
Structuring parameter uncertainity for efficient
incremental learning

Vishal Keshav
University of Massachusetts Amherst

Amherst, MA 01002
vkeshav@cs.umass.edu

Abstract

Continual learning methods aim to learn a set of related tasks arriving sequentially
while avoiding the catastrophic forgetting on the older tasks. These approaches are
parameter and computation heavy as they need to track additional parameters that
incorporate the knowledge of which part of the network needs to be preserved and
which part can be further adapted. These methods become impractical on highly
resource-constrained embedded devices where data is continuously generated and
consumed, and where privacy and latency is the top priority. In this paper, we
exploit the structural and computational properties of a class of neural networks,
specifically the convolution neural network (CNN), and propose to reduce the
parameter complexity without degrading the model performance. Our method is
based on a regularization-based continual learning method that uses the Bayesian
framework to learn group parameter uncertainty and use it as a proxy to adapt the
network on new tasks. The experimental evidence validates the correctness of our
structural adaptability bias hypothesis and better storage complexity as compared
to the state-of-the-art regularization based methods.

1 Introduction

Life-long learning or continual learning [1] [2] [3] is a paradigm of machine learning where model
parameters are incrementally adapted to incorporate new knowledge as data distribution changes
over time (also termed as concept drift [4]). The change in the data distribution can be abrupt,
for instance, the addition of a new class in the classification problem, or it can be gradual that
best reflects the evolution of an environment, for example in reinforcement learning problems.
Based on how data evolves, continual learning is categorized into a) Task incremental learning[5],
b) Domain incremental learning[6] and c) Class incremental learning[7]. The focus of this pa-
per remains at the class incremental learning where task identity is known during test time. Re-
gardless of these classifications, incremental learning is prone to catastrophic forgetting[8][9][10],
a phenomenon where training on new data/class deteriorates the performance of the model on
old data/class. There are three main class of methods to deal with catastrophic forgetting prob-
lem, namely, dynamic architecture methods[11][12][13], memory-based methods[9][14][15] and
regularization-based methods[16][17][18][19]. While dynamic architecture methods become com-
putationally heavy as the model evolves with the data, memory-based methods require additional
storage to store the past data or some form of past representative data. These two method classes
are specifically troublesome in a scenario where both storage and compute is limited[20], such as
resource-constrained embedded devices. Regularization-based methods, on the other hand, propose
to adapt the model parameters without increasing the model complexity or storing any additional
training data. In this paper, we propose to reduce the storage and computational complexity without
degrading the model performance, hence we must adhere to the regularization-based approach.

1

Regularization-based methods modify the learning objective that suppresses the changes in the
important parameters to avoid forgetting of the previously learned tasks. The notion of im-
portance differs from one method to another. The recent state-of-the-art methods use Bayesian
framework[21][22][23] to capture the parameter uncertainty and uses it as a proxy for the impor-
tance. The lower the parameter uncertainty, the higher the importance, and hence these parameters
are less likely to change when the new data arrives. While these methods are generic enough to
apply to a variety of models, not much investigation has been done to incorporate the structural
assumptions of the neural network models to improve storage and computational efficiency. In this
paper, we investigate how to structure the parameter uncertainty (and hence the adaptability) that can
result in a practical gain in training efficiency, reduces the number of additional adaptability param-
eters, and improve the model performance. Specifically, we turn towards vision architectures that
include convolution operators and exploit the inherent structure present in convolution operations to
propose how to group the parameters that can share same uncertainty and reflects the adaptability
bias for new data or task. We call our hypothesis of structurally adapting parameters in the group as
structured adaptability bias hypothesis.

We enumerate the main contributions of this paper below:

• We study the state-of-the-art Bayesian approach that deals with learning the parameter
adaptability in the context of computer vision tasks such as image classification.

• We exploit the network structure(convolution architectures) and impose an inductive bias
to improve storage complexity without degrading the model performance.

• With our experiments on three visual data-sets, we empirically demonstrate the correctness
of structured adaptability bias for CNN architectures.

Novelty Statement

We exploit the computational structure of convolutions and re-parametrize the uncertainty of the
weights in the Bayesian framework that serves as a direct proxy for parameter adaptation in the
context of incremental learning. The proposed learning algorithm adapts the learning rate for a group
of the parameters at once, thus, allowing a gain in storage and practical computational efficiency
without any degradation in model performance.

