o p(c)p(wle) = p(c) ] T p(walc)

for N patches
@ p(c) is the prior probability of the object classes

@ p(w|c) is the image likelihood given the class
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Is machine learning important?

True classes | faces  buildings  trees cars phones bikes books
Jfaces 76 4 2 3 4 4 13
buildings 2 44 5 0 5 1 3
trees 3 2 80 0 0 5 0
cars 4 1 0 75 3 1 4
phones 9 15 1 16 70 14 11
bikes 2 15 12 0 8 73 0
books 4 19 0 6 7 2 69
Mean ranks 1.49 1.88 133 133 1.63 1.57 1.57
True classes | faces  buildings  trees cars  phones bikes books
faces 98 14 10 10 34 0 13
buildings 1 63 3 0 3 1 6
trees 1 10 81 1 0 6 0
cars 0 1 1 85 5 0 5
phones 0 5 4 3 55 2 3
bikes 0 4 1 0 1 91 0
books 0 k 2 0 73
Mean ranks 1.04 1.77 128 130 1.83 1.09 1.39

As expected the SVM outperformed Nave Bayes, reducing the overall error rate
from 28 to 15
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Category vs Background?

@ Most of the interest points are in background some times.

[Source: K. Grauman]
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Sampling Strategies

@ To find specific, textured objects, sparse sampling from interest points more
reliable

@ Multiple complementary interest points offer more coverage

@ For object categorization, dense sampling offers better coverage

(IP) - (Random) | (Multiple)

[Source: K. Grauman]
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Local feature correspondence

@ Comparing bags of words histograms coarsely reflects agreement between
local parts (patches, words).

@ But choice of quantization directly determines what we consider to be similar
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[Source: K. Grauman]
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Matching local features

@ Matching kernel that makes it practical to compare large sets of features
based on their partial correspondences

[Source: K. Grauman]
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Pyramid match idea

@ Feature space partitions serve to match the local descriptors within
successively wider regions.

@ Histogram intersection counts number of matches at a given partitioning

Z(Hx, Hy) = > min(He()), Hv(}))

Hx
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Pyramid Match Kernel

We can construct a kernel

L
Ky = 3277 (TH, D)~ T(HG D, 1Y)
i=0

We multiply the new matches with a measure of difficulty of level i
@ For similarity, weights inversely proportional to bin size (or may be learned)

@ Normalize these kernel values to avoid favoring large sets

Develop by [Grauman & Darrell, 05]

[Source: K. Grauman]
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Pyramid match kernel

ﬂ . Optimal match: O(m?)
N Pyramid match: O(mL)

N

P /
optlmal partial
matching

[Source: K. Grauman]
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Caltech 101 Era

@ 101 categories with 40-800 images per class

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 15 / 78



Accuracy
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Too much flexibility?

Unordered sets of local features: No spatial layout preserved!

ula =y = o

Too much? Too little?

[Source: K. Grauman]
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Spatial pyramid match

@ Make a pyramid of bag-of-words histograms [Lazebnik et al. 06]
@ Provides some loose (global) spatial layout information

@ Sum over PMKs computed in image coordinate space, one per word.
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Spatial Pyramid

@ Captures scene categories well—texture-like patterns but with some
variability in the positions of all the local pieces.
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street
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mountain®

[Source: K. Grauman]
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More results

@ Better results than the PMK
@ The spatial division of the image is very naive.

@ What can we do to partition the space better?

Strong features
(vocabulary size: 200)
Level Single-level ~ Pyramid
0(1x1) | 722+£0.6
1(2x2) | 779 £0.6  79.0£0.5
24 x4) || 794 £0.3  811ZX0.3
3(8x8) 77.2 £0.4 80.7 £0.3

[Source: K. Grauman]
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Implicit Shape Model

Submission to the IJCV Special Issue on Learning for Vision and Vision for Learning, Sept. 2005, 2 revised version Aug. 2007

Robust Object Detection with Interleaved
Categorization and Segmentation

Bastian Leibe!, Ale§ Leonardis®, and Bemt Schiele®

Abstract— This paper presents a novel method for detecting
and localizing objects of a visual category in cluttered real-world
seenes. Our approach considers object categorization and figure-
ground segmentation as two interleaved processes that closely
collaborate towards a common goal. As shown in our work, the
tight coupling between those two processes allows them to benefit
from each other and improve the combined performance.

