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Abstract

Generative Adversarial Nets (GANs) and Conditonal

GANs (CGANs) show that using a trained network as loss

function (discriminator) enables to synthesize highly struc-

tured outputs (e.g. natural images). However, applying a

discriminator network as a universal loss function for com-

mon supervised tasks (e.g. semantic segmentation, line de-

tection, depth estimation) is considerably less successful.

We argue that the main difficulty of applying CGANs to su-

pervised tasks is that the generator training consists of op-

timizing a loss function that does not depend directly on

the ground truth labels. To overcome this, we propose to

replace the discriminator with a matching network taking

into account both the ground truth outputs as well as the

generated examples. As a consequence, the generator loss

function also depends on the targets of the training exam-

ples, thus facilitating learning. We demonstrate on three

computer vision tasks that this approach can significantly

outperform CGANs achieving comparable or superior re-

sults to task-specific solutions and results in stable training.

Importantly, this is a general approach that does not require

the use of task-specific loss functions.

1. Introduction

GANs [10] have become extremely popular due to their

ability to generate sharp, realistic images [2]. GANs train

deep generative models using a minimax game. The idea is

to learn a generator by fooling a discriminator which tries to

distinguish between real and generated examples. CGANs

[22] are an extension to model conditional distributions by

making the generator and the discriminator a function of

the input. This is a very interesting idea showing good re-

sults on image generation tasks. However, CGANs do not

work well on common supervised tasks (e.g. semantic seg-

mentation, instance segmentation, line detection), since the

generator is optimized by minimizing a loss function that

does not depend on the training examples. Practitioners try

to tackle this issue by defining and adding a task dependent

loss function to the objective. Unfortunately, it is very dif-

ficult to balance the two loss functions resulting in unstable

and often poor training.

In this paper we propose to replace the discriminator

with a siamese network. The inputs to the siamese network

are the ground truth, the generated output or perturbations

(random transformations) of these. The discriminator then

attempts to predict whether or not the input pair contains the

generated output (fake) or just the ground truth and its per-

turbations (real). As a consequence, the generator loss de-

pends on the training targets, which results in better, faster

and more robust learning. Applying random perturbations

makes the task of the discriminator more difficult, while, as

we show in the technical section, the generator target still

remains the ground truth. We call our approach Matching

Adversarial Network (MatAN) which can be used as a dis-

criminative model for supervised tasks.

Our experimental evaluation shows that this approach

can achieve very good performance in the tasks of seman-

tic segmentation, road network centerline extraction from

aerial images and instance segmentation. In particular, we

significantly outperform CGANs and achieve comparable

or superior results to supervised approaches that exploit

task-specific solutions. The training of MatAN was sta-

ble (not resulting in degenerative output) in all our exper-

iments, even with different generator and discriminator ar-

chitectures. This is an important advantage over CGANs

which are sensitive to the applied network architectures.

2. Related Work

Generative Adversarial Networks (GANs) [10] can cre-

ate very realistic images; however, the stability of the train-

ing is an issue. To overcome this, many methods attempt to

improve the training performance of GANs. Radford et al.

[26] proposed to use specific network architectures, includ-

ing transposed convolution and leaky ReLu, which result in

better image generation. [28] introduces several practices

for more stable training, e.g. minibatch discrimination. [1]

analyzes the reasons for the instability of GAN training.

[2] proposed the Wasserstein GAN, which achieves better

training by using a discriminator (also called critic) which

estimates the earth mover’s distance between the probabil-
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Figure 1: Our MatAN discriminator is a siamese network: (left) positive examples, (right) negative ones. The input to the

siamese network is passed through a perturbation T or through the identity transformation I . The configurations of T and I
result in different training behavior. The drawing shows the case when the perturbation is only applied to one branch of the

positive samples.

ity density function of the generated and the ground truth

data. This approach has the restriction that the discrimi-

nator must be a 1-Lipschitz function, which is achieved by

weight trimming. This disadvantage is addressed in [11]

by penalizing the norm of the gradients of the discrimina-

tor. Other works improving and analyzing GANs include

[25, 24, 21, 3, 16, 14]. In [7] the generator outputs an image

pair of the same person and the siamese discriminator net

predicts if the image pair is real or generated. In contrast,

our siamese discriminator can take as input a real-generated

pair and functions as a supervised loss.