2 Related Work

In this section, we discuss the regularization-based approaches, provide background on the Bayesian
framework, followed by our review of Bayesian approaches on which we build our work.

2.1 Regularization-based incremental learning

The regularization-based approach controls the catastrophic forgetting by constraining the updates to
the parameters of a model. To do that, additional regularization terms are added to the optimization
objective such that any updates that lead to forgetting are penalized. One of the earlier approach
called Learning without forgetting (LWF) [16] used knowledge distillation as a means to retain
knowledge from all the previous tasks. This method fails when the data from the new task has a
drastically different distribution than what was seen in the previous tasks.

Another influential method called Elastic Weight Consolidation (EWC) [24][25] introduced the no-
tion of parameter importance and used it to regularize the parameter updates when network is trained
on new task. For two sequential tasks A and B with corresponding data DA and DB respectively,
EWC models the parameter posterior distribution P (w|DB ,DA) as shown in eq. 1:

P (w|DB ,DA) =
P (DB |DA, w) ∗ P (DA|w)

P (DB)
(1)

The posterior P (DA|w) becomes the prior for the subsequent task B. This framework extends to
T sequential tasks. Since the true posteriors are intractable, EWC estimates the distribution using
Laplace approximation with precision determined by the Fisher Information matrix. Though our
method uses the Bayesian framework, we do not model the problem based on eq. 1.

2

2.2 Bayesian framework for continual learning

Consider a discriminative neural network model, p(y|x,w), that produces a probability distribution
over the output y given an input x and parameters w. In Bayesian setting, w is assumed to follow
a prior distribution denoted by p(w) and a posterior distribution denoted by p(w|D). The exact
estimation of the posterior is intractable for a sufficiency large neural network models. To approxi-
mate this, methods such as Markov Chain Monte Carlo samples are used. These sampling methods,
however, are expensive. In variational methods, the posterior is approximated by assuming a simple
tractable distribution such as Gaussian for the posterior.

2.2.1 Variational Inference

The variational inference methods finds a variational distribution that approximate the posterior
distribution on the weights of the neural network P (w|D) by minimizing the Kulluback-Leibler
distance between assumed variational distribution q(w|θ) and P (w|D). The maximization results to
an optimal parameter θ∗ that approximate P (w|D). Formally,

θ∗ = arg min
θ

KL[q(w|θ)||P (w|D)] (2)

= arg min
θ

KL[q(w|θ)||P (w)]− Eq(w|θ)[logP (D|w)] (3)

The right side of the equation is expected lower bound(ELBO). The parameter θ can be seen as a
factor that compresses the observed data D. The minimization objective is given by L(D, θ):

L(D, θ) = KL[q(w|θ)||P (w)]− Eq(w|θ)[logP (D|w)] (4)

2.2.2 Bayes by Backprop

Under certain conditions, the gradients for the objective L(D, θ) can be estimated by using Monte
Carlo samples. Specifically, Blundell et. al. [26] shows that with reparametrization trick, the Monte
Carlo samples of w can be used to estimate the unbiased estimates of ∇θL(D, θ) . This technique
enables us to directly use back-propagation to learn the variational parameters θ and is called Bayes
by Backprop. If the posteriors is approximated by a Gaussian distribution N (w|µ, σ2), then Bayes
by Backprop follows these steps to learn the parameter θ:

1. Sample ε from standard normal distribution N times.

2. Compute the N samples of w using re-parametrization trick, w = µ+ σ ∗ ε.
3. Compute the objective function from the samples of w,
L(D, µ, σ) =

∑N
i=1 log(q(w(i)|µ, σ))− logP (w(i))− logP (D|w(i)).

4. Calculate the gradients∇µL(D, µ, σ) and∇σL(D, µ, σ) using back-propagation.

Bayes by Backprop is applicable to the minibatch training, hence, this method can be used to train
large scale neural network models, such as convolution neural network.

Blundell et. al. [26] also proposes to use the scaled mixture model of diagonal Gaussian for the prior
P (θ). In this paper, we also use a fixed scaled mixture model for prior instead of posterior over the
previous task.

