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Abstract

Many perception and multimedia indexing prob-
lems involve datasets that are naturally comprised
of multiple streams or modalities for which super-
vised training data is only sparsely available. In cases
where there is a degree of conditional independence
between such views, a class of semi-supervised tech-
niques based on maximizing view agreement over un-
labeled data has been proven successful in a wide
range of machine learning domains. However, these
‘co-training’ or ‘multi-view’ learning methods have
had relatively limited application in vision, due in
part to the assumption of constant per-channel noise
models. In this paper we propose a probabilistic het-
eroscedastic approach to co-training that simultane-
ously discovers the amount of noise in a per exam-
ple basis, while solving the classification task. This
results in high performance in the presence of oc-
clusion or other complex observation noise processes.
We demonstrate our approach in two domains, multi-
view object recognition from low-fidelity sensor net-
works and audio-visual classification.

1 Introduction

Many perception problems inherently involve multi-
ple ‘views’, where a view is broadly defined to mean
any sensor stream of a scene or event. The different
views can be formed from the same sensor type (e.g.,
multiple cameras overlooking a common scene), come
from different modalities (e.g., audio-visual events, or
joint observations from visual and infra-red cameras),

and/or be defined by textual or other metadata (im-
age captions, observation parameters).

It is also typical that labeled data is expensive
to obtain while unlabeled data may be available in
relatively large quantities; researchers have thus in-
vestigated semi-supervised and transductive learning
techniques, which attempt to exploit the statistics
of unlabeled data to improve performance. Semi-
supervised learning in the presence of multiple views
has received considerable recent interest in the ma-
chine learning community, and a class of techniques
based on the classic ‘co-training’ method [2] and the
more general notion of maximizing agreement on un-
labeled data while training classifiers to be optimally
predictive of labeled data, has been successful in a
range of tasks [6, 4, 10, 17].

With a few notable exceptions [4, 17, 10], how-
ever, co-training-type methods have had only lim-
ited success on visual tasks. We argue here that this
is due in part to restrictive assumptions inherent in
existent multi-view learning techniques. Classically,
co-training assumes ‘view sufficiency’, which simply
speaking means that either view is sufficient to pre-
dict the class label, and implies that whenever ob-
servations co-occur across views they must have the
same label. In the presence of complex noise (e.g., oc-
clusion), this assumption can be violated quite dra-
matically. A variety of approaches have been pro-
posed to deal with simple forms of view insufficiency
[17, 12, 18], however, more complex forms of noise
such as per sample occlusion have received less atten-
tion. We develop here a co-training algorithm that
is robust to complex sample corruption and view dis-

agreement, i.e., when the samples of each view do not
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belong to the same class due to occlusion or other
view corruption.

Christoudias et al. [5] have reported a filtering ap-
proach to handle view disagreement, and develop a
model suitable for the case where the view corruption
is due to a background class. However, occlusion can
occur with or without a dominant background, and
as shown in our experiments below, their method per-
forms poorly in the latter case. Yu et al. [18] recently
presented a Bayesian approach to co-training, with a
view-dependent noise term. We show here that the
presence of complex noise can be tackled in a gen-
eral and principled way by extending Bayesian co-
training to incorporate sample-dependent noise. Our
heteroscedastic Bayesian co-training algorithm simul-
taneously discovers the amount of noise while solving
the classification task. Unlike previous multi-view
learning approaches, our approach can cope with a
variety of complex noises and per-sample occlusions
that are common to many multi-sensory vision prob-
lems.

In our experiments we demonstrate our approach
on two different multi-view perceptual learning tasks.
The first task is multi-view object classification from
multiple cameras on a low-fidelity network, where the
object is often occluded in one or more views (e.g.,
as a result of network asynchrony or the presence
of other objects). For a two-view multi-class object
recognition problem we show that our approach is
able to reliably perform recognition even in the pres-
ence of large amounts of view disagreement and par-
tial occlusion. We also consider the task of audio-
visual user agreement recognition from head gesture
and speech, where view disagreement can be caused
by view occlusions and/or uni-modal expression, and
show that unlike existing approaches our method is
able to successfully cope with large amounts of com-
plex view corruption.

