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Abstract

In this paper we propose an approach to jointly estimate
the layout of rooms as well as the clutter present in the scene
using RGB-D data. Towards this goal, we propose an effec-
tive model that is able to exploit both depth and appearance
features, which are complementary. Furthermore, our ap-
proach is efficient as we exploit the inherent decomposition
of additive potentials. We demonstrate the effectiveness of
our approach on the challenging NYU v2 dataset and show
that employing depth reduces the layout error by 6% and
the clutter estimation by 13%.

1. Introduction
Finding the 3D structures composing the world is key

for developing autonomous systems that can navigate the
environment, and importantly, recognize and interact with
it. While finding such structures from monocular imagery
is extremely difficult, depth sensors can be employed to re-
duce the inherent ambiguities of still images. In the outdoor
setting, high-end depth sensors such as the Velodyne laser
scanner are a must for autonomous navigation. Notable ex-
amples are the Google car as well as the participants of the
DARPA Urban Challenge, which rely heavily on these sen-
sors as well as prior knowledge in the form of detailed an-
notated maps.

In the past few years, a wide variety of approaches have
exploited cheap depth sensors (e.g., Microsoft Kinect) to
improve the accuracy and robustness of computer vision
tasks. A notable example is the kinect pose estimation sys-
tem [24], probably one of the most successful commercial
products to come out of the computer vision community.
Additionally, the superiority of RGB-D sensors when com-
pared to more traditional imagery has been demonstrated
for the tasks of semantic segmentation [25, 26, 8], infer-
ring support relations [26], 3D detection [14] or estimating
physical properties of images [2].

Semantic parsing approaches that utilize RGB-D im-
agery try to estimate the basic components of a room (e.g.,
walls, floor, furniture). While effective, they formulate the
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Figure 1. Inferring layout, clutter and semantic classes: The
input image with layout prediction result (blue) and ground truth
(red) overlayed is shown in (a), the depth map employed is shown
in (b). (c) and (d) show our inferred labeling and segmentation.

problem as a semantic segmentation task, failing to exploit
the structure of the problem: rooms mostly satisfy the Man-
hattan world assumption, and the walls, floor and ceiling are
typically aligned with three dominant orientations which
are orthonormal. While these assumptions are widely used
in the monocular setting in order to estimate the layout of
rooms [29, 10, 11, 22, 23, 18], to our knowledge, they are
not commonly exploited in the presence of RGB-D imagery.

In addition to estimation of the room layout, we should
be able to retrieve the objects that compose the scene in
order to develop autonomous systems. In this paper we pro-
pose an approach to semantic parsing that estimates both
the layout of rooms as well as the clutter present in the
scene. We make use of both appearance and depth features,
which, as we show in our experimental evaluation are com-
plementary, and frame a joint optimization problem which
exploits the dependencies between these two tasks. We de-
rive an effective iterative scheme and show how decompo-
sition methods (i.e., integral geometry) can be employed to
decompose our additive energies into Markov random fields
(MRFs) with potentials containing at most two random vari-
ables. This results in an efficient algorithm, which performs
very well in practice. Furthermore, we employ appearance
and depth features in order to estimate a set of furniture
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(c) Integral geometry and compatibility potential

Figure 2. Layout parameterization and integral geometry: While the parameterization of the layout task is illustrated in (a), (b) depicts
that the area of the left wall is decomposable into a difference of green and blue highlighted ranges both depending on two angles only. (c)
Usage of integral geometry for computation of compatibility potentials where we count how much a superpixel overlaps with a hypothesized
wall.

classes from the super-pixels labeled by our approach as
clutter. The output of our method is illustrated in Fig. 1,
where RGB-D imagery is utilized in order to estimate the
room layout, the clutter as well as semantic segmentation.

We demonstrate the effectiveness of our approach us-
ing the challenging NYU v2 dataset [26] and show that by
employing depth we boost performance of the layout es-
timation task by 6% while clutter estimation improves by
13%. This is to be expected since “clutter” occupies the
foreground which is easily apparent in depth images. Ad-
ditionally we show how a wide variety of semantic classes
can be obtained by utilizing depth and appearance features.

