
Cost aware inference with early exits

Vishal Keshav
vkeshav@cs.umass.edu

Berett Babrich
bbabrich@umass.edu

Paige Calisi
pcalisi@umass.edu

April 22, 2020

Abstract

In modern computing, there is an increased need for performing inference com-
putation on-device due to privacy and efficiency concerns. For applications requiring
continuous, non-critical predictions, the need for fast predictions outweighs the need
for perfect accuracy. Existing solutions seek to reduce the required computation for a
single round of inference, while ignoring the variability in inference runtime caused
by the interfering background load. In this paper, we present a novel approach to dy-
namically adjust the model execution and provide a deterministic policy that strikes
a right balance between accuracy and efficiency. The objective of our research is to
reduce runtime performance variability to enhance continuous, realtime predictions.
Keywords: edge computing; machine learning; dynamic inference, real-time prediction.

1 Introduction

AI computing has moved out of the traditional cloud servers and is getting closer to where
the data is being generated. Privacy and security concerns surrounding the ML applica-
tions have only fueled this shift, driving innovative solutions to be proposed to improve
the on-device inference. Traditional use-cases from computer vision and NLP domain are
increasingly being deployed on smartphones and other edge devices like IoT. These appli-
cations can be categorized into four quadrants (shown in fig.1). Applications falling into
the realtime non-critical category allow for the flexibility to miss the ideal accuracy thresh-
old, but the inference needs to be continuous and without any delay. In this paper, we
focus on non-critical realtime applications such as human pose detection (10).

Figure 1: Application categorization.

1

mailto:vkeshav@cs.umass.edu
mailto:bbabrich@umass.edu
mailto:pcalisi@umass.edu


One advantage, apart from improved security, that a realtime ML application gets from
on-device inference is that of reduced latency, as this gets rid of server data transmission
cost. However, other problems emerge that relate to power and performances. To re-
solve this issue, traditional research focuses on techniques that reduce the computation
required to complete one round of prediction. These techniques include architectural im-
provements, quantization (9), and taking advantage of sparsity (3) (6) to discard computa-
tional blocks altogether. In the context of realtime non-critical applications, there still exists
a problem that relates to variability in ML performance. In these applications, each round
on inference is not guaranteed to provide a consistent execution runtime. This variability
is mainly caused by processes such as other ML workloads and background system tasks.
These processes can interfere with on-going real-time prediction and the resulting runtime
can differ from one run to another. From the end-user perspective, this translates to jitter
and lag in the application.

To resolve the performance variability problem, a new class of system and ML archi-
tectures is required that can enable dynamic real-time inference. The dynamics of the ex-
ecution runtime could be controlled by factors such as background load, ML architecture
characteristics and user’s quality of service metrics (such as accuracy demands). Such a
cost awareness may not only reduce the performance variability but also provide guaran-
tees on runtime and accuracies across multiple runs.

Unfortunately, there does not exist a dynamic policy and a corresponding system to
support such a dynamic inference for edge devices. Popular mobile-inference engines
such as TFlite (5), Caffe (4), CoreML (2), and others primarily focus on improving the
single execution cycle. In contrast to these existing systems, the focus of this paper is to
improve the realtime application performance variability, guided by the appropriate QoS
metric. In section 2, we discuss state-of-the-art approaches to resolve issues falling in this
domain and discuss how our method is different from theirs. In section 3, we formulate
the problem statement. In section 4, we describe a simple policy and propose a system to
reduce performance variability. Section 5 details the implementation and finally section 6
provides some concluding remarks.

2 Related work

Most existing mobile-AI applications use various kinds of neural network architectures,
such as convolutional neural networks, for computer vision tasks and recurrent neural
networks for sequence-based tasks. These models are performance-intensive, and most
of the compute demand is attributed to matrix multiplication. In the context of real-time
prediction, while reducing the computation cost with minimal degradation in the accuracy
is an important goal, reducing the computational cost for each run is equally important.
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Non-critical realtime applications provide the flexibility to trade-off the computational cost
with prediction accuracy. To do so, in the past, several approaches were proposed to do
dynamic inference. In this section, we discuss two close approaches that describe a system
to do partial execution.

