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Abstract
Historically non-rigid shape recovery and articulated

pose estimation have evolved as separate fields. Recent
methods for non-rigid shape recovery have focused on im-
proving the algorithmic formulation, but have only consid-
ered the case of reconstruction from point-to-point corre-
spondences. In contrast, many techniques for pose estima-
tion have followed a discriminative approach, which allows
for the use of more general image cues. However, these
techniques typically require large training sets and suffer
from the fact that standard discriminative methods do not
enforce constraints between output dimensions. In this pa-
per, we combine ideas from both domains and propose a
unified framework for articulated pose estimation and 3D
surface reconstruction. We address some of the issues of
discriminative methods by explicitly constraining their pre-
diction. Furthermore, our formulation allows for the com-
bination of generative and discriminative methods into a
single, common framework.

1. Introduction
Recent advances in monocular non-rigid surface recon-

struction have focused on designing formulations of the
problem that are easier to optimize (e.g., convex) [22, 10,
14]. Typically, the shape is parameterized in terms of the
3D vertex coordinates of a mesh, and the problem is ad-
dressed in a generative framework where an image likeli-
hood is minimized under constraints on the distances be-
tween neighboring vertices of the mesh. This parameteriza-
tion has the advantage of facilitating convex formulations of
the likelihood as well as relaxations of the constraints [14].
However, these techniques rely on dense point-to-point cor-
respondences, which might be difficult to obtain, particu-
larly when the surface is poorly textured, and cannot make
use of non-registered features.

In articulated pose estimation, many techniques have fo-
cused on learning a mapping from image observations to
3D poses [8, 13, 1, 17, 19]. The main strength of these
discriminative approaches is that they do not require point-
to-point correspondences, and can take advantage of any
type of image representation as long as a kernel between

pairs of images can be computed. However, since typical
discriminative methods assume independence of the output
dimensions given the inputs, important constraints, such as
limb lengths, are often violated when modeling the pose in
terms of the joint coordinates of a skeleton. As illustrated
in Fig. 1(a) for the case of a non-rigid surface, this may
yield unrealistic poses. To overcome this weakness the hu-
man body is typically parameterized in terms of joint an-
gles [1, 19]. However, designing such a parameterization
for deformable surfaces is not straightforward.

In any event, an inherent problem of discriminative
methods is that they require large training sets to account for
the high dimensionality and variability of the pose space.
This might be one of the reasons why they have not yet
been used for non-rigid 3D surface reconstruction, and have
mainly been applied to a restrictive set of activities for hu-
man pose estimation. As a consequence, while discrimi-
native approaches have proved very effective for classifica-
tion tasks such as object recognition, they are often outper-
formed by generative ones for regression tasks such as pose
estimation [2, 20]. Unfortunately, the success of generative
techniques heavily depends on having a good initialization,
since they typically rely on non-convex objective functions.
Discriminative methods could be employed to obtain this
initialization. However, due to the lack of training data, or
the typical output independence assumption, they are often
not precise enough, and the non-convex generative methods
get trapped in local minima. This suggests that a more prin-
cipled combination of generative and discriminative meth-
ods would be key for the success of pose estimation and
non-rigid surface reconstruction. While this was also ob-
served by [18, 9, 16], the first approach relies on the gen-
erative method only for learning, and the other two use the
discriminative technique only for initialization.

In this paper we combine the findings of the human pose
estimation and non-rigid shape recovery domains and show
that both problems can be solved within the same frame-
work. Our approach addresses some of the issues of dis-
criminative methods by introducing explicit constraints and
forcing the prediction to satisfy them. In particular, we con-
sider the case of distance constraints between neighboring
3D points on a mesh or on a human skeleton (i.e., joints).
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(a) (b) (c) (d) (e)
Figure 1. Reconstructing a piece of paper from monocular images. Top row: Recovered mesh reprojected on the input image. Bottom
row: Side view of the same mesh. Results were obtained with (a) the original predictor, (b) the constrained predictor, (c) the constrained
predictor with an image likelihood, (d,e) same as (b,c) but when optimizing k∗. Note that the predictor’s result reprojects correctly but has
noticeably stretched, whereas using the constraints only does not ensure a correct reprojection.

