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ABSTRACT

The main aim of the project is to study and apply Queueing Theory

in modelling the wireless network node and create a power consumption

function along with user specified constraints. Power consumption function is

minimized satisfying the constraint using a numerical optimization technique.

Optimised parameters are then tested on performance metrics developed.
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Chapter 1

Introduction

A wireless system can be differentiated into three segments which are Wire-

less LANs, Wireless PANs and Wireless Sensor Network(WSN). While LANs

and PANs are equally important, much of the research focus has been put

into Wireless Sensor Networks where a large number of tiny low cost, low

power sensing devices are spreaded over the area used for extracting, process-

ing and transmitting data to neighbour nodes, to further route it to central

node. Wide applications of WSNs, from environmental monitoring to data

logging, makes it a important subject to study and analyse. Recent incli-

nation towards Internet of Thing(IoT) where most of the things are given

computational capabilities along with connectedness has a close resemblance

with WSN, which further makes it important area to approach.

One of the drawbacks associated with WSN is the limited availability of

of power. Generally, nodes in the network are battery powered with limited

lifetime and it has become a difficult task to make a replacement. For this

reason, increasing the operational lifetime of sensor nodes has becomes one

of the main design issues for WSN.

With the objective to minimize the energy consumption of a wireless
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sensor node, in this project we model the node mathematically and try to

obtain optimal parameters that minimize the power cost function. In the

second chapter, we start with the overview of M/M/1 queue and further

extend it to describe N-policy M/M/1 queue, on which nodes in WSN are

modelled[1, 3, 6]. We describe three approach to solve steady state proba-

bility equations for M/M/1 queue, putting more emphasis on moment gen-

erating function approaches. The moment generating function approach is

used to solve steady state probability equation for N-policy M/M/1 queue.

Important parameters of system such as average number of packets in queue

and average time spent in the queue have been derived[1].

The chapter 3 deals with the formulation of energy consumption cost

function and a related Quality of Service(QoS) constraint[3, 5]. Numeri-

cal techniques have been employed to optimize the cost function under the

constraint[2] in order to find optimal value of associated variables of the

system parameters. We take a particular example and show the percentage

improvement over ordinary method. The last chapter presents the conclusion

and future improvement possibility in this topic.
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Chapter 2

Background

In order to analyse a node in wireless network, its important to construct a

mathematical model that mimics its working. In addition to that, the model

gives us the properties of a node in terms of parameter that becomes an

integral part to further study the node in greater detail. We have modelled

our node on queuing system. So, in this Chapter we give a brief description

of queuing theory.

2.1 M/M/1 Queue

A queuing system is basically characterised by Arrival process, Departure

Process and the number of servers that can serve at a time. A mathematical

representation of queuing system is given in Kendall’s notation as follow:

A/S/c (2.1)

where A denotes the arrival process S denotes the service time distribution

and c is the number of servers
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Arrival Process and Servicing Process describes the probability density

distribution that determines the packet arrivals in the system and service

time in the system respectively. A and S can be Markov(M) i.e. describing

exponential probability density, Deterministic(D) i.e. all packet takes same

amount of time or General(G).

In this section, we will analyze M/M/1 queue having exponential inter-

arrival times with mean λ, exponential service times with mean µ and a single

server. Packets are processed in order of arrival time. This queueing system

can be applied to a wide variety of problems as any system with a very large

number of independent customers can be approximated as a Poisson process.

We say the system is in state k if N(t) = k where N(t) is the number of

packets in the system at time t. Since all the random variables involved is

exponentially distributed, N(t) have memory less property and is continuous

time Markov chain with state space 0,1,2... . We denote pk(t) as probability

that system has k number of packets at time t and pij(∆t) as transition

probability from state i to j in time ∆t.