2.1 Architectural design to support conditional computation

The idea of having conditional computation is based on terminating the prediction early
with one of the computational branches. One such architecture is BranchyNet (12), where
multiple exit points are augmented in an already existing neural network architecture. The
location of the exit branches is chosen such that it strikes a good balance between compu-
tation cost and accuracy, if the computation is meant to be terminated early. The basis for
terminating early can be based on several heuristics. For example, in the paper Condi-
tional Deep Learning (11), the conditional computation was based on the toughness of the
input (shown in fig.2). A different network was trained to take input and then predict the
confidence through each of the exit points. Based on this confidence in the accuracy, one
of the exit points is selected. This approach only caters to improve on the accuracy with
the least computational cost. The first drawback of this approach is the unreliability of
the confidence prediction system. The second drawback is that it disregards the compu-
tational constraints imposed from the system on which inference has to run (such as edge
devices) and only focuses on maintaining the highest possible accuracy. In our approach,
however, we provide a deterministic policy to decide the choice of an exit path and provi-
sion to the need for performance constrained edge devices and to the applications that can
trade-off accuracy for efficiency. In summary, our objective is different, which is to reduce
the runtime performance variability for realtime continuous prediction.

Figure 2: Early exit architectures and decision policy based on the input toughness.

3



2.2 Trainable throttling policies

A recent paper (7) generalizes the idea of early termination systems to build a throttlable
architecture design. The paper proposes to use the gated modules which decide when to
throttle an on-going computation. Through the gated mechanism, throttling can be done
at multiple levels, such as at the layer level or at the neuron level. Furthermore, the pro-
posed system is end to end trainable, such that policy can be adapted to the data and user
requirement. The main drawback with this approach is that the training needs to be done
in two phases, first to train the network for data path, and then train the network for gating
mechanism. Unlike theirs, our approach does not involve the second phase of training, as
the decision policy we propose is deterministic. The second drawback in their approach
is that an already performing model cannot be utilized, instead, the architecture has to be
constructed and trained from scratch. Our approach involves augmenting existing estab-
lished architecture and utilize the hard work which has gone to design the neural network
(for example MobileNet (8) for image classification).

3 Problem formulation

To concretely define our problem statement and evaluate our approach, we experimented
with real-time image classification problem and used a widely adopted mobile-net family
of architectures (8). The Mobile-net family of architectures provides two tunable hyperpa-
rameters (width multiplier and depth-multiplier), and with a different choice of the hyper-
parameter the architecture can manifest different accuracy-efficiency characteristics. Once
the model is trained with a set of chosen tunable hyperparameters, the number of MAC
(multiple add operation) and accuracy remains fixed. To demonstrate the runtime vari-
ability with these sets of architectures, we ran each model on an Android device (where
we maintained the same background load environment, explained in the implementation
section), collected 1000 runtime data, and plotted the runtime distribution. The accuracy-
runtime characteristics of chosen mobile net architectures are shown in table 3 and the
runtime distribution for each model is shown in fig.3.

MobileNet version MACs Paramerers Top 1 Lower bound Upper bound
(Millions) (Millions) accuracy runtime (ms) runtime (ms)

mobilenet v2 1.4 224 582 6.06 75.0 150 280
mobilenet v2 1.3 224 509 5.34 74.4 120 210
mobilenet v2 1.0 224 300 3.47 71.8 70 150

mobilenet v2 0.75 224 209 2.61 69.8 50 110
mobilenet v2 0.5 224 97 1.95 65.4 30 55

mobilenet v2 0.35 224 59 1.66 60.3 20 45
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Figure 3: Runtime distribution with different versions of mobilenet, each model is run
separately for 1000 runs.

During the multiple runs of inference, if only model 1 is chosen, then the accuracy will
be highest, however, the runtime will suffer. On the other hand, if a lower model (such
as model 4, 5, etc.) is selected, the runtime is guaranteed to be equal or less than the ideal
runtime (defined as the lower runtime bound of model 1), but the accuracy will be low. To
strike a good balance between the runtime and accuracy across different runs, we define a
user quality of metric (denoted by α). The QoS metric α can vary from 0 to 1, where α =
1, means there is no concern for accuracy, but the runtime variability should be minimal.
With α = 1, accuracy becomes the topmost priority. Anything in between penalizes both
runtime variability and distance from an idea accuracy. Figure 4, demonstrates this case
aptly.
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Figure 4: A visual aid to demonstrate the the trade-off between accuracy and runtime.

Formally, we define the runtime and accuracy penalty as follow:

Rp = max(0, r − r̂)2 (1)

whereRp is the runtime penalty, r is the actual inference runtime and r̂ is the ideal runtime,
which is the lowest runtime achieved from the best performing model/exit-path.

Ap = (â− a) (2)

where Ap is the accuracy penalty, â is the ideal accuracy (highest accuracy achieved from
a model/exit-path) and a is the accuracy of the model chosen to run a single inference.