2.3 State-of-the-art approaches

State of the art regularization-based continual learning approaches[27][22][28] uses Bayesian learn-
ing framework where they approximate the weight posterior using variational distribution. UCB[27]
uses Bayes by Backprop to to update the parameters of the variational posterior for every new tar-
get tasks. Once the model is learned on a task t, the uncertainty parameters σ is used to update the
learning rate for the associated parameter µ of the posterior distribution q(w|µ, σ) for the subsequent
task t + 1. Let the learning rate for µ and σ is denoted by αµ and ασ respectively, then for each
subsequent task t+ 1, the learning rate update αt+1

µ is given by eq. 5.

αt+1
µ = αtµ ∗ σt (5)

3

where σt is the standard deviation in w learned after completing the training on task t and αtµ is the
learning rate used for parameters µ during training on task t. Learning rate for σ is kept fixed.

Informally, if the weight variable w has a large uncertainty associated with it, then the update to the
parameter µ will be comparatively large for the next task t+ 1 as compared to task t. This method,
however, doubles the number of parameters for every weight in the neural network. In our approach,
we relax the condition to compute per-parameter uncertainty for a given class of architecture and
show that an equivalent accuracy can be obtained if the structure of the network architecture is
exploited.

Another state-of-the-art method CLAW [28] also uses the Bayesian framework, but unlike ours, their
approach fall in the Variational Continual Learning framework[23] framework. We fix our prior to
the scaled mixture of Gaussians as described earlier. They also demonstrate that when uncertainty
parameters are shared in nodes(a group of activation), the total number of parameters can be reduced.
Unlike theirs, our method follows UCB [27] where we share the uncertainty among weights instead
of activation. UCB [27] does not investigate how uncertainty affects a group of parameters, which
is the main focus of our work. We explore and exploit the convolution architecture and show that
with a significantly lower number of uncertainty parameters, a robust model can be trained.

Other recent work that investigate CNN architectures for continual learning are [29][30]. However,
their learning approach does not fall into the Bayesian learning framework, hence, a deviation to
what is presented in this paper.

3 Methodology

In this section, we first describe the structured adaptability bias hypothesis and use this to propose
the grouping of parameters that exploit the structure for convolution architectures.

3.1 Structured adaptability bias hypothesis

In a continual learning setting, when a model is trained on a sequence of T tasks, the global parts
of the model are slowly adapted to perform a global task and task-specific model parameters are
quickly adapted to perform local tasks. This idea has been explored in [31][32][33]. The objective
is to stabilize the adaptation of global parameters that are common to all T tasks and regularize the
free parameters that reflect the properties of the local task. We hypothesize that when the parameters
are adapted in groups by exploiting how the parameters are structured in a neural network, this can
lead to stability in the learning of the global features of the network. A group of parameters can be
seen as learning-related concepts, and when we regularize the group at once, stability in learning
and reduction in catastrophic forgetting can be achieved. It has to be noted that there are no group
adaptation constraints on local parts of the model, however, to improve the storage complexity,
we group the local parts as well. Concretely, for convolution architectures, when we group the
adaptability of parameters at the level of channel, filter, or layer, we stabilize the learning of global
features.

The structural adaptability bias for CNN architectures can be argued by visualizing the filter maps
and noting that each channel, filter, or layer captures some statistical relationships associated with
performing a common task at a different level of abstraction[34].

3.2 Approach

Let w(l)
fcij be the weight parameter of a convolutional neural network present at layer l, filter

f , channel c and at the spatial coordinate of (i, j) where l ∈ {1, 2, ..., L}, f ∈ {1, 2, ..., Fl},
c ∈ {1, 2, ..., C(l)

f }, i ∈ {1, 2, ...,M
(l)
fc } and j ∈ {1, 2, ..., N (l)

fc }. L denotes the number of layers

in the CNN architecture, Fl denotes the number of filters at layer l, C(l)
f denotes the number of

channels in f th filter of lth layer, M (l)
fc and N

(l)
fc denotes the number of parameters in spatial

dimension of a channel c of filter f at layer l. UCB models the posterior over w using a Gaussian
with diagonal co-varaince. For CNN architectures (assuming no bias parameters), this translates to

4

q(w|µ, σ) = N (w|µ,Σ) or w(l)
fcij ∼ N (w|µ(l)

fcij , σ
(l)
fcij) where Σ is a diagonal matrix.

