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Abstract

We propose a fully automated method that takes as input an

iterative or recursive reference implementation and produces

divide-and-conquer implementations that are functionally

equivalent to the input. Three interdependent components

have to be synthesized: a function that divides the original

problem instance, a function that solves each sub-instance,

and a function that combines the results of sub-computations.

We propose a methodology that splits the synthesis problem

into three successive phases, each with a substantially re-

duced state space compared to the original monolithic task,

and therefore substantially more tractable. Our methodology

is implemented as an addition to the existing synthesis tool

Parsynt, and we demonstrate the efficacy of it by synthesiz-

ing highly nontrivial divide-and-conquer implementations

of a set of benchmarks fully automatically.

CCS Concepts: · Theory of computation → Program

reasoning; Divide and conquer; Parallel computing mod-

els; · Software and its engineering → Automatic pro-

gramming.
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1 Introduction

A divide-and-conquer computation decomposes a problem

instance into several smaller sub-problems, solves each inde-

pendently, and then combines the results to solve the origi-

nal problem. It may produce better solutions for algorithmic
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problems by (i) improving the asymptotic complexity of the

computation, for all program inputs or for generic subsets of

them, or (ii) creating the potential for leveraging parallelism,

since independent subtasks can be easily parallelized with

good speedups. Writing a good divide-and-conquer algo-

rithm is often non-trivial and can sometimes be quite tricky.

Every undergraduate algorithms textbook has a chapter on

divide-and-conquer and attempts to teach computer science

students how to do the task by example. There are some-

times several instances of a divide-and-conquer solution for

a given problem (an example follows in Section 2), and the

specific usage determines the preferred solution from the

pool of candidates. Automated synthesis can therefore offer

a lot of utility in this problem space.

This paper proposes a systematic and automatable way

of inferring a divide-and-conquer algorithm from an input

reference implementation. The target divide-and-conquer

algorithms adhere to the diagram in Figure 1. The input

is an existing (iterative or recursive) implementation of a

function 𝑓 : S ↦→ 𝐷 , which is a single pass function over a

Divide

Join

Figure 1. D&C Schema

collection (of general type S).
The output is a divide-and-

conquer implementation of the

same function. More specifi-

cally, a triple of functional com-

ponents (⋎, f, ⊙) is synthesized
where ⋎ : S → S𝑛 is an 𝑛-way

divide operator (𝑛 = 2 in the fig-

ure), ⊙ : 𝐷𝑛 → 𝐷 is the com-

plementary join operator, and

f computes 𝑓 and potentially

some extra information which

is strictly required for ⊙ to recover 𝑓 (𝑙) from the partial com-

putations of subtasks. f is a lifting (in the standard category

theory sense) of 𝑓 .

The main restrictions of this family, compared to broadly

understood divide-and-conquer algorithms, are: (i) the di-

vide function ⋎ has to be recursively applicable to an input

collection, dividing it into smaller and smaller pieces, for an

arbitrary number of calls, and (ii) the computation performed

in each subproblem is a lifting of 𝑓 . Yet, the model is very

general and admits many interesting divide-and-conquer

algorithms from the literature. In particular, it subsumes the

dc1 category from [24] which proposes a manual method-

ology for producing such algorithms, and it is substantially
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more expressive than any class of divide-and-conquer con-

sidered for automated synthesis so far. MapReduce [7], for

example, is a limited class of divide-and-conquer algorithms

that has been targeted by automated synthesis successfully

before [8, 9, 11, 22, 23]. The more general class we under-

take is strictly more challenging to synthesize since three

interdependent unknown code components (⋎, f, ⊙) need
to be synthesized simultaneously. In [11, 22, 23], the target

of synthesis is only the join operator ⊙ (i.e. the reduction

in MapReduce terminology). In [8, 9], the pair (f, ⊙) was
targeted through the simplifying assumption that ⋎ defaults

to a simple sequence split operator, which is the inverse of

sequence concatenation, i.e ⋎(𝑥 • 𝑦) = (𝑥,𝑦); this is the
default assumption for all MapReduce frameworks.

We propose a phased synthesis procedure that breaks up

the task of synthesizing (⋎, f, ⊙) into three separate synthe-

sis subtasks. Figure 2 illustrates the workflow of our method-

ology. The first observation is that instead of synthesizing ⋎,

one can synthesize a divide predicate, namely a specification

for the acceptable outcome of ⋎. A predicate 𝑝 is a valid

divide predicate if and only if the results of the computations

performed on the parts that satisfy 𝑝 can be combined cor-

rectly. In other words, there exists a function ⊙ such that, if

a an input 𝑧 is split into two parts 𝑥 and 𝑦 such that 𝑝 (𝑥,𝑦)
holds, then 𝑓 (𝑧) = 𝑓 (𝑥) ⊙ 𝑓 (𝑦). Our approach exploits the

fact that ⊙ has to only exist and need not be determined

while 𝑝 is being synthesized.