The idea of using a discriminator as loss function has

been also used in the context of supervised problems, by

making both the generator and the discriminator a function

of the input. This is typically refereed as a conditional GAN

(CGAN) [22]. It has been applied to many problems, in-

cluding text to image generation [27, 34, 8], image descrip-

tion [6, 19], super-resolution [18], shadow detection [23],

style transfer [36], semi-supervised learning [35, 30], gen-

eral image-to-image translation [15, 33, 9], learning from

simulated images [29]. While CGANs are successful in

tasks including image generation, they perform poorly in

tasks with well defined metrics, such as semantic segmen-

tation. We are not aware of any previous work producing

comparable results to state-of-the-art by using only adver-

sarial networks in the loss function.

3. Matching Adversarial Networks

We start our discussion with a short overview of GANs

and conditional GANs. We then formulate a new discrim-

inator consisting of a siamese network. This allow us to

make better use of the training examples, resulting in much

better performance and more stable training.

3.1. Overview of GANs and CGANs

Generative Adversarial Networks (GANs) [10] train

deep generative models using a minimax game. To gen-

erate samples, the generator maps a random noise vector z

into a high dimensional output y (e.g., an image) via a neu-

ral network y = G(z,ΘG). The generator G is trained to

fool a discriminator, D(y,ΘD), which tries to discriminate

between fake (i.e., generated) and real samples. The GAN

minimax game can thus be written as

min
ΘG

max
ΘD

LGAN(ŷ, z,ΘD,ΘG) = Eŷ∼py
log(D(ŷ,ΘD))

+Ez∼p(z) log(1−D(G(z,ΘG),ΘD) (1)

where the first term sums over the positive examples for

the discriminator (i.e., training examples), while the sec-

ond term sums over the negative examples which are gen-

erated by the generator by sampling from the noise prior.

Learning in GANs is an iterative process which alternates

between optimizing the loss LGAN(ŷ, z,ΘD,ΘG) w.r.t. to

the discriminator parameters ΘD and the generator parame-

ters ΘG respectively. The discriminator estimates the ra-

tio of the data distribution pd(y) and the generated dis-

tribution pg(y) : D∗

G(y) = pd(y)
pd(y)+pg(y)

. As shown in

[10], the global minimum of the training criterion (equilib-

rium) is where the two probability distributions are iden-

tical: pg = pd, D
∗

G(y) = 1/2. Note that the gradients

w.r.t. to ΘG do not depend on ŷ directly, but only implic-

itly through the current estimate of ΘD. As a consequence,

the generator can produce any samples from the data distri-

bution instead of learning input-output relations in a super-

vised fashion.

To overcome this, GANs can be easily extended to con-

ditional GANs (CGANs) by introducing dependency of the

generator and the discriminator on the input x. So the dis-

criminator for the positive samples becomes D(x, ŷ,ΘD),
while for the negative ones it is D(x, G(x,ΘG, z),ΘD).
Since D(x, G(x, z,ΘG),ΘD) does not depend on the train-

ing targets, practitioners [15] add an additional discrimina-

tive loss function to the objective, e.g. a pixel-wise ℓ1 norm.

Unfortunately, it is very difficult to balance the influence of

the adversarial and task losses, and a simple linear combina-

tion does not work well in practice. Adding an adversarial

loss to a task-specific one does not necessarily improve the

performance [15].
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(a): α (b): β (c): γ (d): ǫ (e): ζ

Figure 2: The joint probability distributions of the siamese inputs in case of a 1D toy problem. α is a trivial case with

equilibrium in G(x) = ŷ, but this did not work in practice. In β the equilibrium pd = pg is not achievable, but the network

will converge towards G(x) = ŷ. γ can achieve equilibrium if G(x) = ŷ. δ ( when T1 = I) is the transposed of γ which

can achieve equilibrium if G(x) ∈ T2(ŷ). ǫ cannot achieve equilibrium, nor is it converging. ζ can achieve equilibrium if

G(x) ∈ T2(ŷ) (like δ).