This lets us combine discriminative and generative methods
into a common formulation that, for image-based squared
loss functions, simply involves iteratively solving a set of
linear equations.

The contributions of this paper can be summarized as
follows: We propose a novel approach to incorporating
explicit constraints in discriminative methods. We com-
bine discriminative and generative methods within a sin-
gle framework. We present a unified formulation of artic-
ulated pose estimation and non-rigid shape reconstruction
and demonstrate the effectiveness of our approach on syn-
thetic and real monocular images.

2. Constrained Discriminative Regression
In this section we introduce our approach to incorpo-

rating explicit relationships between the output dimensions
in discriminative methods. In particular, we consider the
case of estimating the 3D pose of a human represented as
a skeleton, and the case of reconstructing the 3D shape of
a non-rigid surface modeled as a triangulated mesh. We in-
troduce equality constraints that represent fix distances be-
tween pairs of joints or between mesh vertices. In the re-
mainder of this paper, we will use the word pose to refer to
a human pose as well as a surface shape.

Let x ∈ <Q be a random variable representing an input
observation (e.g., image features), and y ∈ <D the asso-
ciated output (e.g., pose). Discriminative methods do not
directly model the joint statistics of these two random vari-
ables and focus on estimating the possibly non-linear map-
ping f between them, such that

y = f(x) + ε , (1)

where f = [f1, · · · , fD], and each fi predicts a single out-
put dimension i, assumed to be corrupted by i.i.d. noise εi.

Given a set of i.i.d. pairs, (x1,y1), · · · , (xN ,yN ), sam-
pled from the joint distribution p(x,y), an estimate of f ,
f̂ , can be learned by empirical risk minimization. Differ-
ent loss functions have been proposed (e.g., squared loss,

hinge loss), each of which yields a different discriminative
technique (e.g., least-squares regression, SVMs).

Typically, when y is multi-dimensional (i.e., D > 1),
its dimensions are assumed to be independent given the in-
puts [1, 19]; A different regressor is trained for each of the
output dimensions, thus ignoring their dependencies. As a
consequence, the prediction f̂(x∗) for a new input x∗ might
not satisfy these constraints. This problem is illustrated in
Fig. 1(a), where distance constraints between the vertices of
a mesh are violated, thus yielding a stretched surface. We
now show how to incorporate explicit constraints into dis-
criminative methods to prevent this from happening.

2.1. Distance Preservation Constraints
Let y ∈ <3Np be the vector of 3D coordinates of the

Np points that define a pose. For human pose recovery,
natural constraints arise from the fact that the skeleton is a
kinematic tree, and the distance between a parent node and
its children should remain constant as the person moves.
In the case of inextensible surfaces, it has been shown that
constraining the length of the mesh edges to remain constant
effectively disambiguates the reconstruction process [5, 14].

Let E be the set of Ne links between 3D points whose
length should remain constant. Given a new input observa-
tion x∗ and the prediction of a discriminative method f̂ (x∗),
constrained pose estimation can be formulated as solving
the optimization problem

minimize
y

||f̂(x∗) − y||22 (2)

subject to ||yk − yj ||
2
2 = l2j,k , ∀(j, k) ∈ E ,

where yi is the subvector of y containing the i-th 3D point,
and l2j,k is the fixed squared distance between points j and
k. Because of the distance equality constraints, this formu-
lation is non-convex. However, Shen et al. [14] showed that
for 3D shape recovery these distance constraints could be
incorporated in a generative approach and enforced by iter-
atively solving a linear system. Here, we follow a similar
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Figure 2. Samples from our datasets. (a) Mesh corresponding to a deformed piece of cardboard reconstructed with a motion capture
system. (b) Synthetically generated inextensible mesh. (c) Image generated by texturing the mesh in (b). (d) Similar image obtained with
a more uniform texture. (e) Noisy silhouette of walking person [1]. (f) Input image for a synthetic hand dataset [19]. (g) Image from the
HumanEva dataset [15] registered with the method of [7].

idea in the context of discriminative methods and show that
it still involves iteratively solving a linear system, but with
different equations.

