
From Iterative Implementations to Single-Pass Functions

AZADEH FARZAN, University of Toronto

VICTOR NICOLET, University of Toronto

Algorithms can be written in many ways, which can be a problemwhen one want to design automated methods

to reason about them. The designer of these automated methods can either explicitly restrict their input to

be of a given form, or they need to design methods to normalize inputs into a suitable format. We propose a

methodology that does the latter for a wide class of imperative and recursive programs. A reference iterative

or recursive algorithm reducing an input collection is translated to a functionally equivalent single-pass

algorithm.

1 MOTIVATING EXAMPLE
List <Point > l = []

for(i = 0; i < n; i++) {

bool b = true;

for(j = 0; j < i; j++)

b = b && X[i] ⋗ X[j];

if(b) l.append(X[i]);

}

Fig. 1. Pareto Optimal Points

We use an example to illustrate an example to illustrate our

problem. Consider a set of (input) points on a 2D plane. A point

is Pareto optimal if all the other points are either below or to the

left of this point. Let 𝑝.𝑥 and 𝑝.𝑦 denote the coordinates of point

𝑝 . Formally:

𝑝 ⋗ 𝑝 ′ ⇐⇒ 𝑝.𝑥 ≥ 𝑝 ′.𝑥 ∨ 𝑝.𝑦 ≥ 𝑝 ′.𝑦

POP(𝑋) = {𝑝 ∈ 𝑋 | ∀𝑝 ′ ∈ 𝑋, 𝑝 ⋗ 𝑝 ′}.
The code in Figure 1 is an implementation of POP that is not a single pass implementation. The

input of the implementation is the list of points X. At each step of the outer loop, the point X[i]

is compared with every other point in the list by the inner loop. X[i] is optimal iff the boolean

accumulator b used in the inner loop is true. In this case, X[i] is added to the list of points to be

returned l. While this implementation is easy for a programmer to write and understand, it might

not be well suited for representing the algorithm as a function of the input collection directly. The

elements of the input collection are read multiple times, and it is not clear how the result of the

function changes when the input collection changes. List <Point > l = [];

List <Point > tmp = [];

for(p in X) {

bool b = true;

tmp = [];

for(e in l) {

if(e ⋗ p)tmp.append(e);

b = b && (p ⋗ e); }

if (b) tmp.append(p);

l=tmp;

}

Fig. 2. Single pass POP

The code in Figure 2 is another implementation of POP with

the same input collection as in the previous implementation. At

each iteration, the set of optimal points l is updated by main-

taining the points that are still optimal with respect to the new

input, and adding the new input if it is optimal with respect

to all the current optimal points. The main difference with the

code in Figure 1 is that this implementation is single-pass: each

element p of the list X is read only once. This implementation is

also easier to analyze, if the goal is to model the POP function

as a function of its input collection.

The choice of an implementation for an algorithm can be of

great importance for further application of automated methods. For example, if one wanted to

parallelize the POP example, one could aim to either parallelize the implementation in Figure 1 by

breaking the iteration space of the outer loop, or derive a divide-and-conquer implementation where

the inputs list needs to be divided [5], effectively breaking the outer loop of the implementation in

Figure 2.

Authors’ addresses: Azadeh Farzan, University of Toronto, azadeh@cs.toronto.edu; Victor Nicolet, University of Toronto,

victorn@cs.toronto.edu.

Azadeh Farzan and Victor Nicolet

2 BACKGROUND
Let Sc be a type that stands for any scalar type used in typical programming languages, such as int
and bool, whenever the specific type is not important in the context. Scalars are assumed to be of

constant size, and conversely, any constant-size representable data type is assumed to be scalar.

Consequently, all operations on scalars are assumed to have constant time complexity. Type S
defines the set of all sequences of elements of type Sc. The concatenation operator • : S × S → S
defined over sequences is associative. The sequence type stands in for arrays, lists, or any collection
data type that admits a linear iterator and an associative composition operator.