The core part of our approach is a highly flexible learned rep-
resentation for object shape that can combine the information ob-
served on different training ples in a pr isti i
of the Generalized Hough Transform. The resulting approach can
detect categorical objects in novel images and automatically infer
a nrobabilistic seementation from the recognition resmlt. This

aquel Urtasu

the objects in the first place and to separate them from the
background.

Historically, this step of figure-ground segmentarion has
long been seen as an important and even necessary precursor
for object recognition [45]. In this context, segmentation is
mostly defined as a data driven, that is bottom-up, process.
However, except for cases where additional cues such as
motion or stereo could be used, purely bottom-up approaches
have so far been unable to yield figure-ground segmentations
of sufficient quality for object categorization. This is also due
to the fact that the notion and definition of what constitutes an

Visual Recognition



Implicit Shape Model

@ Detect interest points and form descriptors.
@ Learn an appearance codebook

@ Learn a star-topology structural model where features are considered
independent given obj. center

@ Algorithm: probabilistic Gen. Hough Transform
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@ Visual vocabulary is used to index votes for object position [a visual word =
part].

= Visual codeword with
Training image displacement vectors

[Leibe et al. 1JCV 2008]
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Implicit Shape Model: Basic Idea

@ Objects are detected as consistent configurations of the observed parts
(visual words).

Advantages:
@ Great flexibility

@ Requires small number of training examples.

[Source: B. Leibe]
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Representation of Implicit Shape Model

Learn appearance codebook
@ Extract local features at interest points
@ Agglomerative clustering to learn codebook instead of classical k-means

@ Represent each cluster by the mean.
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[Source: B. Leibe]
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Implicit Shape Model (ISM)

@ Is defined by ISM(C, P.), with C a class specific alphabet, and P, the
spatial probability distribution.

@ P, specifies where each codebook entry may be found on the object.

@ Two explicit design choices

e The distribution is defined independently for each codebook entry: star

model
e Spatial probability distribution is estimated in a non-parametric form.

[Source: B. Leibe]
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More on representation

Learn spatial distributions representing uncertainty
@ Match codebook to training images
@ Record matching positions on object

Use neighboring clusters up to a thresholded distance.
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[Source: B. Leibe]
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Recognition

Original Image Interest Points Matched Codebook Probabilistic
Entries

AR

e E

Ly

X
3D Voting Space
(continuous)

/

Refined Hypotheses Backprojected Backprojection
(optional) Hypotheses of Maxima

Segmentation

™~

[Source: B. Leibe]
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Recognition Summary

@ Apply interest points and extract features around selected locations.
@ Match those to the codebook.
@ Collect consistent configurations using Generalized Hough Transform.

@ Each entry votes for a set of possible positions and scales in continuous
space.

@ Extract maxima in the continuous space using Mean Shift.

@ Refinement can be done by sampling more local features.
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Example

Original image

[Source: B. Leibe]
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Matched patches

[Source: B. Leibe]
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Example

[Source: B. Leibe]
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15t hypothesis

[Source: B. Leibe]
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2d hypothesis

[Source: B. Leibe]
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3rd hypothesis

[Source: B. Leibe]
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Scale Invariant Voting

Scale-invariant feature selection

@ Scale-invariant interest points

@ Rescale extracted patches

@ Match to constant-size codebook
Generate scale votes

@ Scale as 3rd dimension in voting space

Xvote = Ximg — Xocc(simg/socc)
Yvote = Yimg — YOcc(simg /Socc)
Svote = Simg / Socc

@ Search for maxima in 3D voting space

[Source: B. Leibe]

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012



Scale Invariant Voting

Y

Search
window

Raquel Urtasun (TTI-C)
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Scale Voting: Efficient Computation

Continuous Generalized Hough Transform
@ Binned accumulator array similar to standard Gen. Hough Transf.
@ Quickly identify candidate maxima locations
@ Refine locations by Mean-Shift search only around those points

@ Avoid quantization effects by keeping exact vote locations.