Let yt be the estimate of the 3D shape at iteration t,
which does not satisfy the distance constraints. Obtaining
a shape that satisfies our constraints can be formulated as
finding a small displacement δyt such that

||Ej,k(yt + δyt)||
2
2 = l2j,k , ∀(j, k) ∈ E , (3)

where Ej,k is the 3 × 3Np matrix encoding the distance
constraint for the edge linking point j to point k. Expanding
the previous equation yields

yT
t ET

j,kEj,kyt+2yT
t ET

j,kEj,kδyt+δyT
t ET

j,kEj,kδyt = l2j,k .

(4)
Similarly to [14], if we assume that the current estimate yt

is close to the true solution, and therefore that δyt is small,
we can neglect the quadratic term in δyt. Doing so and
grouping all distance constraints yields the linear system

Ftδyt = gt , (5)

where the i-th rows of Ft and gt can be computed as

Ft,i = 2yT
t ET

j,kEj,k, gt,i = l2j,k − yT
t ET

j,kEj,kyt .

Note that this formulation is equivalent to performing a
first order Taylor expansion and therefore generalizes to any
equality constraints. Since triangulated meshes and human
skeletons have more 3D coordinates than edges, the system
of Eq. 5 has more unknowns than equations. Therefore, it
yields the family of solutions

δyt = F+
t gt + VT

t γt , (6)

where F+
t is the pseudo-inverse of Ft, Vt is the matrix

containing the last (3Np − Ne) right singular vectors of
Ft which have zero-valued singular values, and γt is the
(3Np − Ne) dimensional vector of remaining unknowns.

Given these new unknowns that implicitly minimize the
violation of the constraints, we can re-write Eq. 2 as

minimize
γt

||f̂(x∗) − (yt + F+
t gt + VT

t γt)||
2
2 . (7)

This is now a convex optimization problem, whose min-
imum can be obtained in closed-form by solving a linear
system in the least-squares sense.

Since solving the problem of Eq. 7 only once may yield
a δyt too large to make the quadratic term of Eq. 4 negli-
gible, we iterate until the maximum constraint violation is
less than a pre-defined threshold or a maximum number of
iterations T has been reached. At each iteration t, we com-
pute Ft, gt and Vt, solve the problem of Eq. 7, and update
yt with the resulting δyt. In practice, we initialize y0 with
the prediction of the discriminative method.

2.2. Stronger Dependencies on the Predictor
While the approach described above lets us constrain the

outputs of a discriminative method, it depends on the pre-
dictor only through its fixed prediction f̂(x∗). To make bet-
ter use of the predictor, we rely on the Representer theo-
rem [12] which states that, if f̂ is the minimizer of an L2-
regularized empirical loss function L : <Q → <, then

f̂(x∗) =

N
∑

i=1

αik(xi,x∗) = αk∗ (8)

with k a kernel function, and α = [α1, · · · , αN ]. For multi-
dimensional outputs, assuming that the output dimensions
are independent, this yields one α per f̂j , 1 ≤ j ≤ D,
which can be grouped to form a matrix α. Therefore, to
rely more heavily on the predictor, we propose to exploit
the basis α defined by the representer theorem and learned
at training. To this end, instead of optimizing with respect
to the shape y, we search for the vector k∗ that defines the
predicted pose by minimizing ||f̂(x∗) − αk∗||

2
2 subject to

the distance constraints.
Since the prediction in Eq. 8 is a linear function of k∗,

we can use a similar iterative process as before, and search
for a small variation δk∗,t around a current estimate k∗,t

such that the new estimate satisfies the linearized distance
constraints. At each iteration, the optimal δk∗,t can be ob-
tained by solving the linear system Ftδk∗,t = gt, where the
rows of Ft and gt are now defined as

Ft,i = 2kT
∗,tα

T ET
j,kEj,k, gt,i = l2j,k − kT

∗,tα
T ET

j,kEj,kαk∗,t.