2 Background: Multi-View

Learning

Multi-view learning approaches [1, 2, 6, 9, 13, 15, 18]
form a class of semi-supervised learning techniques
that use multiple views to effectively learn from par-

tially labeled data. Blum and Mitchell [2] intro-
duced co-training which bootstraps a set of classi-
fiers from high confidence labels. Nigam and Ghani
[13] presented a co-EM algorithm that uses soft la-
bel assignment with EM to bootstrap classifiers from
multiple views. Collins and Singer [6] proposed a
co-boost approach that optimizes an objective that
explicitly maximizes the agreement between each
classifier, while Sindhwani et. al. [15] defined a
co-regularization method that learns a multi-view
classifier from partially labeled data using a view
consensus-based regularization term.

More formally, let Xi = [x1
i , · · ·x

V
i ] be a multi-

view observation, and let Xi = [xi
1, · · ·x

i
N ]T be a

set of observations from a single view i. Multi-view
learning approaches mutually train a set of classifiers,
one per view, by maximizing their agreement on the
unlabeled data, e.g., using the L2 norm,

min
∑

xk∈U

∑

i6=j

‖fi(x
i
k) − fj(x

j
k)‖2

2 (1)

where fk
i is the prediction from the classifier of view k

for the unlabeled data point xk. Minimizing Eq. (1)
is beneficial when the different views are condition-
ally independent given the class label and sufficient
for classification, i.e., classification can be performed
from either view alone.

Yu et al. [18] proposed a probabilistic approach to
co-training, called Bayesian Co-training, that com-
bines multiple views in a principled way. In particu-
lar, they introduced a latent variable fj for each view
and a consensus latent variable, fc, that models the
agreement between the different classifiers. They as-
sumed a Gaussian process prior [14] on the latent
variables

fj ∼ N (0,Kj) , (2)

where fj = [fj(x
j
1), · · · , fj(x

j
N )]T is the set of latent

variables for all observations of a single view j. For
simplicity in the discussion we assumed that the clas-
sification task is binary, y ∈ {−1, 1}; this implies that

fj(x
j
i ) ∈ ℜ.

Assuming conditional independence between the
labels y and the latent variables in each view, fi, the
joint probability can be factorized in the following
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form

p(y, fc, f1, · · · , fV ) =

1

Z

n
∏

i=1

ψ(yi, fc(Xi))

m
∏

j=1

ψ(fj)ψ(fj , fc) (3)

where Z is a normalization constant, V is the number
of views, N the number of datapoints, and Xi =
[x1

i , · · ·x
V
i ] is the i-th multi-view observation. The

potential ψ(fj) ∼ N (0,Kj) arises due to the GP prior
in Eq. (2) and specifies within-view constraints for
the latent variables. Intuitively, this enforces that the
latent variables in a particular view should co-vary
according to the similarities specified by the kernel
matrix Kj .

The potential ψ(yi, fc(Xi)) defines the dependence
of the consensus variable and the final output. As
with other GP models this can either be a Gaussian
noise model or a classification likelihood defined via
a link function (e.g., probit or logistic function). For
computational efficiency a Gaussian noise model was
used in [18].

Finally, the potential ψ(fj , fc) defines the com-
patibility between the j-th view and the consen-
sus function and can be written as: ψ(fj , fc) =

exp(− ||fj−fc||
2

2σ2

j

). The parameters σj act as reliabil-

ity indicators and control the strength of interaction
between the j-th view and the consensus latent vari-
able. A small value of σj imposes a strong influence
of the view on the final output, whereas a very large
value allows the model to discount observations from
that view.

It has been shown that Bayesian co-training [18]
improves performance with respect to other state-of-
the-art co-training approaches. However, it can only
handle per-view noise, i.e., each sample of a given
view is assumed to be corrupted by the same amount
of noise. As a consequence, as shown below, its per-
formance degrades significantly when dealing with
per sample noise, i.e., noisy labels and/or observa-
tions.

Several approaches have been proposed in the
multi-view learning literature to cope with view in-
sufficiency or noise [6, 15, 17, 18, 12]. However, these
approaches have mostly focused on relatively simple

noise models, e.g., that assume a uniform per view
noise corruption [17, 18, 12], and have difficulty deal-
ing with more complex view corruption such as that
caused by per sample view occlusion. Christoudias et
al. [5] addressed the problem of view disagreement,
i.e., when the samples from each view do not always
belong to the same class. They proposed a two step
process, where first the samples with view disagree-
ment are identified and filtered using an information
theoretic criterion, and traditional co-training is ap-
plied to the remaining samples. They report results
on the case where view corruption is due to a back-
ground class. However, their algorithm suffers in the
presence of more general noise, as we show below.