2. Related Work
Early approaches to semantic scene understanding in

the outdoor setting focused on producing qualitative 3D
parses [19, 13, 6], ground plane estimates [30] or parsing
facades [27, 17]. More recently, accurate estimations of the
road topologies at intersections [4] as well as the 3D ve-
hicles present in the scene [5] have been estimated from
stereo and monocular video respectively. Depth sensors in
the form of high-end laser scanners have become a standard
in the context of autonomous driving (e.g., the Google car).

Indoor scene understanding approaches have taken ad-
vantage of the Manhattan world properties of rooms and
frame the layout estimation task as the prediction of a
3D cuboid aligned with the three main dominant orienta-
tions [10, 11, 18, 22, 23, 16, 29]. Assuming vanishing
points to be given, Hedau et al. [10] and Wang et al. [29]
showed that the problem has only four degrees of freedom.
Inference, however, remains difficult as a priori the involved
potentials, counting features in each of the faces defined
by the layout, are high-order. As a consequence, only a
few candidates were utilized, resulting in suboptimal solu-
tions. A few years later, Schwing et al. [22] showed that the
a priori high-order potentials, are decomposable into sums
of pairwise potentials by extending the concept of integral
images to accumulators oriented with the dominant orien-

tations. As a consequence denser parameterizations were
possible, resulting in much better performance. In [23],
a branch and bound approach was developed to retrieve a
global optimum of the layout problem. More general lay-
outs than 3D cuboids were predicted in [3]. Among other
applications, room layouts have been used in [7] to predict
affordances and in [12, 20] to estimate the free space.

While a wide variety of approaches have been proposed
in the monocular setting, to our knowledge no approach has
taken advantage of RGB-D imagery. Perhaps one of the rea-
sons is the absence of a dataset with depth and layout labels.
In this paper we investigate how cheap depth sensors can be
used to help the layout problem and show that significant
improvements are obtained. Towards this goal, we labeled
a subset of the NYU-RBGD v2 dataset with layout labels.

In the monocular setting, Wang et al. [29] reason jointly
about the layout as well as the clutter present in the scene.
They propose to make use of an iterated conditional modes
(ICM) algorithm, to tractably deal with the complex poten-
tials resulting from the interaction of the clutter and the lay-
out. However, this algorithm gets easily trapped in local
optima. As a result, their layout estimation results are more
than 5% lower than the state-of-the-art. In contrast, in this
paper we propose an effective approach to the joint layout
and clutter estimation problem, which is able to exploit ap-
pearance, depth, as well as compatibility potentials linking
the two estimation problems. We propose an effective infer-
ence scheme, which alternates between computing the lay-
out and solving for the image labeling problem. As we take
advantage of the inherent decomposition of the potentials,
our approach is efficient and results in impressive perfor-
mance improving 6% over the state-of-the-art in the layout
task and 13% in estimating clutter.

3. Joint Layout and Clutter Labeling
In this section we describe our novel approach, which

jointly estimates the layout of rooms as well as the clut-
ter present in the scene. Towards this goal, we propose a



1 a can’t be up above b
2 a can’t be below to b
3 a can’t be right to b
4 a can’t be left to b
5 a can’t be in front of b
6 a can’t be behind b

a – b ceiling floor left wall front wall right wall clutter
ceiling 2 2, 4 2, 5 2, 3 2
floor 1 1, 4 1, 5 1, 3 1

left wall 1, 3 2, 3 3, 5 3 3
front wall 1, 6 2, 6 4, 6 3, 6 6
right wall 1, 4 2, 4 4 4, 5 4

clutter 1 2 4 5 3
Table 1. 3D Physical Constrains: (left) set of physical constraints (right) encoding in terms of pairwise potentials.

holistic approach that is able to exploit appearance as well
as depth features. In the remainder of the section, we first
show how to obtain better superpixels by exploiting depth.
We then introduce our joint model which operates on su-
perpixels and random variables representing the layout, and
discuss our learning and inference procedures.