As the dimensionality of k∗,t depends on the number of
training examples N , we have multiple solutions only when
N > Ne. In that case, we can describe the family of so-
lutions in terms of new unknowns γt similarly as in Eq. 6,
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(a) (b) (c) (d)
Figure 3. Reconstructing a non-rigid surface with 2D locations as input. Top: Deforming piece of cardboard of Fig. 2(a). Bottom:
Inextensible meshes of Fig. 2(b). Average MSE as a function of (a,b) noise variance, and (c,d) number of training examples. (a,c) were
obtained by optimizing y and (b,d) by optimizing k∗.

and re-write the problem of Eq. 2 as

minimize
γt

||f̂ (x∗) − α · (k∗,t + F+
t gt + VT

t γt)||
2
2 . (9)

This problem can again be solved in closed-form. We iter-
ate over t until all constraints are satisfied or a maximum
number of iterations is reached.

3. Combining Discriminative and Generative
One drawback of the methodology described in the pre-

vious section is that it only uses image information through
the prediction of the discriminative method. Therefore, the
recovered pose will satisfy the constraints, but may have
drifted away from the pose depicted in the image, as illus-
trated by Fig. 1(b,d). In this section, we propose to make use
of the image more explicitly, while enforcing the constraints
and regularizing the solution to be close to the discrimina-
tive prediction. To this end, we rely on the formulation in-
troduced in the previous section, and iteratively linearize
our distance constraints to solve the problem

minimize
γt

L(·, γt) + λ||f̂ (x∗) − s(γt)||
2
2 , (10)

where L(·, γt) is a loss function that depends on the image,
and λ is a weight that sets the relative influence of both
terms. As shown in the experiments, our method is not very
sensitive to the value of λ. As in the previous section, we
can solve the problem in terms of the pose yt by setting
s(γt) = yt + F+

t gt + VT
t γt, or in terms of the kernel k∗,t,

by setting s(γt) = α · (k∗,t + F+
t gt + VT

t γt).
In particular, we propose two different approaches to

combining the discriminative prediction with the image in-
formation: via learning an inverse mapping from pose to
image features, and via a generative approach where an im-
age likelihood is minimized. In the remainder of this sec-
tion, we present these two approaches.

3.1. Using an Inverse Mapping
One possible way of relating the pose that we optimize to

the original input is by making use of discriminative meth-
ods. Similarly as we learned a mapping from image obser-
vations to pose, we can learn an inverse mapping from pose
to image features.

Given the learned inverse regressor ĥ : y → x, we can
define the loss function in Eq. 10 as

L(x∗, γt) = ||ĥ(s(γt)) − x∗||
2
2, (11)

which describes the squared distance between the inverse
prediction and the input image features. Note that, in gen-
eral, this yields a non-convex optimization problem, which
we solve using a quasi-newton solver. However, thanks to
our constraints, our initial estimate is sufficiently good to
only need a few iterations for accurate prediction. In prac-
tice, since linearizing the constraints involves an iterative
scheme, we initialize γt at each step to the value that yields
the constrained shape closest to the predicted pose.

3.2. Using an Image Likelihood
A more classical way of making use of the image obser-

vations is to employ an image likelihood. To this end, we
encourage the optimized pose to correctly model the image
information while remaining close to the discriminative pre-
diction f̂(x∗). Here, we present the two image likelihoods
used for our experiments. Note that other image likelihoods
could also be utilized.

3.2.1 Minimizing the Reprojection Error

A standard approach to recovering the shape of a de-
formable surface is to minimize the reprojection error of
points on the surface [22, 14, 10]. Similarly, for articulated



(a) (b) (c) (d)
Figure 4. Non-rigid reconstruction from Pyramid HOG. Average MSE for (a,c) a well-textured piece of cardboard and inextensible
mesh (e.g., Fig. 2(c)), and (b,c) poorly-textured surfaces (e.g., Fig. 2(d)). Legends below the plots indicate when we optimize y or k∗.

pose estimation one can minimize the reprojection error be-
tween the 3D joints and the 2D joint locations estimated
from the image [20, 4]. To this end, let x be the vector of
2D locations of the 3D points that define a pose. Given a
new vector of 2D locations x∗, we seek to recover the pose
s(γt) that reprojects near x∗ and remains close to f̂ (x∗).