We propose to model the w where Σ is a block diagonal matrix and each block represents the
parameters in a channel, stacked group of channels, filters or layers. Specifically, when the blocks
represents channel of the filter in CNN, then w

(l)
fcij ∼ N (w|µ(l)

fcij , σ
(l)
fc) ∀l, f, c, i, j. When the

block represents a group of channels (similar to group convolutions), w(l)
fcij ∼ N (w|µ(l)

fcij , σ
(l)
fg)

∀l, f, c, i, j where g denotes the group to which the channel belongs to in a particular filter.

This modelling can be extended to filter and layers. When the block represents a filter, then
w

(l)
fcij ∼ N (w|µ(l)

fcij , σ
(l)
f) ∀l, f, c, i, j. Moreover, when the block represents a layer, then w(l)

fcij ∼
N (w|µ(l)

fcij , σ
(l)) ∀l, f, c, i, j. The last case of parameter grouping is particularly interesting be-

cause this directly interprets to dynamically freezing the layers of neural network for knowledge
transfer[35] from task t to t+ 1. We refer the proposed four approaches of modelling posterior on w
as channel-wise, group-channel-wise, filter-wise and layer-wise respectively. Fig. 1 demonstrate
the approaches.

Figure 1: We use different colors to demonstrate different variances associated with the parameters.
Due to the lack of many colors, we use grey color for case (a) and (b) to show the repetition of
colored filtered. (a) The baseline approach used by UCB. Each parameter at each filter has its own
uncertainty. (b) channel-wise, uncertainty parameters are shared by each channel of a filter. (c)
group-channel-wise, uncertainty parameters are shared by a group of channels per-filter. The group
size shown in the figure is set to 2. (d) filter-wise, uncertainty parameter is shared by each individual
filter in a layer. (e) layer-wise, each layer has a single uncertainty parameter.

3.3 Learning Algorithm

Based on the modeling assumption proposed in the previous section, the learning algorithm that
combines the Bayesian learning to learning shared uncertainty and adapt the weight parameters is
presented in Alg.1. b refers to either of the four approaches to construct a block of parameters
presented in Fig.1.

5

Algorithm 1: Training algorithm.

Input: A sequence of T data sets Dt = {x(i)t , y
(i)
t }

Nt
i=1 where Nt is the size of data set

associated with task t.
Output: µ(l)

fcij , the mean parameters of the posterior distribution
αµ = αρ = α ; . Initialization of the learning rate for µ and unconstrained ρ parameters
for t=1 to T do

while Loss does not converge to zero do
ε ∼ N (0, I) ; . Sample N samples from standard normal
σb = log (1 + exp(ρb)) ; . Constrain the variances for a group of parameters
w = µ+ σb ∗ ε ; . Re-parametrization trick
L(Dt, µ, ρ) =

∑N
i=1(log (N (wi|µ, σb))− log (P (wi)) +

∑|Dt|
j=1 log (P (y

(j)
t |x

(j)
t , wi)))

µ = µ− αµ∇µL(Dt, µ, ρ), ρ = ρ− αρ∇ρL(Dt, µ, ρ) ; . Gradient update
end
αµ = αµσb ; . Update the learning rate for the group of parameters

end

4 Data Sets

We evaluate our approach on three data sets.

5-Split MNIST: The 10 class MNIST[36] data set is divided into 5 datasets with 2 classes each.
Each of the 5 data sets serves as 5 different tasks in the context of task incremental learning.

5-Split FashionMNIST: Similar to MNIST, FashionMNIST[37] is a visual data set having 10
classes, where we split it into 5 tasks with 2 class each.

Permuted MNIST: To better understand the implication of sharing the learning rates among a group
of parameters, we experiment with MNIST data set where we generate 10 tasks by applying 10
different permutations on the image pixels. This data set has been used in [19], however, we use it
to justify that if global properties are not present across different tasks, the group adaptation does
not work. This presents an empirical justification for structured adaptability bias hypothesis.

Each of the above data sets were split into 50, 000, 10, 000 and 10, 000 for train, validation and test
respectively.

Table 1: Data set description.

Data-set Input feature description Number of tasks Number of class per-task

5-Split MNIST Image feature (1× 28× 28) 5 2
5-Split FashionMNIST Image feature (1× 28× 28) 5 2
Permuted MNIST Image feature (1× 28× 28) 10 10

5 Experiment

In this section, we describe the performance assessment metrics, experimental setup to compare the
baseline and our approaches on three data sets, and the implementation detail.

5.1 Performance assessment metrics

Let T be the number of tasks. The average accuracy measures how well the model did after it was
trained on all T tasks. Formally, average accuracy is defined in Eq. 6.