. ° L] g - -/- . ) )
s| | Sl sH— - s ﬁ /e s
© e : — ——
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X X X X
Scale votes Binned Candidate Refinement
accum. array maxima (Mean-Shift)

[Source: B. Leibe]
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Extension: Rotation-Invariant Detection

@ Polar instead of Cartesian voting scheme

@ Recognize objects under image-plane rotations

Possibility to share parts between articulations

But also increases false positive detections

[Source: B. Leibe]
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Sometimes it's necessary

Figure from [Mikolajczyk et al., CVPR’06] B. Leibe

[Source: B. Leibe]
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Top-Down Segmentation: Basic ldea

During initial voting
@ When we first observe a feature, we do not know its context.
@ Different figure-ground labels may be consistent with the appearance.

@ Strategy: we cast votes for many locations.

g @/'ﬂ

[Source: B. Leibe]
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Top-Down Segmentation: Basic ldea

After Voting
@ Voting groups features that are consistent with the same object.

@ We can now consider each feature conditioned on the selected object
location hypothesis.

@ This allows us to backproject a local figure-ground label from selected votes.

o
o

S e

Co

e o

[Source: B. Leibe]
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Recognition and segmentation
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Recognition and segmentation

Local Features  Matched Codebook Probabilistic
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Segmentation

Interpretation of p(figure) map

@ Per-pixel confidence in object hypothesis

@ Use for hypothesis verification

p(figure) | L 4]
Original image w ’ ' Segmentation
L p(figure)
p(ground)
p(ground)

[Source: B. Leibe]
Visual Recognition Feb 7, 2012
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Top-Down Segmentation: Motivation

@ Secondary hypotheses (mixtures of cars/cows/etc.)
@ We want robustness to occlusion

@ Standard solution: reject based on bounding box overlap

e Problematic - may lead to missing detections!
o Use segmentations to resolve ambiguities instead.

@ Basic idea: each pixel can only be explained by (at most) one detection.

[Source: B. Leibe]
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Top-Down Segmentation: Motivation

@ Secondary hypotheses (mixtures of cars/cows/etc.)
@ We want robustness to occlusion

@ Standard solution: reject based on bounding box overlap

e Problematic - may lead to missing detections!
o Use segmentations to resolve ambiguities instead.

@ Basic idea: each pixel can only be explained by (at most) one detection.

*

[Source: B. Leibe]
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Top-Down Segmentation Algorithm

Algorithm 5 The top-segmentation algorithm.

// Given: hypothesis h and supporting votes Vh.
for all supporting votes (x, w, oce, £) € Vi, do
Let img,, ... be the segmentation mask corresponding to occ.
Let sz be the size at which the interest region £ was sampled.
Rescale img,, . to sz.
ug — (£ — ls»z)
vo + (£y — 552)
for all w € [0,sz — 1] do
for all v € [0, sz — 1] do
imgpfig(u — U0,V — U0)+: w- imgmaak(uﬂ U)
imgpgnd(u — U0,V — 'UO)+: w - (1 - 2.'r"’:n’.qrrl.cnenTc(""“"1 1U))
end for
end for
end for
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[Source: B. Leibe]
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Office chairs

[Source: B. Leibe]
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Inferring other information: Part labels

Training

[Source: B. Leibe]
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Inferring other information: Part labels

Grab area Wheels Armrests Seat Frame Backiround
’!1’\’1 ‘1,""”'; "

ocQwEr~ cvo-

[Source: B. Leibe]
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Inferring other information: Depth

Test image Ground truth Result

[Source: B. Leibe]
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Conclusion

Exploits a lot of parts (as many as interest points)
@ Very simple Voting scheme: generalized hough transform

@ Works well, but no as well as Deformable part-based models with latent
SVM training

@ Extensions: train the weights discriminatively.