3.1. Superpixel estimation

We are interested in partitioning the image into super-
pixels such that each one represents a planar surface which
is part of a single object. Following [32], we extend the
SLIC [1] algorithm to utilize both appearance and depth in-
formation. We formulate the segmentation problem as min-
imizing the sum of three energies, encoding shape, appear-
ance and depth. In particular, Eloc is a location energy en-
coding the fact that superpixels should have regular shape,
Edepth encourages the depth of the superpixels to be piece-
wise planar and Eapp encodes the fact that we would like
to have similar appearance for all pixels that are subsumed
by a superpixel. More formally, let sp ∈ {1, · · · ,K} be
a random variable encoding the assignment of pixel p to a
superpixel. We define the energy of a pixel p to be

E(p, sp, µsp , csp , Dsp) = Eloc(p, sp) + λaEapp(p, sp, csp)

+λdEdepth(p, sp, gsp),

with two scalars λa and λd encoding the importance of the
appearance and depth terms. We encode the appearance of
each superpixel in terms of a mean descriptor in Lab space,
and set

Eloc(p, sp) = ||p− µsp ||22,
Eapp(p, sp, csp) = ||I(p)− csp ||22,

Edepth(p, sp, gsp(p)) = ||∇d(p)− gsp ||22,

with µsp the mean position of superpixel sp, csp the mean
descriptor in Lab space, I(p) the Lab image at pixel p,
gsp(p) the mean depth gradient descriptor, and ∇d(p) the
depth gradient computed from the RGB-D imagery.

We thus define the superpixel labeling problem as the
following minimization

min
s,D,µ,c

N∑
p=1

E(p, sp, µsp , csp , gsp),

with s = {s1, · · · , sN}, µ = {µ1, · · · , µK}, c =
{c1, · · · , cK} and g = {g1, · · · , gK} the set of all super-
pixel assignments, mean positions, mean appearance and

depth descriptors. We solve this optimization problem by
alternating between solving for assignments s given all
other variables, and solving for g, µ, c given fixed assign-
ments. Note that this is done very efficiently: The first step
decomposes over pixels, while the latter decomposes over
superpixels and even admits an update in closed form [1].

3.2. Joint model

Now that we have partitioned the image into super-
pixels by incorporating the depth cue, we define our en-
ergy considering both layout and labeling variables. Our
joint model is a conditional random field (CRF) over both
the labeling and layout task. For each superpixel, the
labeling task assigns one of the six labels, i.e., xi ∈
{clutter, left, right, front, ceiling, floor} = L. Fol-
lowing recent monocular approaches [29, 22], we repre-
sent the layout task in terms of rays originating from two
different vanishing points (VPs). In particular, we utilize
the vanishing points of [26], which take advantage of the
depth channel to produce better estimates. Given these
VPs, we represent the layout problem with four parameters
y = {y1, y2, y3, y4} ∈ Y . We refer the reader to Fig. 2(a)
for an illustration of this parameterization.

We define the energy of the system to be the sum of three
energies representing the layout and labeling tasks as well
as a compatibility term which encodes the relationship be-
tween the two tasks. We thus have

E(x,y) = Elayout(y) + Elabeling(x) + Ecomp(x,y),

where we did not explicitly provide the dependency on
the RGB-D imagery for notational convenience. Note that
Ecomp couples the inference problems, making the estima-
tion computationally difficult. In the following we describe
each of these terms.

Layout Energy: Following monocular approaches [15,
22], we define the energy of the layout as a sum of ener-
gies over the faces α of the cuboid. For each of the five
faces, we obtain the energy as a weighted sum of counts

Elayout(x,y) =

5∑
α=1

w>lay,αφlay,α(y). (1)

We employ Orientation maps (OM) [16] and Geometric
Context (GC) [13, 10] as image evidence. Given edges de-
tected in the image, OMs estimate a normal orientation for



Algorithm 1 MAP Inference

1: y(0) = miny Elayout(y)
2: for all i = 1 : M do
3: x(i) = minxElabeling(x) + Ecomp(x,y

(i−1))
4: y(i) = miny Elayout(y) + Ecomp(x

(i),y)
5: end for
6: Return x(M),y(M)

each pixel. Using the VP configuration, we convert these
normals into wall estimates, resulting in a five-dimensional
feature for each pixel. GCs are six-dimensional features that
utilize classifiers to predict the probability of each wall as
well as cutter. As a consequence, φlay,α(y) ∈ <11. Note
that although a priori these potentials are high-order (i.e.,
up to order 4 as specifying the front wall requires four vari-
ables), we utilize integral geometry to decompose the po-
tentials into sums of terms of order at most two [22]. This
is illustrated in Fig. 2(b) for the left wall.