Functions of Sequences. A function ℎ : S → 𝐷 is rightwards iff there exists a binary operator

⊕ : 𝐷 × Sc → 𝐷 such that for all 𝑥 ∈ S and 𝑎 ∈ Sc, we have ℎ(𝑥 • [𝑎]) = ℎ(𝑥) ⊕ 𝑎. A rightwards

function can be defined by a left fold over a sequence: ℎ(𝑥) = foldl ⊕ ℎ([]) 𝑥 . A leftward function

is defined analogously using the recursive equation ℎ([𝑎] •𝑥) = 𝑎⊗ℎ(𝑥). A function is single-pass
if it is leftwards or rightwards.

Loops. We forgo the formal definition of an imperative input language since an informal exposition

provides enough clarity. Our input sequential programs can be written in a simple imperative

language with basic constructs for branching and looping (in the style of the code snippets given

as motivating examples); the syntax used in the examples is standard, and the technique is not

language specific. A loop is defined by an iterator 𝑖 ∈ I and its loop body Bwritten in the imperative

language. The set of variables that appear in the body is partitioned into state variables, the variable
that are written in the loop body, and input variables. The tuple of state variables is of type 𝐷 .

Without loss of generality, let us assume the loop has one input variable 𝑥 that is of type S. In the

body of the loop, this input sequence is accessed through the iterator 𝑖 ∈ I. We define 𝜁I : S → S
as the mapping of input sequences to the sequences of inputs accessed by the body with iterator

𝑖 ∈ I. Note that each distinct element of 𝑥 may appear multiple times in 𝜁I (𝑥) if the loop visits it

multiple times. Below, we discuss how a single-pass recursive function can be produced from the

loop, depending on the relationship between 𝑥 and 𝜁I (𝑥).

3 SYNTHESIZING SINGLE-PASS FUNCTIONS
The input to our synthesis routine can be in the form of an imperative loop 𝑓 𝑜𝑟 (𝑖 ∈ I){B} or a
recursive function 𝑓 . We describe how to produce a single-pass recursive function from a given

reference implementation, whether it is a for loop or a recursive function.

For any given imperative loop, there exist many recursive functions that perform and equivalent

computation (i.e. produce the same desired output). The iteration space of a loop implicitly defines

an input that is traversed and processed by the loop. The functional representation of the loop can

maintain this iteration space as its input, independent of what the underlying data looks like.

The input data for the implementation of POP in Figure 1 is a list of points on a plane, while

the iteration space defined by the loop is a quadratic traversal of this input list. Alternatively, the

algorithm can be implemented as a single pass function directly over the original input data. The

code in Figure 2 is an iterative implementation of such an algorithm.

The same dichotomy applies if the reference implementation is given a recursive function (instead

of a loop). It may be a single-pass function on a given input, or it may traverse its input through

an alternative traversal strategy where the same input cell is visited many times. In this section,

we focus on loops as input, since they are the more complicated case. We discuss how various

functional representations for loops may be produced. The same ideas and transformations are

applicable to recursive functions.

3.1 Iteration Space as Input Sequence
A for loop with iterator 𝑖 ∈ I can be translated to a single-pass function 𝑓𝐼 that reads the sequence

of inputs as defined by iteration space I. In other words, 𝜁I (𝑥) is considered to be the input to the

recursive function. One such translation is outlined in [3, 4]. To keep this manuscript self-contained,

we give a quick overview of this translation here.

First, the body of the loop is translated to an operator that takes two inputs: the state of the loop

and the mapping of the input sequence on the current iterator. This translation step is simply a

translation to SSA followed by rewriting to a functional form; the similarity between both models

is explained in [2]. Nested loops are treated recursively using the method described here. Then, the

function itself is built as a single pass function using the operator constructed in the first step, with

the iteration space as input sequence.