Code, datasets & several pre-trained detectors available at
http://www.vision.ee.ethz.ch/bleibe/code

[Source: B. Leibe]
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Beyond Sliding Window

Beyond Sliding Windows: Object Localization by Efficient Subwindow Search

Christoph H. Lampert

72076 Tiibingen, Germany

Matthew B. Blaschko
Max Planck Institute for Biological Cybernetics

Thomas Hofmann
Google Inc.
Zurich, Switzerland

{chl,blaschko}@tuebingen.mpy.de

Abstract

Mosrt successful object recognition sysiems rely on bi-
nary classification, deciding only if an object is present or
not, but not providing information on the actual object lo-
cation. To perform localization, one can take a sliding win-
dow approach, bur this strongly increases the compurational
cost, because the cl has 10 be d over
a large set of candidate subwindows.

In this paper, we propose a simple yer powerful branch-
and-bound scheme that allows efficient maximization of a
large class of classi] ions over all possible subim-
naoes It ronverees to a elohallv antimal solution renicallv

localization relied on this technique. The sliding window
principle treats localization as localized detection, applying
a classifier function subsequently to subimages within an
image and taking the maximum of the classification score as
indication for the presence of an object in this region. How-
ever, already an image of as low resolution as 320 x 240
contains more than one billion rectangular subimages. In
general, the number of subimages grows as n* for images
of size nxn, which makes it computationally too expensive
to evaluate the quality function exhaustively for all of these.
Instead, one typically uses heuristics to speed up the search,
which introduces the risk of mispredicting the location of
an ohiect or even missing it

Visual Recognition



Sliding Window: Example
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Sliding Window: Example
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Sliding Window Classifier

Approach: sliding window classifier
@ evaluate classifier at candidate regions in an image

o for a 640 x 480 pixel image, there are over 10 billion possible regions
to evaluate

Sample a subset of regions to
evaluate

@ scale
@ aspect ratio

o grid size

[Source: C. Lampert]
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Sliding Window Classifier

Approach: sliding window classifier
@ evaluate classifier at candidate regions in an image
o for a 640 x 480 pixel image, there are over 10 billion possible regions
to evaluate

Sample a subset of regions to
evaluate

@ scale
@ aspect ratio

o grid size

We need a better way to search the space of possible windows

[Source: C. Lampert]
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Mathematically...

@ We can view the sliding window procedure as

B* =arg max f(B)

where B ranges over the all rectangular regions in the image.
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Mathematically...

@ We can view the sliding window procedure as

B* =arg max f(B)

where B ranges over the all rectangular regions in the image.

@ f is a quality function, e.g., classifier score.
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Mathematically...

@ We can view the sliding window procedure as
B* = argmax f(B
S Een (B)
where B ranges over the all rectangular regions in the image.

@ f is a quality function, e.g., classifier score.

@ For n x n image, complexity is n*.
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Mathematically...

@ We can view the sliding window procedure as
B* = f(B
re gz "(8)

where B ranges over the all rectangular regions in the image.
@ f is a quality function, e.g., classifier score.
@ For n x n image, complexity is n*.

@ Heuristics to speed up and prune the number of candidates, e.g., coarse
grid, fix size.
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Mathematically...
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B* =arg max f(B)

where B ranges over the all rectangular regions in the image.

f is a quality function, e.g., classifier score.

For n x n image, complexity is n*.

Heuristics to speed up and prune the number of candidates, e.g., coarse
grid, fix size.

Inherent assumption is that the function is smooth and slowly varying.
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Mathematically...

@ We can view the sliding window procedure as
B* = f(B
re gz "(8)

where B ranges over the all rectangular regions in the image.
@ f is a quality function, e.g., classifier score.
@ For n x n image, complexity is n*.

@ Heuristics to speed up and prune the number of candidates, e.g., coarse
grid, fix size.

@ Inherent assumption is that the function is smooth and slowly varying.

@ But we want to have a sharply picked function to have good localization!
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Efficient Object Localization

Problem: Exhaustive evaluation of argmaxgep f(B) is too slow.
Solution: Use the problem’s geometric structure.
TN s

7

@ Similar boxes have similar scores.

@ Calculate scores for sets of boxes
jointly (upper bound).

@ If no element can contain the
object, discard the set.

o Else, split the set into smaller
parts and re-check, etc.