3.2. Matching Adversarial Networks (MatANs)

We propose to use a siamese architecture for our discrim-

inator, allowing us to exploit the training points explicitly

in our loss function. The branches of our siamese network

y1,y2 takes as input either perturbations (random transfor-

mations) of the ground truth yi = Ti(ŷ) or the generated

output y2 = Tg(G(x)). Depending on the configuration

of the perturbations, which we denote as t, the perturbation

can be set to identity transformation Ti() = I(). We refer

the reader to Fig. 1 for an illustration of our siamese dis-

criminator architecture. We refer the reader to Fig. 3 for

an example of the perturbations we employ for a seman-

tic segmentation task. Each branch of the siamese network

undergoes a complex multi-layer non-linear transformation

with parameters ΘM mapping the input yi to a feature space

m(y,ΘM ). Then d is calculated as an element-wise abso-

lute value (i.e., abs) applied to the difference of the two

feature vectors m() coming from the two branches.

d(y1,y2,ΘM ) = abs(m(y1,ΘM )−m(y2,ΘM )) (2)

Based on the negative mean of the d vector, the discrimina-

tor predicts whether a sample pair is fake or real. This is a

linear transformation followed by a sigmoid function

D(y1,y2, b,ΘM ) = σ(−

K∑

i

di(y1,y2,ΘM )/K+b) (3)

where b is a trained bias and K is the number of features.

This formulation ensures that the magnitude of d should be

small for positive examples and large for the negative (i.e.,

generated) pairs. Similarly to GANs, we train our network

as a minimax game with the objective:

min
ΘG

max
ΘM ,b

LMatAN(ŷ,x,ΘM ,ΘG) =

Ey1,y2∼pdata(x,y,t) logD(T1(ŷ), T2(ŷ),ΘM , b)+

Ey1,x∼pdata(x,y,t) log(1−D(T1(ŷ), Tg(G(x,ΘG)),ΘM , b))
(4)

We do not require a noise since we do deterministic pre-

dictions. We optimize by alternating between updating the

discriminator and the generator parameters and apply the

modified generator loss:

LMatAN,G = − logD(T1(ŷ), Tg(G(x,ΘG)), |ΘM , b) (5)

This formulation enables the generator to match the

ground truth labels, while the discriminator must learn to

differentiate between the pairs including the generated out-

put and the pairs not. The perturbations serve the purpose of

making the matching of the ground truth (positive samples

to the discriminator) non trivial, which would be the case if

the input of the siamese branches would be identical, result-

ing always in d = 0. We show in our analysis that in certain

configurations the generator learns the ground truth, despite

applying random perturbations on it. To investigate the ef-

fect of the perturbations, we analyze the joint probability

distribution of the branch inputs. This is the extension of the

standard GAN to two variable joint distributions. We apply

a simplified model assuming one training sample and a per-

turbation which transforms the training sample to a uniform

distribution. In case of multiple samples the distribution of

the GT would consist of multiple points.

The optimal matching discriminator We set the first

input of the siamese network always y1 = T1(ŷ). The

second input is y2 = T2(ŷ) for the positive samples and

y2 = Tg(G(x)) for the negatives. T1, T2, Tg might be the

identity transformation, depending on the Ti() configura-

tion. For a given t perturbation configuration the discrimi-

nator loss function can be written as:

LMatAN,D = Ey1,y2∼pd(y1,y2) log(D(y1,y2)+

Ey1,y2∼pg(y1,y2) log(1−D(y1,y2)) (6)

where pd() is the joint distribution of T1(ŷ), and T2(ŷ) and

pg() is the joint distribution of T1(ŷ) and Tg(G(x)). Fol-

lowing [10], the optimal value of the discriminator for a
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(a): Input (b) GT (c) Perturbations

Figure 3: Perturbations: (a) Cityscapes input image, (b) the corresponding ground truth divided in patches, (c) rotation

perturbations applied independently patch wise on the ground truth.