(2.2)

pk,k+1(∆t)) = (λ∆t+O(∆t))(1− (µ∆t+O(∆t)))

+
∞∑
k=2

(λ∆t+O(∆t))k(µ∆t+O(∆t))k−1

Neglecting higher order terms in the above equation, transition probabil-

ity is re-written as

(2.3)pk,k+1(∆t)) = (λ∆t+O(∆t))

Similarly,
(2.4)pk,k−1(∆t)) = (µ∆t+O(∆t))

Based on memory less property, state probability is given by

p0(t+ ∆t) = (1− λ∆t)p0(t) + µ∆tp1(t) +O(∆t)

pk(t+ ∆t) = λ∆tpk−1(t) + (1− (λ+ µ)∆t)pk(t) + µ∆tpk+1(t) +O(∆t)
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The above equation in differential form is given by

p′0(t) = −λp0(t) + µp1(t)

p′k(t) = λpk−1(t)− (λ+ µ)pk(t) + µpk+1(t)

Since we are interested in the system at equilibrium condition i.e. at t →

∞, differential terms becomes zero and we obtain the system equation at

equilibrium condition given by

−λp0(t) + µp1(t) = 0 (2.5)

λpk−1(t)− (λ+ µ)pk(t) + µpk+1(t) = 0 (2.6)

Before solving (2.5) and (2.6), we describe some assumptions on system

at equilibrium condition. Traffic intensity ρ defined by ρ = λ
µ

must be smaller

than 1 otherwise system would be overloaded. Also, pk should satisfy nor-

malization condition given by
∑∞

k=0 pk = 1.

2.1.1 Equilibrium state solution

There are different approach to solve (2.5) and (2.6), but we describe three

of them.

1. Direct Approach: Since the equation (2.6) is a second order recurrence

relation, the general solution will be of the form pn = c1x
n
1 +c2x

n
2 where

x1 and x2 are the roots of quadratic equation λ− (λ+ µ)x+ µx2 = 0.

Substituting the roots x = 1 and x = λ
µ

in general solution of pn, we get

pn = c1 + c2ρ
n. Applying normalization condition and equation (2.5),

solution we get is pn = (1− ρ)ρn where ρ is traffic intensity as defined

earlier.
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2. Recursion: p1 can be obtained in terms of p0 using equation (2.5) as

p1 = p0ρ. Using equation (2.6) and p1, p2 can be obtained as p2 = p0ρ
2.

In general, pn is given by pn = p0ρ
n. Using normalization condition,

we get the solution pn = (1− ρ)ρn.

3. Generating function approach: Probability generating function of num-

ber of packets in the system denoted by L is given by

PL(z) =
∞∑
n=0

pnz
n (2.7)

where |z| ≤ 1 We multiply nth state equilibrium equation to zn and

sum the equation over n, the equilibrium equation can be transformed

in terms of PL(z) as given below

µp0(1− z−1) + (λz + µz−1 − (λ+ µ))PL(z) = 0 (2.8)

The solution of equation is given by

PL(z) =
∞∑
n=0

(1− ρ)ρnzn (2.9)

Equating the coefficient of moment generating function with pn yields

us the equilibrium solution.

2.1.2 Performance measures of the system

In this subsection, we derive some important performance parameters of the

system.

1. Mean number of packets in the system: It is the average number of

packets waiting to be processed and packets under processing. We
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denote it by N .

N = E(L) =
∞∑
n=0

npn =
ρ

1− ρ
(2.10)

2. Mean time spent in the system: It is the average time spent by a packet

in the system once entered.

E(S) =
E(L)

λ
=

1/µ

1− ρ
(2.11)

3. Mean number of waiting packets: This excludes the packets under pro-

cess in the system. We denote it by Q.

Q = E(L− ρ =
∞∑
n=0

n− 1pn =
ρ2

1− ρ
(2.12)

4. Mean waiting time: It is the average time a packet spends in the system

waiting to be precessed.

E(W ) = E(S)− 1/µ =
ρ/µ

1− ρ
(2.13)

5. Server utilization: It gives the fraction of time server remains busy

processing packets in the system. We denote it by Us.