= efficient branch & bound algorithm
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Efficient Object Localization

@ Hierarchically split the parameters space into disjoint subsets, keeping
bounds for the maximal quality for each of the subsets.
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Efficient Object Localization

@ Hierarchically split the parameters space into disjoint subsets, keeping
bounds for the maximal quality for each of the subsets.

@ Explore first promising parts.
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Efficient Object Localization

@ Hierarchically split the parameters space into disjoint subsets, keeping
bounds for the maximal quality for each of the subsets.

@ Explore first promising parts.

@ Large parts of the parameter space do not have to be explored further
if the upper-bound says that they cannot contain the maximum.
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Efficient Object Localization

@ Hierarchically split the parameters space into disjoint subsets, keeping
bounds for the maximal quality for each of the subsets.

@ Explore first promising parts.

@ Large parts of the parameter space do not have to be explored further
if the upper-bound says that they cannot contain the maximum.

@ Param space is the set of all possible rectangles.

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 55 /78



Efficient Object Localization

@ Hierarchically split the parameters space into disjoint subsets, keeping
bounds for the maximal quality for each of the subsets.

@ Explore first promising parts.

@ Large parts of the parameter space do not have to be explored further
if the upper-bound says that they cannot contain the maximum.

@ Param space is the set of all possible rectangles.

@ Subsets are formed by imposing restrictions on the values that the
rectangles can take.
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Branch & Bound Search

Initialize Priority Queue

sorted by upper bound

Form a priority queue that stores sets

Opuhial) of boxes.
Q.push(q2) 4=Q:pop0 e Optimality check is O(1).
e Splitis O(1).
split q disjointly ' @ Bound calculation depends on
4=ql U q2 quality function. For us: O(1)

@ No pruning step necessary

@ n x m images: empirical performance O(nm) instead of O(n*m?).

@ No approximations, solution is globally optimal
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Branch & Bound

Branch & bound algorithms have three main design choices
@ Parametrization of the search space
@ Technique for splitting regions of the search space
@ Bound used to select the most promising regions

[Source: C. Lampert]
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Sliding Window Parametrization

@ Low dimensional parametrization of bounding box
(left, top, right, bottom)

Rectangle [lt,r,b]

b+
vy

[Source: C. Lampert]
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Sets of Rectangles

Branch-and-Bound works with subsets of the search space.

o Instead of four numbers [/, t, r, b], store four intervals [L, T, R, B]:

L = [lo,Ini] R = [rio,mi] X
L — [//O R Ihl] . [n.,,p.,]“ Largest possible rectangle [tio,bni,lio,rni]
Smallest possible rectangle [thi,bio,Ini,rio]
T = [tio, thi
R = [rio, rhi]
B = [bio, b o]
J

[Source: C. Lampert]
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Branch-Step: Splitting Sets of Boxes

rectangle set [L, R, T, B]

L= [hoed R = .o x
‘

Largest possible rectangle [bw,boike,m]
T = [betn]
i, Bro I o]
B = [binbe]
v
[T Fi=[ran) x L =[] et
Torgestponaibie mcngie Baiornd] oot possibie rangis Bofaiod
T o bt T [betel]
Smallest possible rectangle [tu.bie bure] Smallest possible rectangle [tsbialn,ne]
B aepnd 5ot
¥, ¥,
L, Ry, T, B] with Ry = ot Thi. L, Ry, T, B] with R := [| Tet’hi | 11
[L, Ry, T, B] with Ry := [r, | {e57hE |] [L, Ra, T, B] with Ry := [| o750 | +1, rpy]

@ Finish when we have the rectangle which quality is as good as the upper
bound of the remaining candidates.
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Branch-and-Bound Optimization Procedure

Require: image | € R™™
Require: quality bounding function f
Ensure: B = argmaxgg fi(B)
initialize @ as empty priority queue
initialize B = [0, n] x [0, m] x [0, n] x [0, m] indicating the top, left,
bottom, and right of the box could fall anywhere in /
repeat
split B— B1 U B, by splitting the range of one of the sides into two
push (f{(B1), B1) and (f;(B2), B2) into Q
retrieve top state, B, from Q
until B consists of only one rectangle, B

[Source: C. Lampert]
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Bound-Step: Constructing a Quality Bound

We have to construct PP : { set of boxes } — R such that
i) fUPPer(B) > maxgeg f(B),
ii) fuPPer(B) = f(B), if B={B}.