Single-pass Function f

<latexit sha1_base64="GBMpJ9Mliq1a8K6nxmgJ44PhW6Y=">AAACFnicbVDLSgMxFM3UV62vUZe6CLaCG8tMEeqyKIjLivYB7VAyaaYNzWSG5I5Yhm78Cj/BrX6AO3Hr1rU/YvpY2OqBC4dz7s3NPX4suAbH+bIyS8srq2vZ9dzG5tb2jr27V9dRoiir0UhEqukTzQSXrAYcBGvGipHQF6zhDy7HfuOeKc0jeQfDmHkh6UkecErASB37sK0DfMtlT7DTmGiNrxJJxxYuBIWOnXeKzgT4L3FnJI9mqHbs73Y3oknIJFBhXmu5TgxeShRwKtgo1040iwkdkB5rGSpJyLSXTq4Y4WOjdHEQKVMS8ET9PZGSUOth6JvOkEBfL3pj8T+vlUBw7qVcxgkwSaeLgkRgiPA4EtzlilEQQ0MIVdz8FdM+UYSCCW5uiwb+MDKpuIsZ/CX1UtE9K5ZvSvnKxSyfLDpAR+gEuaiMKugaVVENUfSIntELerWerDfr3fqYtmas2cw+moP1+QPH2p81</latexit>

Synthesize divide predicate p

<latexit sha1_base64="HM+9hfTkBgmCgww6Kv6eTTst2Xk=">AAACFXicbVDLSgMxFM34rPVVdekm2AoupMwUoS6LblxWtA/olJLJ3GlDM5khyRRq6U+48VfcuFDEreDOvzHTzkJbDwQO59x7c+/xYs6Utu1va2V1bX1jM7eV397Z3dsvHBw2VZRICg0a8Ui2PaKAMwENzTSHdiyBhB6Hlje8Tv3WCKRikbjX4xi6IekLFjBKtJF6hXNXBa6ImPBBaHw3FnoAij0A9tmI+YDNMD8tBlyKS71C0S7bM+Bl4mSkiDLUe4Uv149oEprZlBOlOo4d6+6ESM0oh2neTRTEhA5JHzqGChKC6k5mV03xqVF8HETSPLPbTP3dMSGhUuPQM5Uh0QO16KXif14n0cFld8JEnGgQdP5RkHCsI5xGZE6XQDUfG0KoZGZXTAdEEqpNkHkTgrN48jJpVsrORbl6WynWrrI4cugYnaAz5KAqqqEbVEcNRNEjekav6M16sl6sd+tjXrpiZT1H6A+szx9ktJ7v</latexit>

Synthesize divide code
g that adheres to p

<latexit sha1_base64="Y4f9IMdniG2mcffYVEnXXAawOIs="></latexit>

<latexit sha1_base64="9A+dr9aUcwMhs7/Ygk0A2DyPHlc=">AAACB3icbVDLSgMxFM3UV62vUZeCBIvgqswU0a604MZlBfuATimZ9E4bmkmGJCOU0p0bf8WNC0Xc+gvu/BvTdkCtHrhwOOfe5N4TJpxp43mfTm5peWV1Lb9e2Njc2t5xd/caWqaKQp1KLlUrJBo4E1A3zHBoJQpIHHJohsOrqd+8A6WZFLdmlEAnJn3BIkaJsVLXPQx0FAjJRA+ECcJIg2KgcUQYTxVcdt2iV6r4p165gr2SN8M38TNSRBlqXfcj6EmaxvY1yonWbd9LTGdMlGGUw6QQpBoSQoekD21LBYlBd8azOyb42Co9HEllSxg8U39OjEms9SgObWdMzEAvelPxP6+dmqjSGTORpAYEnX8UpRwbiaeh4B5TQA0fWUKoYnZXTAdEEWpsdAUbgr948l/SKJf8s5J3Uy5WL7I48ugAHaET5KNzVEXXqIbqiKJ79Iie0Yvz4Dw5r87bvDXnZDP76Bec9y+2NpnT</latexit>

failure?

<latexit sha1_base64="QoHHktH+fd5ZVlekPJITMJDvypU=">AAACB3icbVBNS8NAEN3U7/oV9SjIYhE8laSI1YsKXjwq2A9oStlsJ7p0swk7G6EEb178K148KOLVv+DNf+O2BtHqg4HHezO7My9MpUDjeR9OaWp6ZnZufqG8uLS8suqurTcxyTSHBk9kotshQ5BCQcMII6GdamBxKKEVDk5HfusGNIpEXZphCt2YXSkRCc6MlXruVoBRoBKh+qBMEEYIWgBSzDgHxOOeW/Gq3hjUq+4f7tXqdfqt+AWpkALnPfc96Cc8i+1rXDLEju+lppszbQSXcFsOMoSU8QG7go6lisWA3Xx8xy3dsUqfRom2pQwdqz8nchYjDuPQdsbMXOOkNxL/8zqZiQ66uVBpZkDxr4+iTFKT0FEotC80cCOHljCuhd2V8mumGTc2urINwZ88+S9p1qr+ftW7qFVOjoo45skm2Sa7xCd1ckLOyDlpEE7uyAN5Is/OvfPovDivX60lp5jZIL/gvH0C4PuZ8A==</latexit>

success?