3 Heteroscedastic Bayesian

Co-training

To deal with noisy data, in this paper we ex-
tend Bayesian co-training to the heteroscedastic case,
where each observation can be corrupted by a differ-
ent noise level. In particular, we assume that the la-
tent functions can be corrupted with arbitrary Gaus-
sian noise such that

ψ(fj , fc) = N (fj ,Aj) (4)

with Aj being the noise covariance matrix. The
only restriction on Aj is to be positive semi-definite
so that the resulting matrix is a Mercer kernel and
its inverse can be computed. Figure 1 depicts the
undirected graphical model of our Heteroscedastic

Bayesian Co-training approach.
Integrating out the latent functions fj in (3) results

in a GP prior over the consensus function such that

p(fc) = N (0,Kc) (5)

with covariance

Kc =





∑

j

(Kj + Aj)
−1





−1

. (6)

This implies that given a set of multi-view observa-
tions, the heteroscedastic co-training kernel Kc can
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Figure 1: Graphical model of Heteroscedastic

Bayesian Co-training (our approach). Our multi-
view learning approach extends Bayesian co-training
to incorporate sample-dependent noise modeled by
the per view noise covariance matrices Aj . Our
method simultaneously discovers the amount of noise
in each view while solving the classification task.

be directly used for Gaussian process classification
or regression. Unlike other co-training algorithms
that require alternating optimizations, Bayesian co-
training and our heteroscedastic extension can jointly
optimize all the views. Furthermore, our approach
naturally handles semi-supervised and transductive
settings as the kernel Kc is non-stationary and there-
fore depends on both the labeled and unlabeled data.

We use parametric covariances for the Kj , de-
fined in terms of a covariance function, in particu-
lar an RBF kernel, i.e., exp(−θ||x − x′||2), and non-
parametric covariances for the noise. Learning the
heteroscedastic model consists of solving for the ker-
nel hyperparameters of Kj (i.e., RBF width) and the
noise covariances Aj defined in each view. Under this
model, the number of parameters to estimate is very

large, V (N(N−1)
2 + 1), with V being the number of

views, and N the number of samples.
Additional assumptions on the type of noise can be

imposed to reduce the number of parameters, facili-
tating learning and inference. When assuming i.i.d.

noise, the covariance is restricted to be diagonal

Aj = diag(σ2
1,j, · · · , σ

2
N,j) (7)

where σ2
i,j is the estimate of the noise corrupting sam-

ple i in view j. The resulting i.i.d. noise model has
V (N + 1) parameters, which is still too large to be
manageable in practice.

To further reduce the computational complexity we
assume that the noise is quantized-i.i.d., i.e., there
are only a finite number of noise levels that can
corrupt a sample. The noise covariance for each
view j can then be expressed in terms of an indi-
cator matrix, E(j), and a vector of P noise variances,
φj = [σ2

1,j , · · ·σ
2
P,j ]

T ∈ ℜP×1 as

Aj = diag(E(j) · φj) . (8)

The indicator matrices, E(j) = [e
(j)
1 , · · · , e

(j)
N ]T are

matrices such that each row, e
(j)
i ∈ {0, 1}p×1, is an

indicator vector where one element has value one,
indicating the noise level from which that sample was
corrupted, and zero elsewhere. Note that if P = 1,
we recover Bayesian co-training [18], and if P = N ,
and ∀i, E(j) = IN , with IN the identity matrix of
size N , we recover the full i.i.d. heteroscedastic case.

Learning our model consists of estimating the in-
dicator matrices E(j), the noise values φj for each
view, and the kernel hyperparameters θj . The num-
ber of parameters to estimate is now V (K + 1),
with k ≪ N . We introduce a two-step process for
learning the parameters. First, we learn the ker-
nel hyperparameters Θ = {θ1, · · · , θV } and the noise
values Φ = {φ1, · · · , φV } for each view using n-
fold cross-validation, which as shown below, outper-
formed maximum likelihood. Note that we do not
need to estimate the indicator matrices for the la-
beled data since they are known.