Total penalty across N runs is defined as:

T (N)
p =

N∑
i=1

(α ∗R(i)
p + (1− α) ∗A(i)

p ) (3)

where Tp denotes the total penalty across N inference runs, R(i)
p denotes the runtime

penalty on the ith run, A(i)
p denotes the accuracy penalty on the ith run, and α denotes

the QoS metric described above.

Our objective is to minimize the total penalty for a given user’s quality of service metric
α.

mink∈KT
(N)
p (4)

where K = {0, 1, 2, ...,M}N denotes the possible choice of M models (or exit paths) across
N different inference run.
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In the next section, we detail our approach to minimize the total penalty that takes into
the account the model’s accuracy-runtime characteristics and CPU load. The developed
policy helps choose one of the models or one of the exit points (if a dynamic model like
branchyNet with multiple exit points is used) dynamically.

4 Approach

Our approach to minimize the total penalty Tp depends on reliably predicting the model
execution runtime for the different exit point. To do that, we track the instantaneous back-
ground CPU load by reading /proc/stat file system at a regular interval (50 to 100 ms).
Based on the CPU load and execution runtime data by executing the mobile net model for
image classification 1000 times, we observed that the CPU load correlates with the infer-
ence runtime. As the background CPU load increases, the inference runtime increases as
well. Furthermore, we are interested in the CPU load trend and not instantaneous loads
(which has irregular peak behavior). To estimate the CPU load trend from instantaneous
CPU loads, we discuss two methods:

4.1 Load trend estimation

(a) Load prediction based on exponential moving average: Let lt denotes instanta-
neous CPU load recorded at time t, then exponential moving average load at time
t (denoted by expt) is defined as expt = µ ∗ lt + (1 − µ) ∗ expt−1. This weights the
current load and all previously seen loads with exponentially decaying weights µ.
This way of load estimation has the same shortcoming (abrupt peakiness) as that of
the instantaneous load.

(b) Load prediction based on window average: The load prediction based on average
of window of size W (denoted by avgt) is give by avgt = sumt−W

t=t lt/W . This load
prediction method shows a better load trend by smoothing the previously observed
load. The fig.5 shows the instantaneous load and load prediction achieved from the
above-described techniques. It also demonstrates that window-based load estima-
tion correlates better with the actual inference time.
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Figure 5: Load estimation and runtime correlation with CPU load with 1000 runs of Mo-
bileNet model for image classification.

To reliably estimate the runtime for each exit path, we scale the estimated load in the
model runtime ranges. Specifically, if a model/exit path exhibit the runtime in the range
L ms to U ms, then estimated runtime at CPU load lt is given by:

r̃t = (U − L) ∗ avgt (5)

where r̃ denotes the predicted runtime at cpu load lt.
Next, we provide the complete algorithm which is based on the minimization objective

and runtime estimation system described above.

4.2 Exit path selection algorithm

In the plot shown in fig.6, we vary CPU load and capture the model selection with 6 mobile
net model version described in the table3 with different values of alpha. The plot shows
how different choices of alpha impact the model selection as CPU load varies. These selec-
tions are such that the total penalty is minimized.
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Algorithm 1 Exit-path selection algorithm

1: Input: expt, L, U, A α
2: Output: Exit path index
3: for i = 1, 2, . . . |L| do
4: Set ˜r(i) = Li + (Ui − Li) ∗ expt
5: end for
6: Set r̂ = L|L|
7: Set â = A|L|
8: for i = 1, 2, . . . |L| do
9: Set R(i)

p = max(0, ˜r(i) − r̂)2

10: Set A(i)
p = â - Ai

11: end for
12: Normalize Rp and Ap

13: Tp = α ∗Rp + (1− α) ∗Ap

14: k = argmin Tp
15: Return k
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Figure 6: Penalty with varying alpha and cpu load.

5 Results

5.1 Results with MobileNet family of architectures

Our first set of experiments was conducted on the Mobilenet family of architectures (spec-
ified in the table). The exit path selection algorithm was modified to select one of the 6
mobile net architectures. The figure 7 shows the effectiveness of predicting model execu-
tion runtime by comparing it against the recorded inference runtimes. This demonstrates
that the average CPU load is a good proxy to tell how the model will behave if ran with
the random system load.
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Figure 7: Estimated runtime and actual runtime.