Labeling Energy: We define the labeling energy to be
composed of unary and pairwise potentials as follows

Elabeling(x)=

K∑
i=1

w>labφlab(xi)+
∑

i,j∈N (i)

w>pairφpair(xi, xj),

with N (i) the set of neighbors adjacent to the i-th super-
pixel. The unary term employs OM, GCs and depth-based
features. In the case of GCs we learn a different weight
for each entry, thus resulting in 36 features. We utilize two
depth features: The first one encodes the idea that the su-
perpixel normals which do not belong to the clutter class
should be in accordance with the main dominant direc-
tions. To capture this, we generate a six dimensional fea-
ture, where each entry is the cosine of the angle between the
surface normal of the superpixel and each dominant orien-
tation. The second feature, encodes our intuition that the su-
perpixels labeled as bounding surfaces (i.e., left, right, front,
ceiling, floor) should be close to the boundary of the scene.
We thus define a six dimensional feature, which computes
the distance between the mean 3D position of the superpixel
being referred to as its centroid and the centroid of the su-
perpixel furthest away in each dominant direction. As pair-
wise features, we encode the 3D physical relations that ex-
ist between the different labels, e.g., we know that the floor
cannot be above the left wall. Table 1 summarizes the rela-
tionships we employ. Note that we learn a different weight
for every entry in the table which results in 36 + 12 = 48
unary features and 36 pairwise features.

Compatibility Energy: This energy encodes the fact that
the layout and the labeling problems should agree. In par-
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Figure 3. Dynamic programming computation of accumulators.

ticular, we define

Ecomp(x,y) =

5∑
α=1

6∑
γ=1

wcomp,α,γφcomp,α,γ(x,y),

where we compute compatibility for all classes

φcomp,α,γ(x,y) =
∑

p∈β(y,α)

δ(xi(p) = γ),

with β(y, α), a function that returns the set of pixels p
which compose the wall α defined by the layout y. For a
specific choice of α and γ the feature measures the area that
is predicted to be α by the layout task while being assigned
γ by the labeling prediction. This enforces both tasks to pro-
duce consistent labels. Note that we can extend the concept
of integral geometry introduced by [22] to this case. In a
naı̈ve way we could iterate over all superpixels, set their cor-
responding area to one while leaving everything else to be
zero, thus performing integral geometry computations for
each superpixel independently. Since we know which pix-
els belong to a specific superpixel, we derive a method that
allows computation of those compatibility potentials with
a single linear pass over the image, i.e., with complexity
quadratic in the dimension of the image. The details are
provided in Sec. 3.5. Fig. 2(c) provides an illustration of
both the potentials as well as integral geometry.

3.3. Inference

During inference we are interested in computing the
maximum a-posteriori (MAP) estimate, or equivalently the
minimum energy configuration which can be computed by
solving the following optimization problem

min
x,y

Elayout(y) + Elabeling(x) + Ecomp(x,y).

Due to the high-order terms imposed by the compatibility
potential, we propose to solve this in an iterative fashion,
alternating between solving for the labeling x, and the lay-
out y. As a consequence, the potentials are of order at most
2 for each minimization problem. Alg. 1 summarizes the



Algorithm 2 Accumulator computation
1: for all p do
2: Initialize y1, y3 from pixel above and to the left
3: while ∠(p− vp1, r1(y1)) < 0 do
4: y1 ← y1 + 1
5: end while
6: while ∠(p− vp2, r3(y3)) < 0 do
7: y3 ← y3 + 1
8: end while
9: A(y1, y3)← A(y1, y3) + 1

10: end for

inference process. We use convex belief propagation [9] to
solve each one of the minimization tasks. In particular, we
employ the parallel implementation of [21], which exploits
multiple cores and machines.

3.4. Parameter Learning

Let w be the vector concatenating all the weights, and let
φ be the vector that concatenates all the potentials. Denote
{(Ii, x̂i, ŷi)} to be a set of N training examples fully anno-
tated with a labeling x and a layout y for an RGB-D image
I . We employ structured SVM [28] to learn the parameters
of the model by minimizing

min
w,ε

1

2
||w||2 +

C

N

N∑
i=1

εi

s.t. ∀i, ∀(xi,yi) ∈ (Xi,Yi)\(x̂i, ŷi)
w> (φ(xi,yi)− φ(x̂i, ŷi)) ≥ ∆(xi,yi, x̂i, ŷi)− εi.