The indicator matrices for the unlabeled data are
then estimated using Nearest Neighbors (NN) in each
view independently. We compute the co-training co-
variance Kc, which is non-stationary, using the la-
beled and unlabeled data.

Finally the labels for the unlabeled data are esti-
mated using mean prediction

ȳ∗ = kc(X∗)
T (K̂c + σ2IN )−1y (9)

where X∗ is a multi-view test sample, kc(X∗) is the
kernel computed between the labeled and unlabeled
data, and K̂c are the rows and columns of Kc cor-
responding to the training samples. The estimation
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Figure 2: Object recognition from camera sensors: Classification accuracy for a 10-class problem
as a function of the number of training samples for 0%, 50% and 90% view disagreement. Performance
is shown averaged over 10 splits, the error bars indicate ± 1 std. deviation. Our approach significantly
outperforms the single-view and Bayesian co-training baseline methods (we used an implementation of [18])
in the presence of view disagreement.

of K̂c involves the computation of kernels formed us-
ing training and test data, since the kernel involves
computing inverses. Here, we have assumed that the
mapping between fc and y is Gaussian with noise
variance σ2. In practice, a small value of σ is used,
giving robustness to the inversion of Kc.

Finally our method is easily extended to the multi-
class case by combining binary classifiers with a 1
vs. 1 or 1 vs. all approach. In particular, in our
experiments below we use 1 vs. all classifiers.

4 Experimental Evaluation

We demonstrate our approach on two different multi-
view perceptual learning tasks: multi-view object
classification and audio-visual gesture recognition.

We first consider the problem of multi-view object
classification from cameras that lie on a low-fidelity
sensor network, where one or more views are often
corrupted by network asynchrony and/or occlusion.
For this setting, we collected a database of 10 objects
imaged from two camera sensor motes [3] placed at
roughly 50 degrees apart. The objects were rotated
from 0 to 350 degrees at 10 degree increments to give
36 views for each instance from each camera. We use
a bag-of-words representation for classification, where
SIFT features are extracted on a grid over a bound-
ing box region surrounding the object in each image.

These features are then quantized using a hierarchical
feature vocabulary computed over the features of all
the images across views and similarity between im-
ages is measured using the pyramid match similarity
[7].

In this setting, we consider two forms of sample
corruption, partial and complete view occlusion. In
the latter case, we randomly replaced samples in each
view with background images captured from each
camera that do not contain any object. To simulate
partial occlusions, we randomly selected a quadrant
(i.e., 20% of the image) of each image and discarded
the features from that quadrant.

For the second task, we evaluate our approach on
the problem of audio-visual user agreement recogni-
tion from speech and head gesture. In this setting,
sample corruption can occur in the forms of view oc-
clusion and uni-modal expression (e.g., a subject can
say ‘yes’ without gesturing). We use the database
of [4], that is comprised of 15 subjects interacting
with an avatar in a conversational dialog task. The
database contains segments of each subject answer-
ing a set of yes/no questions using both head gesture
(i.e., head nod or shake) and speech (i.e., a ‘yes’ or
‘no’ utterance).

Following Christoudias et al. [5], we simulate
view corruption by randomly replacing samples in the
visual domain with random head motion segments
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Figure 3: Object recognition from camera sensors: Classification accuracy as a function of the level
of view disagreement. Performance is shown averaged over 10 splits, error bars indicate ± 1 std. deviation.
Our approach is able to achieve good performance across a full range of view disagreement levels, even when
presented with a small number of labeled training samples (M = 4). Multi-view baseline performance was
from [18].

taken from non-response portions of each user’s in-
teraction and in the audio domain with babble noise.
The visual features are 3-D FFT-based features com-
puted from the rotational velocities of a 6-D head
tracker [11]. The audio features are 9-D observa-
tions computed from 13-D Mel Frequency Cepstral
Coefficients (MFCCs) sampled at 100Hz over the seg-
mented audio sequence corresponding to each user re-
sponse using the method of [8]. For both the multi-
view image and audio-visual databases we corrupt
the samples such that for each corrupted multi-view
sample at least one view is un-occluded.