ACC =
1

T

T∑
i=1

RTi (6)

6

Backward transfer measures how the learning on task t has resulted in forgetting on tasks
{1, 2, ..., t− 1}. Backward transfer is defined in Eq. 7.

BWT =
1

T

T∑
i=1

RTi −Rii (7)

Rti is the accuracy of the model on task i after training on t sequential tasks. If BWT is positive,
that means the training on new task has improved the model performance on the old task. If it is
negative, this means training on new task has reduced the accuracy on old tasks.

5.2 Experimental setup

We train and test the model performance over metrics ACC and BWT with 6 different scenarios.
First, we train the CNN architecture without adapting the learning rate for different tasks. Sec-
ond, we train the architecture following the setting provided in UCB. Note that UCB do not report
the results on CNN architecture for all three data sets we experiment with, hence, we tune the pa-
rameters and train the network with the approach provided in UCB. Finally, we train model on
the proposed approaches namely channel-wise, group-channel-wise, filter-wise and layer-wise. For
group-channel-wise approach, we divide the filter channels into 4 groups for every filter in every
layer. We use train-validation-test approach for training, tuning and testing parameters and a com-
mon CNN architecture for all our experiments listed in Table 2. To test the structured adaptability
bias hypothesis, we use Permuted MNIST data set to demonstrate that in the absence of any statis-
tical significance in the parameters in spatial or depth dimensions of each layer, the imposed bias
does not exhibit any improvements.

5.3 Implementation details

We used PyTorch and automatic differentiation for training. The initial learning α0 for both µ and ρ
was set to 0.01. µ was initialized using a standard normal distribution and ρ was initialized to −3.0
with the added Gaussian noise. The prior parameters σ1 and σ2 were set to 0.0 and 6.0 respectively.
We used 10 samples of ε in each mini-batch training where mini-batch size was set to 64. Each
experiment was run 5 times and averaged to report the results.

Table 2: Convolution architecture used for all the approaches and the UCB baseline with 5-Split
MNIST and 5-Split Fashion MNIST. For the Permuted MNIST, the FC filter output shape is 10. s
in Conv and Pool represents the stride and k in Pool represented the kernel size. Bias layer is not
shown.

Operation type Filter Shape Input Size

Conv(s=1)+ReLU+MaxPool(s=2,k=2) 1× 8× 3× 3 1× 28× 28
Conv(s=1)+ReLU+MaxPool(s=2,k=2) 8× 16× 3× 3 8× 14× 14
Conv(s=1)+ReLU+MaxPool(s=2,k=2) 16× 16× 3× 3 16× 7× 7
Conv(s=1) 32× 16× 3× 3 16× 3× 3
Flatten + FC + Softmax (T heads) 288× 2 288

6 Results

In this section, we present the results and draw conclusions from our experiments on the three
different data sets. The performance result is shown in Fig. 2a, 2b and 2c.

6.1 Storage complexity

Let L, F , C, M and N be the upper bounds for the number of layers, filters per-layer, channels per-
filter, spatial size of a filter in horizontal dimension and spatial size of a filter in vertical dimension
respectively. The parameter complexity for the baseline UCB is then given by O(LFCMN). We
present the parameter complexity for our approach in table 3.

7

6.2 Results on split-5 MNIST, split-5 fashion MNIST and permuted MNIST

For MNIST and Fashion MNIST, we observe a slight improvement in model’s average accuracy
after training on 5 tasks for channel-wise, group-channel-wise and filter wise where filter-wise per-
formance in statistically significant for MNIST data set. The layer-wise consistently performed poor
which may be due excessive constraints put on uncertainty parameters. Moreover, the methods that
performed well in terms of accuracy, they also possessed baseline equivalent backward transfer.

Permuted MNIST case is an anti-pattern because this data set is not meant for continual learning.
Nevertheless, as shown in the figure 2c , the consistent degradation for all our approaches shows
that if the block structure does not capture relevant features, then sharing uncertainty does harms the
training. This works as an empirical validation for our structured adaptability bias hypothesis. Table
3 shows the complexity reduction in parameters and the performance metrics for all approaches.