(2)

For clarity of notation we did not provide the dependency
on the image I by means other than the index of the exam-
ple. Let Xi = LK be the labeling product space of the K
superpixels. We define the loss as the sum of the losses over
each individual task as follows

∆(xi,yi, x̂i, ŷi) = ∆labeling(xi, x̂i) + ∆layout(yi, ŷi).

For both losses we employ the pixel-wise loss as it decom-
poses into unary potentials for the labeling task and pair-
wise potentials for the layout task (via integral geometry).
We employ the cutting plane algorithm of [28] to solve this
optimization problem. As for computing the MAP, we uti-
lize dcBP [21] within an alternate minimization scheme to
perform loss-augmented inference.

3.5. Speeding up computations

One of the most expensive tasks in inferring the layout
is computation of the accumulators required to perform in-
tegral geometry. Note that due to the compatibility poten-
tials, this has to be computed at each iteration in Alg. 1. In

layout labeling
GC [13] – 26.38%

Schwing et al. [23] 13.66% –
Ours rgb 13.94% 23.68%

Ours rgb depth 8.04% 13.65%
Table 2. Comparison to the state-of-the-art with different features.

this section we develop an algorithm that reduces the com-
plexity by more than one order of magnitude with respect
to [22], by utilizing a dynamic programming scheme.

When computing the accumulator A, we accumulate the
value of every pixel into a 2D matrix indexed by two an-
gles. This is illustrated for A(y1, y3) in Fig. 3, where the
pixel grid is given by the gray lines while the black rays
illustrate a coarse discretization of the state space with the
accumulator matrix entry A(3, 3) being highlighted in ma-
genta color. In [22], the accumulator entry for every pixel
is found independently. This is suboptimal, as unnecessary
computations are performed. Instead, here we utilize in-
formation from the pixel’s neighbors to the left and to the
top while assuming that an image is parsed from top left to
bottom right.

Assume we know that the neighboring pixel to the top
was sorted into a row with y1 = a. It is easy to see that
the current pixel lies in a row with y1 ≥ a. Furthermore,
it is typically either the same row or the neighboring one.
Analogously, assume that the neighboring pixel to the left
was sorted into a column with y3 = b. It is again easy to
see that the current pixel lies in a column with y3 ≥ b, most
likely very close to the b-th column.

We propose to exploit this locality to reduce computa-
tion. Alg. 2 summarizes our approach. To find the exact
accumulator cell we proceed by initializing y1 and y3 with
the row and column of the neighbor to the top and to the
left respectively as stated in line 2. In the next step we find
the first angle y1 having a ray r1(y1) that has to be rotated in
counter-clockwise direction onto the ray connecting the cur-
rent pixel p with the VP vp1, i.e., we increase y1 by one as
long as the angle ∠(p− vp1, r1(y1)) between the two rays
is negative and hence the vector denoted by r1(y1) has to be
rotated in clockwise direction onto the vector p−vp1. Pro-
ceeding similarly for y3 provides the respective cell which is
– depending on the level of discretization – frequently found
after only one iteration within the loop. A similar strategy
is utilized for each accumulator. The computational com-
plexity of computing all accumulators is O(N2), while the
complexity in [22] is O(N2|Y|2). As show in our experi-
ments this results in significant savings of computation.

4. Experimental Evaluation

We took a randomly chosen subset of the NYU-RGBD-
v2 dataset [26] and manually labeled it to have ground truth
layouts, as only pixel-wise labelings in terms of semantic
categories are provided. We split the data into 202 images



for training and 101 images for testing.

Comparison to state-of-the-art: We first compare our
approach to the state-of-the-art, which only employs
monocular imagery. We choose [22] as it has been recently
shown to be the best performing approach in the bench-
marks that exist for this problem (i.e., the layout and bed-
room datasets of [10, 11]). As shown in Table 2, in the
layout task we outperform [22] by more than 5%. For the
labeling task, the results are even better since usage of a
depth cue improves GC by 13%.

Importance of depth features: As shown in Table 2, by
employing depth, our approach improves accuracy by 10%
in labeling and by 6% in layout estimation. Depth features
improve the labeling error on many of the images quite sig-
nificantly. This is visualized in Fig. 4(a) where every circle
denotes a test sample. For samples above the red line, the
approach utilizing only RGB features has an error larger
than the method employing the depth cue.