Us = 1− p0 = ρ (2.14)

2.2 N-policy M/M/1 Queue

Up till now, we have discussed the basic M/M/1 queue. But our analysis

of a sensor network is based on N-policy M/M/1 queue which can thought

of as an extension of basic M/M/1 queue. The main difference between the
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two lies on how server process data packets present in the buffer. In N-

policy M/M/1 queue, server stops processing data packets until the number

of packets reaches a specified value N. Once it starts processing, server serves

the packets exhaustively i.e. keeps on processing packets until there is no

packet left in the system. Once, there is no packet left to serve, server node

start to accumulate N packets before going to busy state.

So basically, a sensor node switches between two state which are Idle

state and Busy state. A node remain in one of the two states i.e. Idle state

and Busy state in addition to a state described by the number of packets

in the system. Mathematically, a state of the system is described by (i, n)

where i = 0, 1 represents Idle and Busy state respectively and n = 0, 1, 2, 3, ...

represents the number of packets present in the system. Similar to M/M/1

queue, we assume packet arrival follow a Poisson process with mean arrival

rate λ for a generic sensor node and the service times are exponentially

distributed with mean 1/µ.

For a fixed N, we denote P0(n) as probability of being in Idle state and

with n number of packets in the system. Value of n in Idle state can range

from 0 to N − 1. Similarly, we denote probability of system of being in Busy

state with n number of packets by P1(n). In case of Busy state, n can range

from 1 to ∞.

Similar to equation (2.5) and (2.6) as in the case of M/M/1 queue, steady

state equation for P0(n) and P1(n) can be derived and is given as follow:
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λP0(0) = µP1(1) (2.15)

λP0(n) = λP0(n− 1), 1 ≤ n ≤ N − 1 (2.16)

(λ+ µ)P1(1) = µP1(2) (2.17)

(λ+ µ)P1(n) = λP1(n− 1) + µP1(n+ 1), 2 ≤ n ≤ N − 1 (2.18)

(λ+ µ)P1(N) = λP0(N − 1) + λP1(N − 1) + µP1(N + 1) (2.19)

(λ+ µ)P1(n) = λP1(n− 1) + µP1(n+ 1), n ≥ N + 1 (2.20)

The above set of equation is difficult to solve using recursive approach.

So, we use Generating function approach to obtain a closed form expression

for probability of being in a state. Let us denote I, B and L the number

of packets in the system during Idle state, Busy state and under N-policy

M/M/1 queue respectively. We define moment generating function for these

three different case as follow:

GI(z) =
N−1∑
n=0

znP0(n), |z| ≤ 1 (2.21)

GB(z) =
∞∑
n=1

znP1(n), |z| ≤ 1 (2.22)

GL(z) = GI(z) +GB(z) (2.23)

Using equation (2.16), GI(z) can be re-written in terms of P0(0).

GI(z) = P0(0)
N−1∑
n=0

zn =
1− zN

1− z
P0(0) (2.24)

Multiplying z to (2.16) and zn to (2.17) - (2.20) for n = 2, 3, 4, ... and adding
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all equation term by term for all possible value of n, we obtain the following:

GB(z) =
ρz(1− zN)

ρz2 − (1 + ρ)z + 1
P0(0) (2.25)

Combining GI(z) and GB(z), we obtain

GL(z) = GI(z) +GB(z) =
1− zN

(1− ρz)(1− z)
P0(0) (2.26)

With z = 1 in GL(z), we get normalization condition and L’Hospital’s

rule

GL(1) = GI(1)+GB(1) =
N−1∑
n=0

P0(n)+
∞∑
n=1

P1(n) = lim
z→1

GL(z) =
N

1− ρ
P0(0) = 1

(2.27)

Thus the probability of having no packet in system and system being in Idle

state is given by P0(0) = 1−ρ
N

.