1 2 3 4 5
Task ID

80

85

90

95

100

Av
er

ag
e

AC
C

Plot of average ACC on 5-Split MNIST

baseline-UCB
channel-wise
group-channel-wise
filter-wise
layer-wise

(a)

1 2 3 4 5
Task ID

92

94

96

98

Av
er

ag
e

AC
C

Plot of average ACC on 5-Split Fashion MNIST

baseline-UCB
channel-wise
group-channel-wise
filter-wise
layer-wise

(b)

1 2 3 4 5
Task ID

20

30

40

50

60

70

Av
er

ag
e

AC
C

Plot of average ACC on Permuted MNIST

baseline-UCB
channel-wise
group-channel-wise
filter-wise
layer-wise

(c)

Figure 2: Figure shows ACC on all approaches on three data sets. (a) ACC on MNIST, (b) ACC on
Fashion MNIST, (c) ACC on Permuted MNIST.

Table 3: Uncertainty parameter storage complexity and model performance metrics (ACC and BWT)
on three data sets (MNIST, Fashion MNIST and Permuted MNIST) with baseline and all our ap-
proaches is reported.

Approach Parameter
complexity

MNIST
ACC

MNIST
BWT

Fashion
MNIST
ACC

Fashion
MNIST
BWT

Permuted
MNIST
ACC

Permuted
MNIST
BWT

Without adaptation O(1) 60.2% -39% 83.2% -18% 27.2% -48%
Baseline-UCB O(LFCMN) 96.96% -2% 98.27% 0% 37.72% -27%
channel-wise O(LFC) 97.72% -2% 98.20% 0% 36.84% -28%

group-channel wise O(LFCg) 98.16% -1% 98.32% 0% 34.46% -30%
filter wise O(LF) 98.74% 0% 98.27% 0% 32.33% -31%
layer wise O(L) 77.33% -12% 91.01% -4% 28.24% -39%

7 Discussion and Conclusion

In this paper, we present a parameter efficient regularization-based continual learning approach that
uses the Bayesian framework to learn parameter uncertainty in a neural network and use it as a proxy
to adapt learning rate on a sequence of tasks. We exploit the convolution architecture to propose
four different approaches that can improve storage complexity and model performance. Moreover,
we formulated an experiment that demonstrated the correctness of our structural adaptability bias
hypothesis. As a future work, this approach can be investigated for other architectures such as
Recurrent Neural Network(RNN). The applicability of learning parameter uncertainty as proposed
in this paper can be used in other novel use cases other than continual learning.

8

References

[1] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Con-
tinual lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

[2] Jathushan Rajasegaran, Munawar Hayat, Salman H Khan, Fahad Shahbaz Khan, and Ling
Shao. Random path selection for continual learning. In Advances in Neural Information
Processing Systems, pages 12669–12679, 2019.

[3] Daniel L Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning systems: Beyond
learning algorithms. In 2013 AAAI spring symposium series, 2013.

[4] Ralf Klinkenberg and Thorsten Joachims. Detecting concept drift with support vector ma-
chines. In ICML, pages 487–494, 2000.

[5] Davide Maltoni and Vincenzo Lomonaco. Continuous learning in single-incremental-task sce-
narios. Neural Networks, 116:56–73, 2019.

[6] Markus Wulfmeier, Alex Bewley, and Ingmar Posner. Incremental adversarial domain adapta-
tion for continually changing environments. In 2018 IEEE International conference on robotics
and automation (ICRA), pages 1–9. IEEE, 2018.

[7] Yu Hao, Yanwei Fu, Yu-Gang Jiang, and Qi Tian. An end-to-end architecture for class-
incremental object detection with knowledge distillation. In 2019 IEEE International Con-
ference on Multimedia and Expo (ICME), pages 1–6. IEEE, 2019.

[8] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Gre-
gory Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in
classification tasks. arXiv preprint arXiv:1909.08383, 2019.

[9] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learn-
ing. In Advances in neural information processing systems, pages 6467–6476, 2017.

[10] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In Advances in Neural Information
Processing Systems, pages 899–908, 2018.

[11] Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, Yuxin Peng, and Zheng Zhang. Error-driven
incremental learning in deep convolutional neural network for large-scale image classification.
In Proceedings of the 22nd ACM international conference on Multimedia, pages 177–186,
2014.

[12] Timothy J Draelos, Nadine E Miner, Christopher C Lamb, Jonathan A Cox, Craig M Vineyard,
Kristofor D Carlson, William M Severa, Conrad D James, and James B Aimone. Neurogenesis
deep learning: Extending deep networks to accommodate new classes. In 2017 International
Joint Conference on Neural Networks (IJCNN), pages 526–533. IEEE, 2017.