Next, we list the average latency, variation in latency, and the achieved accuracy of
each of the models individually, then compare it with our approach. Results are shown in
the table5.1:

MobileNet version Average runtime Runtime variation Average accuracy

mobilenet v2 1.4 224 202.02 37.94 75.0
mobilenet v2 1.3 224 169.26 19.05 74.4
mobilenet v2 1.0 224 103.77 1.32 71.8
mobilenet v2 0.75 224 81.49 0.0 69.8
mobilenet v2 0.5 224 40.326 0.0 65.4

mobilenet all (α = 0.5) 170.10 31.84 74.82

The figure 8 shows the runtime distribution after applying the proposed algorithm. It
can be observed that the runtimes have shifted towards 150 ms (which is the ideal runtime)
mark.
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Figure 8: Runtime distribution with dynamic model selection at runtime.
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5.2 Results with branch augmented MobileNet architectures

The second experiment relates to augmenting the mobile net with multiple exit points.
Each of the exit point classifiers was chosen to approximately match the MACs from indi-
vidual mobile net architectures. To support the partial execution of augmented branched
mobile Net, we modified the TFLite interpreter. The exit path selection algorithm on the
branched Mobilenet produced similar results as shown in the previous table. But the ob-
vious benefit of this approach is that the application need not maintain multiple models.
Moreover, multiple models need not be loaded to the RAM at the same time.

5.3 Results with image classification application

We noticed a significant decrease in the average number and the variation in the number
of image buffers dropped during realtime image classification. This drop is at the cost of
prediction accuracy. The result is shown in the table.

MobileNet version Average frames dropped Variation in frame dropped

mobilenet v2 1.4 224 36 15.2
mobilenet all (α = 0.5) 28 11.8

6 Implementation details

6.1 Mobile Workload automation

To carry out the experiments under consistent system background load, we automated the
user interactions with the Android device. The interaction was recorded with the monkey
recorder and ran with the monkey runner through ADB (1). A python scripts controlled
the sequence in which these interactions are being made. Over multiple runs, we observe
approximately the same CPU load trends, which verifies that the results can be repro-
ducible.

6.2 Load tracking and load trend estimation

To record the active and idle CPU time, we read /proc/stat file system at a fixed interval.
The load tracking functionality was launched in a different background thread and was
signaled by the main program for start and stop. To ensure that this thread does not cause
the system to be loaded, we set the load tracking system to update its load every 100
milliseconds.

6.3 Static analysis of MACs through each branch

We created a tool to compute the number of MACs for each branch in the augmented mo-
bile net architecture. The static analysis was run before feeding the model to the TFLite
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interpreter. The MACs information is passed to the exit point selection algorithm to esti-
mate the runtime for each exit points in the architecture.

6.4 Modification is TFLite interpreter

To enable the partial execution through TFLite interpreter when running augmented mo-
bile net architecture, we modified the graph executer class. The invoke function was then
modified to accept the tensor node-id argument. The graph executer ceases the compu-
tation once the supplied node id tensor is filled. An overview of the modified blocks is
shown in the figure.

CPU load tracker

TFLite

Interpreter

Application

Modified

Exisiting

External

Figure 9: System overview diagram.

6.5 Frame drop count in image classification application

We modified the official image classification app (13) provided as an example in the Ten-
sorFlow repository and logged the number of frames dropped.

The source code used for this project can be found in our Github repository. To aid the
reproducibility, we are updating the guide and the software dependencies.

7 Discussion and Conclusions

For reasons of security and efficiency much of machine learning inference has moved from
cloud servers to on-edge, on-device computation. Many applications require fast, efficient
predictions and have this need prioritized over highest accuracy. However, there are many
computational challenges lurking around in this domain.

This paper discusses the two existing approaches for handling these dilemmas. The
first seeks to minimize computation through techniques like architectural improvements,
quantization. However, this approach fails to account for differences in single inference
runtime caused by background load. The second approach involves computational branches
using multiple exit points, like BranchyNet. In our approach outlined in this paper, we
present a deterministic policy to select and terminate the computation through an early
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exit point based on a specified QoS metric. This metric specifies if the desired model out-
come favors accuracy or efficiency.

In this paper, we experimented with real-time image classification models from the
mobile-net family of architectures. Six different models were tested, with varying CPU
loads and QoS alpha values. Results of this experiment indicated that regardless of the
model, average CPU load is a reliable indicator in predicting inference run-time. The next
experiment involved modifying the mobilenet model to have multiple exit points. We
compared the performance of the existing mobilenet model with our modified exit point
version. Results of this experiment indicated that the modified version had a decrease in
average number and variation of image buffers dropped during image classification.
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