We denote PI and PB as probability of being in Idle and Busy state

respectively. These probabilities can be derived easily using moment gen-

erating function. PI = GI(1) = limz→1
1−zN
1−z P0(0) = NP0(0) = 1 − ρ and

PB = GB(1) = limz→1
ρz(1−zN )
(1−ρ)(1−z)P0(0) = ρ.

2.2.1 Performance measure of the system

In this subsection, we derive some important performance parameters of N-

policy M/M/1 queue.

1. Expected number of packets in Idle state:

E(I) =
N−1∑
n=0

nP0(n) =
1− ρ
N

N(N − 1)

2
=

(N − 1)(1− ρ)

2
(2.28)
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2. Expected number of packets in Busy state:

E(B) =
∞∑
n=0

nP1(n) = GB(1)′ = lim
z→1

GB(1)′ =
Nρ(1− ρ+ ρ(1 + ρ))

2(1− ρ)

(2.29)

3. Expected number of packets in N-policy M/M/1 queue: Combining the

two expressions above we obtain:

E(L) = E(I) + E(B) =
N − 1

2
+

ρ

1− ρ
(2.30)

4. Idle Period: It is the length of time per cycle when server is Idle with

waiting packet number is less than N. We denote it by TI . It is the sum

of N exponential random variable with mean 1/λ and thus given by:

E(TI) = N/λ (2.31)

5. Busy Period: It is the length of time per cycle when server is busy and

transmitting data packet. We denote it by TB. Since E(TB)/E(T ) =

1−ρ where E(T ) = E(TI) +E(TB), E(TB) can be derived and is given

by following

E(TB) =
N

µ(1− ρ)
(2.32)

6. Busy Cycle: It is the time difference between two consecutive starts of

Idle period. We denote it by T .

E(T ) =
N

λ(1− ρ)
(2.33)
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Chapter 3

The Power Function

In the previous chapter, we have discussed the mathematical model for sensor

node in wireless networks in great detail. This chapter deals with the con-

struction of Energy consumption function using the performance measure

derived for N-policy M/M/1 queue. We then try to obtain optimal value of

N and service rate µ by minimizing the cost function under a constraint. We

then describe a performance measurement metrics PCIF which is essential

in order to measure the optimality achieved with optimal value of N and µ.

3.1 Cost Function formulation

We make following assumptions before constructing energy consumption

function.

1. Fixed energy consumption is incurred per busy cycle in switching be-

tween Idle and Busy state and vice verse.

2. Energy is consumed for retaining the data packets present in the sys-

tem.
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3. Constant amount of energy is consumed per Busy and Idle period in

one Busy cycle.

4. Server has the flexibility of increasing servicing rate but at the expense

of increased energy consumption[8]. Linear model is taken into consid-

eration for simplicity.

Lets us denote Ch, Cs, Cid, Cb and Ps as holding power for each packet in

the system, setup energy per busy cycle, energy consumed to keep server in

idle state, energy consumed to keep server in busy state and data processing

power in one busy cycle respectively.

Using the above notation, we construct average cost function as follow:

F (N,µ) = ChE(L) +
Cs
E(T )

+ Cid
E(TI)

E(T )
+ Cb

E(TB)

E(T )
+ Psg(µ) (3.1)

The above function has two variables, N which is the number of packets

the server accumulate before processing exhaustively and µ which is the mean

service rate or average data processing rate of the server. Using equation

(2.30), (2.33), (2.31), (2.32) and linear dependency on power consumption

over service rate, equation (3.1) can be re-written as follow:

F (N,µ) = Ch

(
N − 1

2
+

ρ

1− ρ

)
+Cs

λ(1− ρ)

N
+Cid(1−ρ)+Cbρ+Psµ (3.2)

where ρ = λ
µ
.