We compare our approach against Bayesian co-
training [18] and the approach of Christoudias et.
al [5]. We also compare against single view perfor-
mance using GP regression-based classifiers in each
view and multi-view GP kernel combination. We
evaluate each approach under the Correct Classifi-
cation Rate (CCR) evaluation metric defined as

CCR =
# samples correctly classified

# of samples
(10)

For learning the parameters to our model we used n-
fold cross validation from the labeled examples, with
n = 2 held-out examples per class.

In what follows we first demonstrate our approach
for the case of binary view corruption under each of
the above databases, where each view sample is ei-

ther completely occluded or un-occluded. We then
present results on a more general noise setting that
also contains partial view occlusions.

4.1 View Disagreement

We first show results on the task of instance-level,
multi-view object classification. For this experiment
we split the data into labeled train, and unlabeled
train and test by retaining M samples per object
instance to comprise the training set and 5 sam-
ples per instance to form the unlabeled set. Fig-
ure 2 displays the results of our approach averaged
over 10 random splits of the data with labeled set
sizes M = 4, 7, 10, 15 and with 0, 50 and 90 per-
cent view disagreement. Single view GP regression-
based classification performance and the performance
of Bayesian co-training are also shown for compari-
son.

At zero percent view disagreement both Bayesian
co-training and our approach give good performance,
and improve over the single-view baselines. At non-
zero view disagreement levels, however, Bayesian co-
training is no longer able to improve over single-view
performance and in fact often under-performs. The
single-view baselines also degrade in the presence of
view corruption since they are unable to reliably infer
class labels over the occluded samples. In contrast,
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Figure 4: Audio-visual recognition: Classification accuracy as a function of the number of training
samples for 0%, 50% and 98% view disagreement. Performance is shown averaged across 10 splits, the error
bars indicate ± 1 std. deviation. (top) Comparison with single-view and Bayesian co-training approaches,
and (bottom) audio and video classifiers from filter-based co-training [5] and the results of multi-view kernel
combination. In contrast to the baseline approaches, our method is able successfully combine each view to
achieve good classification accuracy even in the presence of gross view corruption (98% view disagreement).

our approach is able to benefit from view combina-
tion and successfully infer the class labels even in the
presence of gross view corruption (up to 90% view
disagreement).

In Figure 3 the performance of our method com-
pared to the single- and multi-view baselines on the
multi-view image dataset is also shown for fixed train-
ing set sizes with varying view disagreement levels,
averaged over the same splits used to generate Figure
2. In contrast to Bayesian co-training our approach
is able to sustain good performance across all view
disagreement levels, even with relatively few labeled
training examples per class (M = 4).

Next we illustrate our approach on the audio-visual
user agreement dataset from head gesture and speech.
Similar to the previous experiments we separated the
data intoM samples per class for labeled train and 50

samples per class for unlabeled train and test. Fig-
ure 4 shows the performance of our approach aver-
aged over 10 random splits of the data over labeled
set sizes M = 4,7,10,15 and with 0, 50 and 90 per-
cent view disagreement. As before, the performance
of single view GP regression-based classification and
Bayesian co-training are also shown. Figure 5 dis-
plays the same comparison over fixed training set
sizes and for varying amounts of view disagreement.

Unlike the multi-view image database there is a
clear imbalance between each of the audio and vi-
sual modalities, where the audio modality is much
weaker than the visual one. Yet, without any a pri-
ori knowledge of which is the more reliable modality
both our approach and Bayesian co-training are able
to effectively combine the views and retain the good
performance of the visual modality in the presence of
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Figure 5: Audio-visual recognition: Classification accuracy as a function of the level of view disagreement.
Performance is shown averaged over 10 splits, error bars indicate ± 1 std. deviation. (top) Comparison to
single-view and Bayesian co-training approaches and (bottom) filter-based co-training and multi-view kernel
combination. The audio-visual dataset contains imbalanced views which in the presence of per-sample view
corruption adversely affects multi-view kernel combination. Unlike the baseline methods, our approach
maintains is to large amounts of view disagreement even when the views are imbalanced.

0 percent view disagreement. For non-zero view dis-
agreement the performance of Bayesian co-training
degrades and in contrast to all three baseline meth-
ods our approach is able to maintain relatively good
performance even with up to 98% view disagreement.