@ The first condition ensures that f“PP¢"(]3) is an upper bound.

@ The second condition ensures the optimality of the solution to which
the algorithm converges.
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Bound-Step: Constructing a Quality Bound

We have to construct PP : { set of boxes } — R such that
i) fUPPer(B) > maxgeg f(B),
ii) fuPPer(B) = f(B), if B={B}.

@ The first condition ensures that f“PP¢"(]3) is an upper bound.

@ The second condition ensures the optimality of the solution to which
the algorithm converges.

e fUPPe"(]3) has only to be defined for rectangle sets on a [T, B, L, R|
representation.
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Bound-Step: Constructing a Quality Bound

We have to construct PP : { set of boxes } — R such that
i) fUPPer(B) > maxgeg f(B),
ii) fuPPer(B) = f(B), if B={B}.

@ The first condition ensures that f“PP¢"(]3) is an upper bound.

@ The second condition ensures the optimality of the solution to which
the algorithm converges.

e fUPPe"(]3) has only to be defined for rectangle sets on a [T, B, L, R|
representation.

@ For every f there is a spectrum of possible bounding functions

e Select a bound that is easy to compute
o Select a bound that it's tight

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 62 /78



Example: SVM with Linear Bag-of-Features Kernel

@ Convert the images to grayscale

@ Extract local image descriptors in multiple scales

@ on interest points and on a regular 10 x 10 pixel grid
e 10,000 — 30,000 descriptors per images
o descriptors lie in R?® (SIFT) or R% (SURF)

@ Perform a k-means clustering (k = 3000) on the set of all descriptors
@ Keep the cluster centers as visual codewords

@ For each descriptor store the ID of the its nearest codebook neighbor

2249 935 227 714 2249 .. 05 712 229 54 113 .

= = ES X X X x X X X = =

person|x * X X x *
X X X X X X X X X X X X
5 = kS x
s s X X X X X X X X X X
% cow X %
X

x X ® x X X X X x X = =

R training testing

[Source: C. Lampert]
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Example: SVM with Linear Bag-of-Features Kernel

@ Each image is represented by a set of feature points d;, where for each
feature point we store its image coordinates and a BOW cluster id ¢;.
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Example: SVM with Linear Bag-of-Features Kernel

@ Each image is represented by a set of feature points d;, where for each
feature point we store its image coordinates and a BOW cluster id ¢;.

@ Given a rectangular window B we can form the k-bin histogram h where
each entry hy counts how many feature points of the cluster id k occur in B.

F(B) = > as(h°. 1)

with hB the histogram of the box B.
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Example: SVM with Linear Bag-of-Features Kernel

@ Each image is represented by a set of feature points d;, where for each
feature point we store its image coordinates and a BOW cluster id ¢;.

@ Given a rectangular window B we can form the k-bin histogram h where
each entry hy counts how many feature points of the cluster id k occur in B.

F(B) = > as(h°. 1)

with hB the histogram of the box B.

F(B)=Y ;> heh, = hfw,
j k k

@ We can write

for wie =3, ol
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Example: SVM with Linear Bag-of-Features Kernel

@ Each image is represented by a set of feature points d;, where for each
feature point we store its image coordinates and a BOW cluster id ¢;.

@ Given a rectangular window B we can form the k-bin histogram h where
each entry hy counts how many feature points of the cluster id k occur in B.

F(B) = > as(h°. 1)

with hB the histogram of the box B.

F(B)=Y ;> heh, = hfw,
j k k

@ We can write

for wie =3, ol
@ Thus if histogram not normalized
f(B) = Z We;
x;€EB

with ¢; the cluster ID of the feature x;.
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Example: SVM with Linear Bag-of-Features Kernel

@ Decompose f into f which contains only the positive summands and f~
which contains only the negative ones.