We need to minimize the cost function in order to find optimal value of N

and µ. But we also need to consider the user’s Quality of Service needs. Since

a bound on mean waiting time in the queue, denoted by Wq is an important

QoS requirement, we take it as a constraint while minimizing power cost

function.
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Derivation of mean waiting time Wq at steady state is given as follow:

Wq =
E(L′)

λ
(3.3)

where E(L′) is expected number of packets waiting in the system.

E(L′) = E(L)− ρ =
N − 1

2
+

ρ

1− ρ
− ρ =

N − 1

2
+

ρ2

1− ρ
(3.4)

Using equation (3.4) in (3.3), we obtain average delay per packet

Wq =
N − 1

2λ
+

ρ

µ− λ
(3.5)

3.2 Constrained Power Optimization

Having constructed the cost function, we want to minimize it under the the

constraint of mean delay of a packet in the system. Mathematically, we want

to solve the following constrained problem

minimize F (N,µ)

subject to Wq ≤ D
(3.6)

where D is the delay.

We could use KKT to solve above of inequality constrained 2 variable

function, but obtaining a closed form solution is not easy. This is because

of the complexity and non-linearity of cost function. So, we approach the

solution of problem through numerical optimization techniques[7].

To obtain the optimal value (N∗, µ∗), we break the problem in two steps.

In step 1, we minimize the cost function without constraint in an iterative

14



way.

xk+1 = xk + αkpk (3.7)

where x0 is an initial guess, αk is the step length and pk is the direction of

movement in search for the minimum F (.). Here, we represent xk as a vector

[N,µ]T at kth iterate. We can choose pk = −∇Fk/‖∇Fk‖ which is steepest

decent direction. We can use Backtracking Line Search algorithm to find an

appropriate value of α at every iterate. We give the algorithm below.

Result: return α

Choose α > 0, ρ ∈ (0, 1), c ∈ (0, 1);

while F (xk + α · pk) ≤ F (xk) + c · α∇Fk · pk do

α← ρ · α;

end

Algorithm 1: Backtracking Line Search

Number of iterates depend on precision required. Once we arrive at an

optimal (N∗, µ∗), we check if it lies in the feasible region i.e. Wq(N,µ) ≤ D.

If it lies in the feasible region, we terminate the process with optimal value

(N∗, µ∗), otherwise, we move to step 2.

In step 2, we include inequality constraint Wq ≤ D as an equality con-

straint Wq = D in our optimization problem. Observing that N can be rep-

resented in terms of D and µ, we could use elimination, substituting N(D,µ)

in F (N,µ) to get a new cost function f(D,µ) which we need to minimize.

Here we fix D and minimize the new cost function f(µ) using steep decent

minimization. The optimal value µ∗ is used to find out corresponding N∗

thus giving us a complete optimal solution.
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We describe below the complete algorithm:

Result: Output N∗ and µ∗

Choose Ch, Cs, Cid, Cb, Ps, λ and D;

Take initial guess x0 = [N0, µ0]
T ;

p = −∇F0/‖∇F0‖, α = BacktrackingLineSearch(p);

xn = x0 + α · p;

while ‖∇F (xn)− F (x0)‖ ≥ tol do

x0 = xn;

p = −∇Fk/‖∇Fk‖;

α = BacktrackingLineSearch(p);

xn = x0 + α · p;

end

if Wq(xn) ≤ D then

N∗ = xn(1), µ∗ = xn(2);

else

Make initial guess µ0;

Choose α;

µn = µ0 − α · f ′0

‖f ′0‖
;

while ‖∇f(µn)− f(µ0)‖ ≥ tol do

µ0 = µn;

µn = µ0 − α ·
f ′k

‖f ′k‖
;

end

N∗ = N(µn), µ∗ = µn;

end

Algorithm 2: Algorithm to find optimal solution
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We demonstrate the working of the above algorithm by setting the system

parameters to a fixed value. We set Ch = 2, Cs = 20, Cid = 4, Cb = 5, Ps

= 20 and λ = 2.5. With an initial guess of [N0, µ0]
T = [5, 5] and for five

different values of Delay D, we present the surface plot of power function,

contour plot along with constraint curve and results tabulated below.