(a): Input (b) Pix2Pix CGAN [15] (c) MatAN β MS (ours) (d) GT

Figure 4: Segmentation results on Cityscapes: Pix2Pix (b) captures the larger objects with homogeneous texture, but it

hallucinates objects in the image. In contrast, our method (c) can produce results very similar to the ground truth.

fixed G is:

D∗(y1,y2) =
pd(y1,y2)

pd(y1,y2) + pg(y1,y2)
(7)

Similarly to [10], the equilibrium of the adversarial training

would be when D = 1/2, pd = pg the GT and the generated

data distributions match. The equilibrium conditions de-

pend on which non-identity perturbations are applied. See

Fig. 2 for illustrations. The equilibrium for each:

α: T1() = T2() = Tg() = I(): Equilibrium can be

achieved if ŷ = G(x), however in practice this did not work

since d(ŷ, ŷ) = 0 regardless of m().

β: T1() = Tg() = I(): Only T2(ŷ) perturbation

is applied. Here pg(y1,y2) is approximately a Dirac-

delta, thus pg(ŷ, G(x)) ≫ pd(ŷ, T2(ŷ)) always, which

implies that the equilibrium of D = 1/2 is not achiev-

able. However, since d is the output of a Siamese net-

work d(G(x), ŷ) = 0, if G(x) = ŷ. Since D is a mono-

tonically decreasing function of d(G(x), ŷ) and d ≥ 0,

the maximum is at G(x) = ŷ. So the discriminator val-

ues for the generator after discriminator training will be:

D(ŷ, ŷ) > D∗(ŷ, T (ŷ)) > D∗(ŷ,y),y 6∈ T (ŷ), and so

the generator loss has its minimum in ŷ.

γ: T2() = Tg() = I(): Only T1(ŷ) is applied. Equi-

librium can be achieved if G(x) = ŷ, since in this case the

two joint distributions pd, pg match.

δ: T1() = I(): T2(ŷ) and Tg() are applied. Equilib-

rium can be achieved if G(x) ∈ T2(ŷ), since in this case

the two joint distributions pd, pg match.
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(a): Input (b) Cross Entropy perturbed (c) MatAN ζ (ours) (d) GT

Figure 5: Segmentation results on Cityscapes when trained with perturbed GT. Note that with MatAN the generator learns

continuous poles, however these were not observed as training samples. When using cross entropy loss, the net only learns

blobs.

ǫ: Only Tg() = I(). Since pg(T1(ŷ), G(x)) ≫
pd(T1(ŷ), T2(ŷ)), there is no equilibrium.

ζ: All perturbations are applied. Equilibrium is achiev-

able if G(x) ∈ T2(ŷ), the generator produces any of the

perturbations.

We show an ablation study for these configurations on

the Cityscapes semantic segmentation task in Table 1. Note,

that no additional discriminative loss function is necessary.

Patch-wise discriminator: We divide the output image

into small overlapping patches and use each patch as an in-

dependent training example. As perturbation we apply ran-

dom rotations in the range of [0, 360o] with random flips re-

sulting in an uniform angle distribution. We implement the

rotation over a larger patch than the target to avoid boundary

effects. Note that, as shown in Fig. 3, the perturbations are

applied independently to each patch and thus the discrimi-

nator cannot be applied in a convolutional manner.

4. Experiments

We demonstrate the effectiveness of MatAN on three

computer vision tasks with structured outputs: semantic

segmentation, road centerline detection and instance seg-

mentation. We provide an ablation study on Cityscapes [5]

and further experiments on the aerial images of the Toron-

toCity dataset [31].