We also compared our approach to the filter-based
co-training approach of Christoudias et. al. [5] on
the audio-visual user agreement dataset. Figure 4
displays the performance of our approach and the
performance of the naive Bayes audio and visual clas-
sifiers obtained from the filter-based co-training tech-
nique of [5] averaged over 10 splits of the data with
training set sizes M = 4,7,10,15 and with 0, 50 and
98 percent view disagreement. Similarly, Figure 5
displays average performance over fixed training set
sizes and with varying amounts of view disagreement.

The filter-based co-training baseline assumes that
the conditional view entropy when conditioning on

a corrupted sample is higher than that of an un-
corrupted one. In the absence of a dominant back-
ground class this assumption does not hold for bi-
nary classification and filter-based co-training per-
forms poorly. In contrast, our approach can model
a wider range of view disagreement distributions and
outperforms filter-based co-training on this task.

Supervised multi-view kernel combination ap-
proaches have recently received much attention in
the machine learning and computer vision litera-
ture, and have proven quite successful for challeng-
ing object categorization tasks [16]. Kernel combina-
tion approaches can suffer in the presence of sample-
dependent noise such as that caused by view disagree-
ment or when there is an imbalance between each
view or feature set as is the case in the audio-visual
user agreement dataset. Figures 4 and 5 also dis-
play the performance of a kernel combination baseline
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Figure 6: Cross-validation vs. maximum likelihood: Average performance is shown over 10 splits for
(left) the multi-view image database and (right) the audio-visual gesture database. Cross-validation either
matches or outperforms maximum likelihood across both datasets.

whose covariance function is modeled as the weighted
sum of the covariance functions from each view. The
performance of the multi-view kernel combination
baseline degrades in the presence of view disagree-
ment on this audio-visual gesture recognition task.
The application of our approach for modeling per
sample distances in multi-view kernel combination
object classification schemes such as [16] is an inter-
esting avenue for future work.

Finally, we evaluated the performance of our ap-
proach using both maximum likelihood and n-fold
cross-validation parameter learning. Figure 6 dis-
plays the performance under each technique evalu-
ated with both datasets, with M = 10 and varying
amounts of view disagreement, where maximum like-
lihood parameter learning was initialized from n-fold
cross validation. Across both datasets n-fold cross-
validation either matches or outperforms maximum
likelihood performance.

4.2 General Noise

Our multi-view learning approach can also cope with
more general forms of view corruption or noise, be-
yond binary view disagreement. To illustrate this
point we evaluated our approach on the multi-view
object dataset with the views corrupted by two differ-
ent noise processes, partial and complete occlusion.

Under this setting, we tested our approach with
different noise quantization levels, P . Figure 7 dis-

plays the performance of our approach for P = 1,2,3.
For P=1 our approach defaults to the Bayesian co-
training baseline. For greater values of P our ap-
proach does increasingly better, since this gives our
model greater flexibility to deal with the different
kinds of noise present in the data. As expected P=3
does the best, since unlike P=2 it can further differ-
entiate between partially and entirely occluded sam-
ples.

5 Conclusion

In this paper we have introduced Heteroscedastic

Bayesian Co-training, a probabilistic approach to
multi-view learning that simultaneously discovers the
amount of noise in a per example basis, while solv-
ing the classification task. We have demonstrate the
effectiveness of our approach in two domains, multi-
view object recognition from low-fidelity sensor net-
works and audio-visual user agreement recognition.
Our approach, unlike state-of-the-art co-training ap-
proaches, results in high performance when dealing
with large amounts of partially occluded and view
disagreement observations. Interesting avenues of fu-
ture work include the generalization of our approach
to non-i.i.d. sample-dependent noise models and the
application of our approach to modeling sample de-
pendent distances in multi-view kernel combination-
based object category classification schemes.
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Figure 7: Simultaneously coping with partial occlusion and view disagreement: Influence of the
number of noise levels P on classification accuracy when the multi-view image data is corrupted by view
disagreement and partial occlusion. Performance is shown averaged over 10 splits, error bars indicate ±
1 std. deviation. As expected with a large value of noise components our method performs better. With
P = 1 our model is equivalent to Bayesian co-training.
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