Figure 3.1: Surface plot of F (N,µ)
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Figure 3.2: Contour plot between N and µ

N∗ µ∗ F (N∗, µ∗)

D = 1 1.7611 3.3740 86.0574
D = 2 2.5843 2.9958 79.6215
D = 3 2.7588 2.9484 79.4818
D = 4 2.7588 2.9484 79.4818
D = 5 2.7588 2.9484 79.4818

Table 3.1: Optimal parameters for different delay

3.3 Performance Measurement Metrics

In this section, we describe a way to measure the improvement over power

consumption by substituting the optimal output from the algorithm given in

previous section. We define Power Consumption Improvement Factor(PCIF)
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given by the expression:

PCIF =
F (1, µmin)− F (N∗, µ∗)

F (1, µmin)
∗ 100% (3.8)

where F (1, µmin) represents the ordinary cost function with N = 1 and min-

imum average servicing rate. F (N∗, µ∗) is the cost value obtained after min-

imization.

Using the same set of constants given in previous section, we tabulate the

improvement percentage below

F (N∗, µ∗) F (1, µmin) PCIF

D = 1 86.0574 108.8846 20.9646%
D = 2 79.6215 108.8846 26.8753%
D = 3 79.4818 108.8846 27.0037%
D = 4 79.4818 108.8846 27.0037%
D = 5 79.4818 108.8846 27.0037%

Table 3.2: Percentage improvement over energy minimization

We now do analysis of our method of improving power consumption. We

vary Delay and λ keeping one fixed at a time to show the effect of restriction

and load on system with Power consumption function and corresponding

improvement percentage.

Below is the graph between cost functions with varying delay constraint

at λ = 2.5. In the graph below, we observe that as we lower the user’s QoS

need, we achieve lower power consumption.
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Figure 3.3: Plot between Delay D and cost function F (.)

To conclude, we show graph between D and improvement % below

Figure 3.4: Plot between Delay D and improvement % PCIF

Next, we demonstrate the dependency between system load λ and cost

function F (.) at delay D ≤ 2 when power function remain constrained.
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Figure 3.5: Plot between λ and cost function F (.) at D ≤ 2

With D ≤ 4, optimized solution of cost function remain in feasible region,

hence constraint have no meaning. Corresponding graph is given below

Figure 3.6: Plot between λ and cost function F (.) at D ≤ 4
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Corresponding load versus improvement % graph is shown below

Figure 3.7: Plot between λ and improvement % PCIF at D ≤ 2

Figure 3.8: Plot between λ and improvement % PCIF at D ≤ 4

From the two plots above, it can be readily seen that, on increasing λ
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i.e. increasing the average number of incoming packet rate, improvement %

decreases up to a certain level and then again starts to increase till the system

reaches in unstable condition. But, here we note that, even it decreases, it

remains positive. From this we conclude that, there is an optimal point

during system load when improvement goes to its lowest level.
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Chapter 4

Conclusion

In this project, we used the N-policy M/M/1 queue as one of the approach

to model and minimize energy consumption in wireless sensor network node.

We included an important QoS constraint which is mean delay per packet

along with the cost function. We stated all the assumptions on which we

have constructed the multi dimensional cost function. We proposed numer-

ical optimization techniques to solve out constrained problem. Later, the

improvements factor over ordinary M/M/1 queue was given. With particu-

lar constants in energy consumption function, we tabulated the improvement

percentage. At the end, further analysis was done varying other system pa-

rameters such as λ and Delay D.

Further research work in this direction could be inclusion of a different yet

important QoS constraint such as temporal accuracy in data processing and

energy efficiency. Better numerical techniques with guaranteed and faster

convergence rate such as solution based on quadratic model can be employed

as a future work.
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