ResNet Gen. mIoU Pix. Acc

Original Ground Truth:

Cross Ent. 66.9 94.7
MatAN α NoPer. 6.0 58.1

MatAN β NoAbs. 21.3 77.5

MatAN β 63.3 94.1
MatAN MS β 66.8 94.5

MatAN γ Match2Per. 63.5 93.3
MatAN δ PertGen. 60.2 93.8

MatAN β MS + Cross Ent. 65.1 94.2

Perturbed Ground Truth:

Pert. GT 44.8 78.0
Pert. Cross Entropy 42.7 85.1

MatAN ǫ GT Perturb 25.9 82.8
MatAN ζ All Perturb 58.1 93.8

Table 1: Mean IoU and pixelwise accuracy results from 3

fold cross-validation on the Cityscapes validation set with

the ResNet generator. All values are in %. The greek let-

ters denote the perturbation configuration. The multi-scale

MatAN achieves almost the same performance as cross-

entropy and is 200% higher than CGAN [15]. When we ap-

plied the perturbations to the GT, the MatAN could achieve

considerably higher results than this noisy GT or cross-

entropy.

4.1. Implementation Details

Network architecture: We use the same generator archi-

tecture in all experiments, a ResNet-50 [12] based encoder
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(a): GT (b) CGAN [15] (c) MatAN (ours)

Figure 6: Road centerline extraction: The output of the network is shown in red. Our MatAN can capture the topology even

for parallel roads.

Method Seg. Validation set Test set

F1 Precision Recall CRR F1 Precision Recall CRR

OSM (human) * - - - - - 89.7 93.7 86.0 85.4
DeepRoadMapper [20] * X - - - - 84.0 84.5 83.4 77.8

Seg3+thinning X 91.7 96.0 87.8 87.8 91.0 93.6 88.4 88.0
HED [32] * - - - - - 42.4 27.3 94.9 91.2

Seg2+thinning - 89.7 94.9 85.1 82.5 88.4 92.7 84.5 78.0
CGAN - 75.7 76.4 74.9 75.1 77.0 67.65 89.7 81.8

CGAN + L1 - 78.5 95.1 66.8 68.9 68.6 93.3 54.3 55.0
MatAN (ours) - 92.5 95.7 89.5 88.1 90.4 91.4 89.5 87.1

Table 2: Road topology recovery metrics in %. The Seg. column indicates if the method uses extra semantic segmentation

labeling (background, road, building). * indicates that the results are from [20, 32].

and a decoder containing transposed convolutions for up-

sampling as well as identity ResNet blocks [13] as non-

linearity. The output of the net has always half the size

of the input. As default we use 32 × 32 input size for the

discriminator in all experiments with 50% overlap of the

patches. For CityScapes we report results also with a multi-

scale discriminator. In the discriminator we apply ResNets

without batch norm.

Learning details: We use the Adam optimizer [17] with

10−4 learning rate, weight decay of 2 · 10−4 and batch

size of 4. We use dropout with 0.9 keep probability in

the generator and to the feature vector d of the discrimi-

nator. We train the networks until convergence, which gen-

erally requires on the order of 10K iterations. Each itera-

tion (generator and discriminator update) takes 4 seconds

on an NVIDIA Tesla P100 GPU. We normalize the output

to [−1, 1] by a tanh if the output image has a single chan-

nel (e.g. road centerline) or by a rescaled softmax in case of

segmentation.

4.2. Semantic segmentation on Cityscapes

Pixel-wise cross-entropy is well aligned with the pixel-

wise intersection over union (IoU) metric and is used as

the task loss for state-of-the-art semantic segmentation net-

works. As we show, our MatAN loss can achieve almost the

same performance. We do an ablation study where the gen-

erator architecture is fixed (i.e. the ResNet based encoder-

decoder), but the discriminator function is changed. We

downsample the input image to 1024 × 512. We randomly

split the official validation set to half-half and use one half

for early stopping of the training and compute the results

on the other half. We repeat this three times and report the

mean performance.

We test the perturbation configurations listed in Fig. 2

and provide the results in Table 1. When there is no per-
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(a): GT (b) DWT [4] (c) MatAN (ours) (d) MatAN contours

Figure 7: (a) Ground truth building polygons overlay over the original image. (b)-(c) final extracted instances, each with a

different color. (d) shows the prediction of the deepnet for the building contours which is used to predict the instances. The

GT of this task has a small systemic error due to image parallax. In contrast to DWT, MatAN does not overfit on this noise.

turbation (MatAN α NoPer.), the network does not learn.