Let us assume that the camera is calibrated, with A the
known matrix of internal parameters. Without loss of gen-
erality, let us assume that s(γt) is defined in the camera
coordinate system. We can express the fact that a particular
vertex si(γt) should reproject at the 2D location x∗,i as

Asi(γt) = di,t

[

x∗

1

]

, (12)

where di,t is a scalar accounting for depth. This formula-
tion yields two linear equations per point, and the equations
for all 3D points can be grouped into a single linear sys-
tem [10]. This lets us define the loss function of Eq. 10 as

L(x∗, γt) = ||Mt · s(γt)||
2
2 , (13)

where Mt is the 2Np × 3Np matrix encoding the projec-
tion equations at iteration t. Unlike constraining the inverse
mapping, this image likelihood is convex. Furthermore,
it lets us re-formulate the problem of Eq. 10 as the least-
squares solution to a linear system, which can be obtained
in closed-form. This is due to the fact that, whether we use
yt or k∗,t, s(γt) is a linear function of γt. Therefore, at
each iteration t, we only need to solve a linear system.

3.2.2 A More General Likelihood Function

For non-rigid surfaces, when there is not enough texture to
be able to recover the 2D locations of the vertices, we pro-
pose to rely on template matching and on surface bound-
ary information. Note that, provided with a more accurate
model than just a skeleton [16], this could also be applied
to human pose estimation.

For template matching, given a reference image in which
we know the shape of the surface and the camera projection
matrix, the template T is obtained by sampling the barycen-
tric coordinates of the mesh facets and collecting their cor-
responding intensities. The same process is used to obtain
the intensities J(I, γt) in the input image I from the op-
timized shape. Matching is then done by maximizing the
normalized cross-correlation between T and J.

For boundaries, we first detect image edges using
Canny’s algorithm. We then project the current shape esti-
mate into the edge image, sample its boundary, and, for each
sample, look for corresponding image edge points along the
normal direction to the mesh boundary. We then minimize
the distance between the sampled boundary points and their
corresponding image edge points. To be more robust, we
allow for multiple candidates for each boundary point.

In this framework, the loss in Eq. 10 can be written as

L(I, γt) = −Ψ(T,J(I, γt))+λe

Nb
∑

i=1

Nc(i)
∑

j=1

‖ui,j−ei(γt)‖
2 ,

where Ψ(·) is the normalized cross-correlation function, Nb

is the number of sampled boundary points, ei denotes the
boundary point projected in the image, Nc(i) is the number
of edge candidates for point i, and ui,j is the correspond-
ing image measurement. λe is a weight that sets the relative
influence of the two terms. As with the inverse regressor,
this yields a non-convex objective function which we min-
imize using a quasi-newton solver. At each step of the it-
erative linearization scheme, we recompute the edge candi-
dates and initialize γt to the value yielding the constrained
pose closest to the discriminative prediction f̂(x∗).

4. Experimental Evaluation
In this section, we compare the performance of the dif-

ferent approaches proposed in this paper with the original
discriminative method in the context of non-rigid shape re-
construction and articulated pose estimation.

For non-rigid surfaces, we used two types of output data:
The reconstructed deformations of a piece of cardboard ob-
tained with an infrared optical motion capture system, and
inextensible meshes synthetically generated by randomly
setting the angles between their facets [11]. Both types
of meshes are 9×9 square grids of 16cm of side. As in-
puts, we used either the 2D vertex locations obtained with
a known camera and corrupted with i.i.d additive Gaussian
noise, or Pyramid HOG (PHOG) features computed from
images obtained by texturing the meshes. Note that the
2D vertex locations could typically be obtained by meth-
ods such as [6, 21]. Fig. 2(a-d) depicts output and input
samples from these datasets. Additionally, we applied our
technique to real sequences of two different surfaces, and,
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Figure 6. Comparison against [14] and [10] for our two
datasets. MSE as a function of the noise variance. In both cases,
our approach outperforms these techniques.

as inputs, used the 2D vertex locations obtained by tracking
the surface in 2D using template matching.