The function for the POP example of Section 1 is defined for any mapped input sequence

𝜁 (𝐴) = [(𝐴[𝑖], 𝐴) 𝑓 𝑜𝑟 𝑖 = 1..𝑙𝑒𝑛(𝐴)] (each element is the pair of 𝐴[𝑖] and 𝐴 itself), by:

𝑓I (𝜁 (𝐴)) = foldl > [] 𝜁 (𝐴)
𝑠 > (𝑎, 𝑧) = let 𝑏 = foldl 𝜆(𝑏 ′, 𝑎′).(𝑏 ′ ∧ 𝑎 ⋗ 𝑎′) true 𝑧 in

if 𝑏 then 𝑠 • [𝑎] else 𝑠

3.2 Original Data as Input Sequence
In this case, the function 𝑓 is performing a single pass over the original input data sequence 𝑥

whose traversal is predetermined by the collection type, in contrast to a single pass over 𝜁I (𝑥).
Unlike 𝑓I in Section 3.1, 𝑓 cannot be produced via a simple code-to-code transformation. Intuitively,

𝑓 implements a different algorithm compared to 𝑓I and this new algorithm may need to be

synthesized. We use syntax-guided synthesis (SyGuS) [1] to discover the new recursive definition of

𝑓 . As standard in SyGuS, the problem is defined by the correctness specification for this synthesis

task, and then the sketch and expression grammar that define the programs that can be synthesized.

Note that this synthesis step is necessary when the original loop or function reads the elements

of the input data more than once, while 𝑓 is single-pass on the input data and reads every element

exactly once. In such cases, a state variable, of the type of the input collection, should be added to

signature of 𝑓 to let it remember the necessary parts of the input sequence. We denote the new

variable by 𝑠 .𝑙 . Therefore, 𝑓 has type S → 𝐷 ′
where 𝐷 ′

is the domain extended with this new

state. In the general case, 𝐷 ′ = 𝐷 × S. We can then formally specify 𝑓 through its relation to 𝑓I as

∀𝑥 ∈ S : 𝑓 (𝑥)↓= 𝑓I (𝜁I (𝑥)) where ↓ is the projection from 𝐷 ′
to 𝐷 . In some problem instances,

for example POP, a variable of this type already exists in the original state, and therefore, no new

variable needs to be added (i.e. 𝐷 ′ = 𝐷).

𝑓 is sketched as a single pass function with operator ⊕ defined with unknown functions 𝑖𝑛𝑖𝑡 , ⊠
and 𝑝𝑜𝑠𝑡 . For 𝑥 ∈ S, 𝑎 ∈ Sc and 𝑠 ∈ 𝐷 ′

, the (functional) sketch for 𝑓 is:

𝑓 (𝑥) = foldl ⊕ 𝑓𝐼 ([]) 𝑥
𝑠 ⊕ 𝑎 = post (𝑎, foldl ⊠ init (𝑠, 𝑎) 𝑠 .𝑙)

We limit the solution space for init, ⊠, and post such that 𝑓 is in the same asymptotic complexity

class as the reference function (and 𝑓I). This is done through a standard technique of bounding the

definition of the synthesizable program grammar.

Example 3.1. The implementation of POP given in Figure 2 is a solution of this sketch. The

functional form of this implementation is the function 𝑓 above, with the following synthesized

Azadeh Farzan and Victor Nicolet

implementations for init, ⊠ and post:

init (𝑠, 𝑎) = ([], true)
𝑠 ⊠ 𝑒 = (𝑒 ⋗ 𝑎 ? 𝑠 .𝑙 • [𝑒] : 𝑠 .𝑙, 𝑠 .𝑏 ∧ 𝑎 ⋗ 𝑒)

post (𝑎, 𝑠) = (𝑠 .𝑏 ? 𝑠 .𝑙 • [𝑎] : 𝑠 .𝑙, 𝑠 .𝑏)

Intuitively, the 𝑖𝑛𝑖𝑡 operation corresponds to the code before the inner loop in Figure 2, the ⊠
operator is the body of the inner loop and the 𝑝𝑜𝑠𝑡 operation corresponds to the update of the list

after the inner loop. ⌟

3.3 Other Traversal Strategies
Given raw input data, there may be several different traversal strategies for processing the data

to compute the desired function. One is captured by the reference imperative loop, as outlined in

Section 3.1. Another is a single-pass over the input data, as outlined in Section 3.2. There may be

many more possibilities. Note that a specific iteration strategy is part of the algorithmic design

of the reference imperative code. In our search for a divide-and-conquer solution, we do not set

out to search for all possible alternative traversals of the input data that could potentially lead

to other divide-and-conquer algorithms. Beyond the traversal strategy that is already present in

the reference implementation, we only produce the one that is a single-pass over the input data,

because a divide-and-conquer algorithm for this version will have to divide the input data.