In our experiments the configurations β and γ (the gener-

ated output is matched to the GT or the perturbations of the

GT) perform similarly. We tested these with a single scale

discriminator input size of 32 × 32. It might be surprising

at first that MatAN γ is able to learn, but the joint PDF ex-

plains this. Both β and γ can only achieve equilibrium if the

GT is generated as output and not a perturbation. Therefore

a single discriminator (not patch-wise) would also enable

to learn the ground truth. We also apply the discriminator

in a multi-scale way by extracting patches on 16, 32 and 64
scales and resize them to 16. This achieves very close re-

sults to cross-entropy and is listed as MatAN β MS. Matan

β NoAbs shows that the use of an ℓ1 distance in (2) for d

is critical. Removing it results in a large performance de-

crease.

Combining our adversarial loss with the cross entropy

loss performs slightly worse than using each loss separately.

This shows that fusing loss functions is not trivial.

In configuration δ PertGen. the generated output is per-

turbed, therefore equilibrium can be achieved in any of the

perturbations of the ground truth. Here overlap was not ap-

plied for the discriminator patches. The results show that

the network still learns the original ground truth (instead of

a perturbed one). This can be explained by the patchwise

discriminator. An output satisfying all the the discriminator

is probably very close to the original ground truth. A deter-

ministic network will rather output a straight line/boundary

on an image edge than randomly rotated versions where the

cut has to align with the patch boundary.

Applying perturbations to both branches of the true sam-

ples can be considered as a noisy ground truth, e.g. two

labelers provide different output for similar image regions.

The perturbations simulate this with a known distribution

of the noise. The entry Pert. GT shows the mIoU of a per-

turbed GT compared to the original one. When Cross En-

tropy is trained with this noisy labels (Pert. Cross Entropy),

U-Net Gen. [15] mIoU Pix. Acc

Cross Ent. 50.9 91.8
Pix2Pix CGAN [15] 21.5 73.1

Pix2Pix CGAN [15] * 22.0 74.0

Pix2Pix CGAN+L1 [15] * 29.0 83.0

CycGAN [36] * 16.0 58.0

MatAN β MS 48.9 91.4
MatAN β Pix2Pix arch. MS 48.4 91.5

Table 3: Mean IoU and pixelwise accuracy results from 3

fold cross-validation on the Cityscapes validation set with

the U-Net generator of [15]. All values are in %. * marks

the results reported from other papers on the validation set.

Our MatAN achieves much higher performance.

the network looses the fine details and performs around the

same as the provided GT, see Fig. 5. The results with per-

turbed GT are in Table 1. If the generated output is not

perturbed, equilibrium cannot be achieved, resulting in low

performance (MatAN ǫ GT Perturb). If the output is also

perturbed (MatAN ζ ALL Perturb), equilibrium is possible

in any of the perturbed GT. Since perturbations are rota-

tions applied patch-wise, a consistent solution for the entire

image will be similar to the GT. Note that in this case the

generator is trained to infer a consistent solution. For exam-

ple, a continuous pole was predicted (as seen in Fig 5 (c)),

yet it almost never occurs in the perturbed training images.

Additionally, we show a comparison to the Pix2Pix

CGAN [15] by replacing our generator with the U-net archi-

tecture of Pix2Pix. To show that the performance increase

is not simply caused by the ResNet blocks, we change our

discriminator design to match the Pix2Pix discriminator. As

shown in Table 3, this achieves lower mIoU values, but still

doubles the performance of Pix2Pix. Moreover, this is close

to the performance achieved by training the generator using

the cross-entropy loss. This indicates that the stability of the
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learned loss function is not sensitive to the choice of gener-

ator architecture, and that the decrease in performance rela-

tive to ResNet-based models is due to the reduced capabil-

ity of the U-net architecture. We implemented the Pix2Pix

CGAN method [15] and applied it without the additional

task loss. This is far behind MatAN. This can only learn

the large objects which appear with relatively homogeneous

texture, e.g. road, sky, vegetation, building. As also re-

ported in [15], this method ”hallucinates” objects into the

image. We see this as a sign that the input-output relation is

not captured properly with CGANs using no task loss. Ad-

ditionally, we report the numbers from the original Pix2Pix

[15] paper, showing that even by adding L1 CGAN is out-

performed by MatAN. CycleGAN [36] scores even lower

than Pix2Pix.