For articulated poses, we used three different datasets:
A full body pose dataset [1] and a hand dataset [19] gener-
ated using PoserTM , and HumanEva [15]. In all cases, the
outputs of our discriminative method were taken as the 3D
coordinates of 19 joints for the body and 17 for the hand.
For the Poser body dataset, we used binary silhouettes as
inputs, and simulated noise by switching the values of ran-
domly selected pixels. For the Poser hand dataset, our in-
puts were taken as either spatial pyramids of steerable fil-
ters, of SIFT, or PHOG features computed from the images.
For HumanEva, which consists of motion captured human
body poses synchronized with videos, we used the regis-
tered walking images of [7] to compute spatial pyramids of
SIFT and PHOG features, which we took as inputs. To test
our method on a less restrictive set of activities, we also
used the 2D joint locations for walking, jogging and boxing
as inputs. These locations could typically be obtained in a
similar manner as in [20, 4]. For both cases, we used the
poses of a single subject. Samples are shown in Fig. 2(e-f).

The errors shown in our plots were computed as fol-
lows: We took the mean over the test examples of the sum
of squared differences between our reconstructions and the
ground-truth. We then averaged this quantity over 10 par-
titions of the data into training and test examples, and refer
to the resulting value as mean squared error (MSE).

4.1. Our Choice of Predictor
In this paper we use Gaussian processes (GPs) [3] to

learn both the direct and the inverse mappings. The use
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Figure 7. Using distance inequalities [10] instead of equalities.
Left: For the deformations of a piece of cardboard both constraints
give similar results. Right: For a more flexible surface, inequalities
outperform distance equalities. As some curves are superposed,
results are best seen in color.

of GPs is particularly interesting since α can be computed
in closed form as α = YT K−1, where Y ∈ <N×D is
the matrix of training outputs (e.g., poses), and K is the
covariance matrix whose entries are formed by evaluating
the kernel function k(xi,xj) on the training inputs. The
prediction on which our method relies is taken as the mean
prediction of the GP, f̂(x∗) = αk∗. For the inverse map-
ping, αx = XT K−1

x , where X ∈ <N×Q is the matrix of
training input observations (e.g., image features), and Kx

is the covariance matrix evaluated on the training outputs,
with entries kx(yi,yj). The prediction can be computed as
ĥ(y∗) = αxkx,∗. For both mappings, our kernel was taken
to be the sum of an RBF kernel and a bias.

4.2. Non-Rigid Surface Reconstruction
We first present the results of our approach on the de-

formable surfaces datasets. Fig. 3 depicts the results ob-
tained by the original GP, the constrained GP, the con-
strained GP used in conjunction with the inverse mapping,
and the constrained GP used in conjunction with an image
likelihood. Plots (a) and (b) depict the MSE as a function
of the variance of the noise for 250 training examples, and
plots (c) and (d) as a function of the number of training ex-
amples for a fixed noise variance of 4, which corresponds to
what can be expected from 2D non-rigid registration tech-
niques. Fig. 3(a) and (c) correspond to optimizing y, and
(b) and (d) to optimizing k∗. Optimizing k∗ when there
are less training examples than the number of constraints
(208 in this case) yields an overconstrained problem, which
explains the large errors. Fig. 4 shows the MSE obtained
from PHOG features for the different types of data when the
surface is well-textured (a,c) and when it is poorly-textured
(b,d). Note that constraining the discriminative method and
combining it with a generative approach significantly re-
duces the reconstruction error.

We then studied the influence of the weight λ of Eq. 10
on our reconstructions in the case where the inputs are the
2D vertex locations. Fig. 5 depicts the MSE as a function of
λ in log-scale. Note that the curves are relatively flat, and
that we outperform the GP for a wide range of λ.

We also compared our approach against two state-of-the-
art techniques [14, 10]. The first one relies on the same



(a) (b) (c) (d) (e)
Figure 8. Reconstructing a deforming piece of cloth. Top row: Recovered mesh reprojected on the input image. Bottom row: Side
view of the same mesh. Results obtained with (a) the original GP, the GP used with an image likelihood and constrained with (b) distance
equalities and (c) inequalities, (d,e) same as (b,c) but when optimizing k∗.

inextensibility constraints as our method, but in a frame-to-
frame tracking context. Since our approach does not ex-
ploit temporal information, we initialized each frame with
the reference shape. The second approach relies on distance
inequalities instead of equality constraints. No regularizers
were used for the baseline since the correspondences are
well-spread over the surface. Fig. 6 depicts the MSE as a
function of the noise variance for both datasets. Note that
our approach yields more accurate reconstructions.