[13] Jose L Part and Oliver Lemon. Incremental on-line learning of object classes using a combina-
tion of self-organizing incremental neural networks and deep convolutional neural networks. In
Workshop on Bio-inspired Social Robot Learning in Home Scenarios (IROS), Daejeon, Korea,
2016.

[14] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

[15] David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In Sheila
McIlraith and Kilian Weinberger, editors, The Thirty-Second AAAI Conference on Artificial
Intelligence, pages 3302–3309, United States of America, January 2018. Association for the
Advancement of Artificial Intelligence (AAAI). AAAI Conference on Artificial Intelligence
2018, AAAI 2018 ; Conference date: 02-02-2018 Through 07-02-2018.

[16] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[17] Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars. Encoder based
lifelong learning. In Proceedings of the IEEE International Conference on Computer Vision,
pages 1320–1328, 2017.

[18] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy
of sciences, 114(13):3521–3526, 2017.

[19] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intel-
ligence. Proceedings of machine learning research, 70:3987, 2017.

[20] Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib. Optimizing deep learn-
ing inference on embedded systems through adaptive model selection. ACM Transactions on

9

Embedded Computing Systems (TECS), 19(1):1–28, 2020.
[21] Hanna Tseran, Mohammad Emtiyaz Khan, Tatsuya Harada, and Thang D Bui. Natural varia-

tional continual learning. In Continual Learning Workshop@ NeurIPS, volume 2, 2018.
[22] Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual

learning with adaptive regularization. In Advances in Neural Information Processing Systems,
pages 4392–4402, 2019.

[23] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual
learning. arXiv preprint arXiv:1710.10628, 2017.

[24] Ferenc Huszár. Note on the quadratic penalties in elastic weight consolidation. Proceedings of
the National Academy of Sciences, page 201717042, 2018.

[25] Yijun Li, Richard Zhang, Jingwan Cynthia Lu, and Eli Shechtman. Few-shot image generation
with elastic weight consolidation. Advances in Neural Information Processing Systems, 33,
2020.

[26] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncer-
tainty in neural networks. arXiv preprint arXiv:1505.05424, 2015.

[27] Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and Marcus Rohrbach. Uncertainty-
guided continual learning with bayesian neural networks. In International Conference on
Learning Representations, 2019.

[28] Tameem Adel, Han Zhao, and Richard E Turner. Continual learning with adaptive weights
(claw). In International Conference on Learning Representations, 2019.

[29] Menelaos Kanakis, David Bruggemann, Suman Saha, Stamatios Georgoulis, Anton Obukhov,
and Luc Van Gool. Reparameterizing convolutions for incremental multi-task learning without
task interference. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm,
editors, Computer Vision – ECCV 2020, pages 689–707, Cham, 2020. Springer International
Publishing.

[30] Pravendra Singh, Vinay Kumar Verma, Pratik Mazumder, Lawrence Carin, and Piyush Rai.
Calibrating cnns for lifelong learning. Advances in Neural Information Processing Systems,
33, 2020.

[31] Andrei A. Rusu, Matej Vecerı́k, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and Raia
Hadsell. Sim-to-real robot learning from pixels with progressive nets. In 1st Annual Con-
ference on Robot Learning, CoRL 2017, Mountain View, California, USA, November 13-15,
2017, Proceedings, volume 78 of Proceedings of Machine Learning Research, pages 262–270.
PMLR, 2017.

[32] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks.

[33] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dy-
namically expandable networks. In International Conference on Learning Representations,
2018.

[34] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

[35] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A
survey on deep transfer learning. In International conference on artificial neural networks,
pages 270–279. Springer, 2018.

[36] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[37] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

10

	Introduction
	Related Work
	Regularization-based incremental learning
	Bayesian framework for continual learning
	Variational Inference
	Bayes by Backprop

	State-of-the-art approaches

	Methodology
	Structured adaptability bias hypothesis
	Approach
	Learning Algorithm

	Data Sets
	Experiment
	Performance assessment metrics
	Experimental setup
	Implementation details

	Results
	Storage complexity
	Results on split-5 MNIST, split-5 fashion MNIST and permuted MNIST

	Discussion and Conclusion