Note that as a result of a small change in the iteration strategy, for example traversing a list

backwards instead of forwards, the signature of function 𝑓 may have to change substantially [3, 7].

Therefore, given a fixed new iterator 𝑗 ∈ J and a mapping 𝜁J of the input collection on this iterator,

the problem of synthesizing a new function 𝑔 that computes the original values devised by 𝑓 is

entirely non-trivial and generally unsolved. Now, consider performing a search along all possible

candidates for J to discover a particular recursive definition for the loop in the form of a new

function 𝑔. For each such given 𝑔, one needs to search for a divide-and-conquer implementation.

The search space for the possible solutions will be huge.

4 EXPERIMENTS
The single-pass synthesis from iterative implementations has been implemented as part of the

tool Parsynt [5]. The tool is implemented in OCaml [6] and uses Rosette [8] as a syntax-guided

synthesis solver in the background.

4.1 Experimental Results

Synt. (s)

Sorting 1.6

𝑘-largest 1.3

Closest pair 2.0

Intersecting intervals 0.7

Histogram 1.3

POP 4.3

Min. points 4.5

Quadrant convex hull 4.7

Table 1. Synthesis times for bench-
marks from [5]. Benchmarks running
on a laptop with 6-core Intel Core i7-
8750H CPU @ 2.20GHz and 16GB
RAM running Ubuntu 20.04.

Table 1 presents the synthesis times for some of the benchmarks

used in [5]. The table reports the synthesis time required to translate

each benchmark written in an iterative loop to a single-pass func-

tion that takes the original data as an input sequence (Section 3.2).

For the closest pair and the intersecting intervals benchmarks, the

output is a scalar variable, so the tool adds a list that temporarily

memorizes the inputs. The time complexity of the result of the func-

tional translation is always the same, but the single-pass version

might require more space. For the other benchmarks, time and spa-

tial complexity for both single-pass and iterative implementations

are the same.

REFERENCES
[1] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan,

Milo M. K. Martin, Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama,

Emina Torlak, and Abhishek Udupa. 2015. Syntax-Guided Synthesis. In Dependable Software Systems Engineering. 1–25.
[2] Andrew W. Appel. 1998. SSA is Functional Programming. SIGPLAN Not. 33, 4 (April 1998), 17–20.
[3] Azadeh Farzan and Victor Nicolet. 2017. Synthesis of Divide and Conquer Parallelism for Loops. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM, 540–555.

[4] Azadeh Farzan and Victor Nicolet. 2019. Modular Divide-and-conquer Parallelization of Nested Loops. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019). ACM, 610–624.

[5] Azadeh Farzan and Victor Nicolet. 2021. Phased Synthesis of Divide and Conquer Programs. In Proceedings of the 42nd
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2021). ACM.

[6] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. 2018. The OCaml

system release 4.07: Documentation and user’s manual. (2018).

[7] Kazutaka Morita, Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi. 2007. Automatic

Inversion Generates Divide-and-conquer Parallel Programs. In Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’07). 146–155.

[8] Emina Torlak and Rastislav Bodík. 2013. Growing solver-aided languages with rosette. In ACM Symposium on New
Ideas in Programming and Reflections on Software, Onward! 2013, part of SPLASH ’13, Indianapolis, IN, USA, October 26-31,
2013. 135–152.

	Abstract
	1 Motivating Example
	2 Background
	3 Synthesizing Single-Pass Functions
	3.1 Iteration Space as Input Sequence
	3.2 Original Data as Input Sequence
	3.3 Other Traversal Strategies

	4 Experiments
	4.1 Experimental Results

	References