Fr(B)= lwls f(B)=3 [wl-

x;€B x;i€B

@ Set B™ := Jargest box in B, B™n := smallest box in B.

o fupper(B) := fH(B™) 4 f~(B™n)  fulfills i) and ii).

i) fuPPer(B) > maxgeg f(B),
i) fueper(B) = f(B), if B={B}.
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Branch and Bound Example: 1D maximum sum

f |512]-2/-4/-5/4|3)2
fr15(2, 0/ 0] 0[4/3]|2
f~10/0/-2/-4/-5/0{0/0

[Source: C. Lampert]
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Evaluating the Quality Bound for Linear SVMs

L = [|Io,‘|hi] ) R = [rio,rni] ) X
T Largest possible rectangle [tio,bni,lio,rni]
T = [tio,thi]
1 Smallest p ibl tangle [thi,bio, hi,rio]
B= [blo,bm]}
v L
u er
f(B)=) w FOPPr(B) = Y [wils + Y [wi-
x;€B x;€Bmax x;€ Bmin

e Evaluating f!PP¢’(3) has same complexity as f(B)!
o Using integral images, this is O(1).
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Example: Spatial Pyramid

@ Construct a pyramid of grids
@ Build histograms for all grid cells in all levels

@ Sum the kernels for all histograms (possibly weighted)

level 0

[Source: C. Lampert]

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012



Example: Spatial Pyramid

@ Let h® be the histogram of the box B at level / quadrant (a, b)

L
F(B) =3 D> af ™ hl s M o)

j I=1 ab
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Example: Spatial Pyramid

@ Let h® be the histogram of the box B at level / quadrant (a, b)
L
1,(a,b i
=322 o by o)
j I=1 ab
@ We can write
I(a;b) a,b)
YY) 2 i s o = ZZthI(abwk
j I=1 ab I=1 a,b

a,b
for Wk( ) — =3 ozjhf(,(ab)
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Example: Spatial Pyramid

@ Let h® be the histogram of the box B at level / quadrant (a, b)

L
=33 > A ey o)

j I=1 ab

@ We can write

ZZZ&’(“’)Zh on = ZZthabWﬁ")

j I=1 ab I=1 a,b
I,(a,b) _
for wy Z O‘th</(a b)

@ Thus if histogram not normalized

F(B)=3 > > W

with ¢; the cluster ID of the feature x;.
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Example: Spatial Pyramid

@ Let h® be the histogram of the box B at level / quadrant (a, b)

L
=2 ,z; z,; o5 b oy B (o)
j 1=1 a
@ We can write
Z;Zba/(ab)zh J,(a,b) Z;thkl(abwkab)
J a a
for Wk(a b =3 ozjhf(,(a b)

@ Thus if histogram not normalized

F(B)=3 > > W

with ¢; the cluster ID of the feature x;.

@ Bound each term in a similar manner as before for each cell
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Example: Non-linear Additive classifiers

@ The generalized intersection kernel is defined as

kGHI h, hj Z[mm hka

with v a normalization parameter.
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Example: Non-linear Additive classifiers

@ The generalized intersection kernel is defined as

kGHI h, hj Z[mm hka

with v a normalization parameter.

@ We define )
=" ) [min(H,, )]
j k
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Example: Non-linear Additive classifiers

@ The generalized intersection kernel is defined as

kGHI h, hj Z[mm hka

with v a normalization parameter.

@ We define )
F(B) = a; ) [min(k, h)]"
j k
@ We can bound by the number of keypoints that fell into B> and B™".
min(h, h?) < min(he, hB) < min(hy, hE)
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Example: Non-linear Additive classifiers

@ The generalized intersection kernel is defined as

kGHI h, hj Z[mm hka

with v a normalization parameter.

@ We define )
F(B) = a; Y [min(h}, h{)]

j k
@ We can bound by the number of keypoints that fell into B> and B™".
min(h, h?) < min(he, hB) < min(hy, hE)

@ Therefore

Foorer(B) = 3 ag[min(hi, BE) + D aylmin(he, hf)]”

a; >0 a;<0
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Results: UIUC Cars Dataset

@ 1050 training images: 550 cars, 500 non-cars

[Source: C. Lampert]
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Results: UIUC Cars Dataset

@ Evaluation: Precision-Recall curves with different pyramid kernels

UIUC Cars (single scale) UIUC Cars (multi scale)