Unsupervised segmentation: We now compare the im-
portance of using depth in our unsupervised segmentation
algorithm. For all images, we utilize 200 superpixels per
image. This is a good compromise between inference speed
and accuracy. We evaluate the segmentation in terms of
three metrics. The first one is the mean error (ME), which is
define as the percentage of incorrectly labeled pixels if we
had an oracle labeling each super-pixel with the semantic la-
bels. We use as oracle the semantic labels provided with the
dataset. The second measure represents the segmentation
covering in percentage. This metric computes the overlap
measure multiplied by the area covered by the region, over
all labels present in the region. Thus, it is defined as

C(S′ → S) =
1

N

∑
li

|Rli | . max
l′i

O(Rli , R
′
l′i

),

with S′ a segmentation, S the ground truth, and Rli the re-
gion in S covered by label li. The last metric is the variation
of information, which is a measure of the difference of in-
formation between the ground truth and our segmentation.
It is defined as

V I(S, S′) = H(S) +H(S′)− 2I(S, S′),

with H(S) and H(S′) measuring respective information
(i.e., entropy)H(S) = −

∑
li

p(li)log p(li) where p(li) de-
fined as the empirical distribution. Further, I(S, S′) repre-
sents the mutual information shared between S and S′ and
is defined as

I(S, S′) =
∑
li

∑
l′i

p(li, l
′
i)log

p(li, l
′
i)

p(li)p(l′i)
.

I (λa) D (λd) ME Seg. Cover Var of Inf
1 0 2.51% 88.76% 0.63
5 1 2.28% 89.17% 0.60
2 1 2.19% 89.32% 0.59
1 1 2.15% 89.36% 0.58
1 2 2.16% 89.35% 0.58
1 5 2.26% 89.15% 0.59
0 1 2.81% 88.18% 0.66

Table 3. Super-pixel Estimation: Unsupervised segmentation re-
sults as a function of the importance of the appearance and depth
terms. A good compromise is equal weighting for both appearance
and depth. The original SLIC corresponds to λd = 0. Its perfor-
mance is clearly inferior to using both sources of information.

Table 3 depicts segmentation performance for different pa-
rameters. A good compromise is attained when equal
weighting is used for both appearance and depth. Note that
the original SLIC algorithm corresponds to λd = 0. Its per-
formance is clearly inferior.

Fast accumulator computation: We now compare our
proposed computation of compatibility accumulators to the
implementation proposed in [22]. While the naı̈ve imple-
mentation needs about 7 seconds to process an image, our
dynamic programming improvement retrieves an identical
result in 0.32 seconds, i.e., we observe a significant im-
provement of more than one order of magnitude.

Robustness to the parameters: We now show the ro-
bustness of our approach to the main parameter, which is
C, the strength of regularization in Eq. 2. As shown in Fig.
4, our approach is fairly robust and good results can be ob-
tained for a wide range of the parameter C. This is illus-
trated in Fig. 4(b) – (d) for the pixel-wise layout estimation
error, the superpixel labeling error and the average intersec-
tion over union measure for the different walls as well as
clutter. The intersection over union measure is detailed for
C = 1000 in Tab. 4 for the different walls and clutter class
as well as the resulting average.

Semantic labels: We employ [31] to compute pixel-wise
classifiers in terms of 6 furniture classes. In particular, we
used six RGB-D kernel descriptors gradient, color, local
binary pattern, depth gradient, spin/surface normal, and
KPCA/self-similarity. Table 5 depict the performance of
our semantic segmentation. Note that the class ‘table’ is
particularly difficult to detect as it is typically surrounded
by clutter.

Qualitative results: We provide some qualitative results
in Fig. 5. In the first three columns we show OM, GC
and depth. In the fourth and fifth column we illustrate the
ground truth labeling as well as our labeling estimation. The
sixth column depicts the layout estimates in (blue) and the



(a) (b) (c) (d)

Figure 4. Scatter plot of the error when using RGB or RGB-D data in (a). Robustness w.r.t. C for layout, labeling and intersection over
union in (b) – (d).

IOU ceiling floor left front right clutter average
rgb (1000) 53.57 51.48 61.71 69.21 63.37 58.26 59.60
rgb depth (1000) 80.36 85.84 68.93 77.27 75.15 72.47 76.67

Table 4. Intersection over union (IOU) computed as in the PASCAL segmentation challenge. The labeling task consist on 6 classes, the
five walls and clutter. Note that by using depth the average IOU measure improves by more than 17%, a very significant result.