4.3. Road centerline extraction

Roads are represented by their centerlines as vectors in

the map. We perform experiments on the aerial images of

the TorontoCity dataset [31] resized to 20 cm/pixel. We en-

code the problem as a one channel image generation with

[−1, 1] values and rasterize the vector data according to this

as 6 pixel wide lines to serve as training samples. At inter-

sections we added circles to avoid the need for generating

very sharp edges which is difficult for neural networks. We

use the metrics expressing the quality of the road topology

introduced in [20].

We compare our method (the β config) to the HED [32]

deepnet based edge detector and DeepRoadMapper [20]

which first extracts the road centerlines from the segmenta-

tion mask of the roads and then reasons about graph connec-

tivity. Additionally, we use semantic segmentation followed

by thinning as a baseline with the same generator as in

MatAN. In particular, we tested two variants Seg3+thinning

which exploits extra 3 class labeling (background, road,

buildings) for semantic segmentation, and Seg2+thinning

which exploits two labels instead (background, road). For

comparison we also use OpenStreetMap as a human base-

line. As last we compare to CGANs [15] using the adver-

sarial loss and also the adversarial loss combined with L1.

We have trained our generator architecture with the CGAN

loss but it was not generating reasonable outputs even after

15k iterations. This shows that CGANs are sensitive to the

network architecture.

As shown in Table 2, the two best results are achieved by

our method and Seg3+thinning, which exploits additional

labels (i.e., semantic segmentation). Without this extra la-

beling the segmentation based method (Seg2) and [20] falls

behind. The Pix2Pix CGAN approach [15] generates road

like objects but they are not aligned with the input image

resulting in poor results. OSM achieves similar numbers

to the best automatic methods, which shows that mapping

roads is not an easy task especially since it can be ambigu-

Method mAP Pr. @50% R. @ 50% WCov.

ResNet * 22.4 44.6 18.0 38.1

FCN * 16.0 35.1 20.3 38.9

DWT [4] * 43.4 75.1 76.8 64.4

MatAN (ours) 42.2 82.6 75.9 64.1

Table 4: Instance segmentation results on the TorotonCity

validation set with the metrics given in [31]. All the values

are in %. WCov. stands for weighted coverage, mAP for

mean precision, R. for recall and Pr. for precision. We re-

fer the reader to [31] for more details about the metrics. *

marks implementations of others.

ous what counts as road. We refer the reader to Fig. 6 for

qualitative results.

4.4. Instance segmentation

We predict the building instances in the TorontoCity

dataset [31] on aerial images resized to 20 cm/pixel. We

randomly crop, rotate and flip images with size 768 × 768
pixels and use a batch size of 4. We jointly generate the 3

class semantic segmentation and the instance contours as a

binary image ([−1, 1]). We train the net as a single MatAN

(β config) showing that it can be used as a single loss for a

multi task network. We obtain the instances from the con-

nected components as the result of subtracting the skeleton

of the contour image from the semantic segmentation. We

compare our results with baseline methods reported in [31],

as well as the Deep Watershed Transform (DWT) [4] which

also predicts the instance boundaries. As shown in Table 4,

our method outperforms DWT by 7% in Precision @ 50%,

while been similar in all other metrics. We refer the reader

to Fig. 7 for visual results.

Limitations Our method is a discriminative model and is

not intended to train conditional generative models, e.g. im-

age generation [15], where an input can be mapped to mul-

tiple outputs.

5. Conclusion and future work

We have presented an Adversarial Network, which we

call Matching Adversarial Network (MatAN). The discrim-

inator is replaced by a siamese network taking also random

perturbations of the ground truth as input. As we have

shown in our experiments, this significantly outperforms

CGANs, achieves similar or even superior results to task

specific loss functions and results in stable training. As fu-

ture work we plan to investigate more applications, different

perturbations and the effect of noisy ground truth.
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