To show that our framework lets us encode different con-
straints, we replaced our distance preservation constraints
by the distance inequalities of [10], which are better suited
to represent folding surfaces. We first applied these con-
straints to the cardboard dataset with 2D locations as input.
Since for this dataset equality constraints are well adapted,
both methods perform similarly. We then acquired an ad-
ditional dataset for a more flexible piece of cloth with a
motion capture system. In this case, the distance inequal-
ities outperformed the equality constraints. Results for both
datasets are shown in Fig. 7.

Finally, we applied our method to real images. Fig. 1
depicts the results of reconstructing a deforming piece of
paper. As it deforms smoothly, we used the cardboard data
to train the GP. Note that only the constrained combination
of discriminative and generative approaches correctly ap-
proximates the true shape, whereas the GP reconstruction
noticeably stretches, and the constrained one fits the image
less accurately. As a second test case, we used images of
a deforming piece of cloth. Since we did not have training
data corresponding to that particular surface, we used the
inextensible meshes dataset. To account for the flexibility
of the surface, we also used inequality constraints. Fig. 8
compares results obtained with both types of constraints.
As is best observed from the video, inequality constraints
yield more stable results. 1

1The videos for both sequences are available on the conference pro-
ceedings DVD and from the first author’s webpage.

4.3. Articulated Pose Estimation

We now present the results of our approach on the ar-
ticulated pose datasets. Fig. 9(left) depicts the MSE as a
function of the silhouette noise using 250 training examples
for the Poser body dataset [1]. Note that solely constraining
the GP prediction does not improve the results. This can be
explained by the fact that, when a joint angle is predicted in-
accurately, making the limbs of the correct length may move
the end-points even further from the ground-truth. This was
not the case for deformable surfaces where each point is
constrained by several neighbors. However, using our con-
straints in conjunction with an inverse GP yields a signif-
icant improvement. In Fig. 9(right), we show the MSE as
a function of the number of training examples for 3% of
switched pixels. As expected, the improvement is larger for
smaller training sets.

Fig. 10 depicts our results for the different features com-
puted on the hand dataset. Note that GPs trained from his-
tograms of SIFT and PHOG features already perform well.
However, in the case of steerable filters, while the GP per-
forms poorly, our approach successfully reduced the error to
a value comparable to those of the other features, and yields
meaningful solutions, as can be seen in Fig. 10(right).

Fig. 11(a) shows the results obtained using the differ-
ent features computed on the HumanEva [15] walking im-
ages of [7]. As the subject walks in circles, we trained
our method on one loop and tested it on the rest of the se-
quence. Since for this dataset, estimating the pose from a
single image is known to be ambiguous, we introduced a
constant speed motion model in the loss function of Eq. 10,
and solve for 20 frames simultaneously. Fig. 11(b) depicts
our results for multiple activities when using the 2D joint
locations as inputs. Since doing so removes some ambigu-
ities of the problem, no dynamics were required. Note that
our constrained combination of discriminative and genera-
tive methods improves the pose estimation.
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Figure 9. Estimating human pose from silhouettes [1]. MSE of
the original GP and of our method as a function of the percentage
of noise in the silhouette (left), and as a function of the number of
training examples (right).

Figure 10. Recovering the pose of a hand. We compare the MSE
obtained with several features. Note that the GP learned from
steerable filters yields a large error that is reduced with our ap-
proach. Right: Even for a failure of the GP (non-typical), our
method recovers the correct pose.

5. Conclusion and Future Work
In this paper, we have presented a unified framework

for articulated pose estimation and non-rigid shape recov-
ery. We have shown that introducing distance constraints
into discriminative methods improved their performance on
these tasks. However, these constraints are not sufficient
since they do not prevent the recovered pose from drifting
away from the pose depicted in the image. To overcome
this problem, we have proposed a principled combination of
discriminative and generative methods into a common for-
mulation, which, we believe, is key to successfully address
articulated and non-rigid pose estimation. In the future, we
intend to study the use of different relaxations of our dis-
tance constraints, as well as different constraints, such as
joint limits. We also plan to build more complex image like-
lihoods that rely on additional cues, such as shading.
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