100 300 500 1000 3000 5000 10000
toilet 35.67 35.72 37.19 36.03 39.54 38.30 32.02
bed 43.69 43.59 43.42 43.46 43.00 43.47 42.49
table 16.90 20.90 21.29 21.21 20.60 20.98 21.02

cabinet 20.68 20.61 21.49 21.26 21.43 19.23 19.60
sofa 32.50 32.28 32.90 32.88 32.86 32.64 32.11
chair 35.89 35.90 36.18 36.13 35.96 35.00 35.05

Table 5. IOU for the semantic classes as a function of C

ground truth in red. Finally the last two columns provide the
semantic labeling for the ground truth as well as our esti-
mates. Our failure cases are due to wrong vanishing points,
as, e.g., illustrate in the last row.

5. Conclusion

We have proposed an approach to jointly estimate the
layout of rooms as well as the clutter present in the scene
using RGB-D data. Towards this goal, we derived and ef-
ficient algorithm to perform inference within a joint model
and demonstrate its effectiveness on the NYU v2 data set,
showing impressive error reductions over the state-of-the-
art of 6% for the layout task and 13% in estimating clut-
tered. We also demonstrated that clutter can be further em-
ployed to segment several furniture classes. We plan to fur-
ther extend our approach to be able to exploit video as well
as to incorporate objects in the form of 3D cuboids.
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Figure 5. Qualitative results: In the first three columns we show OM, GC and depth. In the fourth and fifth column we show the ground
truth labeling as well as our labeling estimation. The sixth column depicted the layout estimates in (blue) and the ground truth in red.
Finally the last two columns depicted the semantic labeling for the ground truth as well as our estimates. A failure mode due to bad
vanishing points is illustrated in the last row.

[18] L. Pero, J. Bowdish, D. Fried, B. Kermgard, E. Hartley, and
K. Barnard. Bayesian geometric modeling of indoor scenes.
In Proc. CVPR, 2012. 1, 2

[19] A. Saxena, M. Sun, and A. Y. Ng. Make3D: Learning 3D
Scene Structure from a Single Still Image. In PAMI, 2008. 2

[20] A. G. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box
In the Box: Joint 3D Layout and Object Reasoning from Sin-
gle Images. In Proc. ICCV, 2013. 2

[21] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Dis-
tributed Message Passing for Large Scale Graphical Models.
In Proc. CVPR, 2011. 5

[22] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Effi-
cient Structured Prediction for 3D Indoor Scene Understand-
ing. In Proc. CVPR, 2012. 1, 2, 3, 4, 5, 6

[23] A. G. Schwing and R. Urtasun. Efficient Exact Inference for
3D Indoor Scene Understanding. In ECCV, 2012. 1, 2, 5

[24] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook,
M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman,
and A. Blake. Efficient Human Pose Estimation from Single
Depth Images. In PAMI, 2012. 1

[25] N. Silberman and R. Fergus. Indoor Scene Segmentation
using a Structured Light Sensor. In Workshop on 3D Repre-

sentation and Recognition, 2011. 1
[26] N. Silberman, P. Kohli, D. Hoiem, and R. Fergus. Indoor

Segmentation and Support Inference from RGBD Images. In
Proc. ECCV, 2012. 1, 2, 3, 5

[27] O. Teboul, I. Kokinos, L. Simon, P. Koutsourakis, and
N. Paragios. Shape Grammar Parsing via Reinforcement
Learning. In Proc. CVPR, 2011. 2

[28] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun.
Support Vector Learning for Interdependent and Structured
Output Spaces. In Proc. ICML, 2004. 5

[29] H. Wang, S. Gould, and D. Koller. Discriminative Learn-
ing with Latent Variables for Cluttered Indoor Scene Under-
standing. In Proc. ECCV, 2010. 1, 2, 3

[30] C. Wojek, S. Roth, K. Schindler, and B. Schiele. Monocu-
lar 3D Scene Modeling and Inference: Understanding Multi-
Object Traffic Scenes. In Proc. ECCV, 2010. 2

[31] L. B. Xiaofeng Ren and D. Fox. Rgb-( d ) scene labeling:
Features and algorithms. In CVPR, 2012. 6

[32] K. Yamaguchi, D. McAllester, and R. Urtasun. Robust
Monocular Epipolar Flow Estimatio. In Proc. CVPR, 2013.
3