1.0 1. -
—bag of words — bag of words
— 2x2 pyramid — 2x2 pyramid
— 4x4 pyramid — 4x4 pyramid
— 6x6 pyramid ool —— 6x6 pyramid
— 8x8 pyramid : —— 8x8 pyramid
10x10 pyramid 10x10 pyramid
R 0.6] 1
e e
Q o
o [
- -
R 0.4f i
R 0.2 B
5T 0z 03 04  0s 0485 02 01 06 08 1.0
1-precision 1-precision
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Results: UIUC Cars Dataset

@ Evaluation: Error Rate where precision equals recall

[Source: C. Lampert]

] method \data set single scale \ multi scale ‘
10 x 10 spatial pyramid kernel 1.5% 1.4%
4 x 4 spatial pyramid kernel 1.5% 7.9%
bag-of-visual-words kernel 10.0% 71.2%
Agarwal et al. [2002,2004] 23.5% 60.4 %
Fergus et al. [2003] 11.5% —
Leibe et al. [2007] 2.5% 5.0%
Fritz et al. [2005] 11.4% 12.2%
Mutch/Lowe [2006] 0.04 % 9.4%

UIUC Car Localization, previous best vs. our results
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Results: PASCAL VOC 2007 challenge

We participated in the
PASCAL Challenge on Visual Object Categorization (VOC) 2007

@ training: ~5,000 labeled images

@ task: =5,000 new images, predict locations for 20 object classes

aeroplane, bird, bicycle, boat, bottle, bus, car, cat, chair, cow, diningtable,
dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tv/monitor

e natural images, downloaded from Flickr, realistic scenes
e high intra-class variance
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Results: PASCAL VOC 2007 challenge

Results:
@ High localization quality: first place in 5 of 20 categories.

@ High speed: ~ 40ms per image (excl. feature extraction)

Example detections on VOC 2007 dog.
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Results: PASCAL VOC 2007 challenge

Results:
@ High localization quality: first place in 5 of 20 categories.

@ High speed: ~ 40ms per image (excl. feature extraction)

D08 g v e et | . DR SRR
—— MPI_ESSOL (0.240) |} : —— MPI_ESSOL (0.162)
0.7 — MPI_Center (0.208) 07 : : — MPI_Center (0.141)
—— INRIA_PlusClass (0.132) : : ——— TKK (0.126)
_ 08 UoCTTI (0.098) : 08 : : —— INRIA_PlusClass (0.071)
5 —— TKK (0.050) : : UoCTTI (0.023)
g 08 IRISA (0.026) © 05 ‘ INRIA_Normal (0.016)
5 INRIA_Normal (0.018) : : :

q 1 0 H i Il
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
recall recall

Precision—Recall curves on VOC 2007 cat (left) and dog (right).
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PASCAL VOC 2006 "cat"
250000 B
—— SWC (10x10 pixel blocks)
SWC (20x20 pixel blocks)

200000} eeee ESS R
- 1

150000}

100000}

50000f

classifier evaluations

—L
100000 200000 300000
imaqe size [pixels]

PASCAL VOC 2006 "dog"
— SWC (10x10 pixel blocks) }/

SWC (20x20 pixel blocks)

sses ESS

150000

100000

50000f

classifier evaluations

L
100000 200000 300000
image size [pixels]
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Extensions

Branch-and-bound localization allows efficient extensions:

@ Multi-Class Object Localization:

B, C)Pt = (B
(B,C) arg o max_, 1~ (B)

finds best object class C € C.

@ Localized retrieval from image
databases or videos

|, B)°Pt — (B
(1,B) arg , max 1(B)

find best image / in database D.

. . . . Nearest Neighbor query for Red Wings
Runt|me IS SUbIInear n |C| and ’D’ Logo in 10,000 video keyframes in “Ferris

Buellers Day Off”
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o For a 640 x 480 pixel image, there are over 10 billion possible regions
to evaluate

@ Sliding window approaches trade off runtime vs. accuracy
e scale
e aspect ratio
e grid size

o FEfficient subwindow search finds the
maximum that would be found by an
exhaustive search

e efficiency
e accuracy
o flexibile

@ just need to come up with a
bound

Source code is available online
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