Divde-and-Conquer Code (g, f ,!)

<latexit sha1_base64="EMKuBbSp/KifsXdqjvpewa7DDtM="></latexit>

<latexit sha1_base64="QoHHktH+fd5ZVlekPJITMJDvypU=">AAACB3icbVBNS8NAEN3U7/oV9SjIYhE8laSI1YsKXjwq2A9oStlsJ7p0swk7G6EEb178K148KOLVv+DNf+O2BtHqg4HHezO7My9MpUDjeR9OaWp6ZnZufqG8uLS8suqurTcxyTSHBk9kotshQ5BCQcMII6GdamBxKKEVDk5HfusGNIpEXZphCt2YXSkRCc6MlXruVoBRoBKh+qBMEEYIWgBSzDgHxOOeW/Gq3hjUq+4f7tXqdfqt+AWpkALnPfc96Cc8i+1rXDLEju+lppszbQSXcFsOMoSU8QG7go6lisWA3Xx8xy3dsUqfRom2pQwdqz8nchYjDuPQdsbMXOOkNxL/8zqZiQ66uVBpZkDxr4+iTFKT0FEotC80cCOHljCuhd2V8mumGTc2urINwZ88+S9p1qr+ftW7qFVOjoo45skm2Sa7xCd1ckLOyDlpEE7uyAN5Is/OvfPovDivX60lp5jZIL/gvH0C4PuZ8A==</latexit>

success?

Synthesize a join !

<latexit sha1_base64="QixFLNPYbqPOxjC6tFxythzABmE=">AAACD3icbVC7TgMxEPSFVwivACWNRQKiiu4ipFBG0FAGQR5SLop8vr3E4LNPtg8pRPkDGn6FhgKEaGnp+BucRwEJI1kazeyudydIONPGdb+dzNLyyupadj23sbm1vZPf3WtomSoKdSq5VK2AaOBMQN0ww6GVKCBxwKEZ3F2M/eY9KM2kuDGDBDox6QkWMUqMlbr5Y19HvpBMhCAMvh4I0wfNHgATfGtVXPRlKE2xmy+4JXcCvEi8GSmgGWrd/JcfSprGdirlROu25yamMyTKMMphlPNTDQmhd6QHbUsFiUF3hpN7RvjIKiGOpLLPbjVRf3cMSaz1IA5sZUxMX897Y/E/r52a6KwzZCJJDQg6/ShKOTYSj8PBIVNADR9YQqhidldM+0QRamyEORuCN3/yImmUS95pqXJVLlTPZ3Fk0QE6RCfIQxVURZeohuqIokf0jF7Rm/PkvDjvzse0NOPMevbRHzifP2r4nEA=</latexit>

(I)

<latexit sha1_base64="C1krp8Nj01NSP4LkBpunQGO0L7Q="></latexit>

(II)

<latexit sha1_base64="S0cmBOKhuhe5NVDrl0rbasLtOjU="></latexit>

(III)

<latexit sha1_base64="FvSR3e3e2ewt5TGSEVdqf9GFugA="></latexit>

<latexit sha1_base64="9A+dr9aUcwMhs7/Ygk0A2DyPHlc=">AAACB3icbVDLSgMxFM3UV62vUZeCBIvgqswU0a604MZlBfuATimZ9E4bmkmGJCOU0p0bf8WNC0Xc+gvu/BvTdkCtHrhwOOfe5N4TJpxp43mfTm5peWV1Lb9e2Njc2t5xd/caWqaKQp1KLlUrJBo4E1A3zHBoJQpIHHJohsOrqd+8A6WZFLdmlEAnJn3BIkaJsVLXPQx0FAjJRA+ECcJIg2KgcUQYTxVcdt2iV6r4p165gr2SN8M38TNSRBlqXfcj6EmaxvY1yonWbd9LTGdMlGGUw6QQpBoSQoekD21LBYlBd8azOyb42Co9HEllSxg8U39OjEms9SgObWdMzEAvelPxP6+dmqjSGTORpAYEnX8UpRwbiaeh4B5TQA0fWUKoYnZXTAdEEWpsdAUbgr948l/SKJf8s5J3Uy5WL7I48ugAHaET5KNzVEXXqIbqiKJ79Iie0Yvz4Dw5r87bvDXnZDP76Bec9y+2NpnT</latexit>

failure?

Guess a lifting f

<latexit sha1_base64="TqJeJFkG7aqlCcjZKilyXcNFidg=">AAACCXicbVBNS8NAEN3Ur1q/oh69LLaCp5IUoR6LHvRYwX5AU8pmu2mXbjZhdyKU0KsX/4oXD4p49R9489+4aXPQ1gcDj/dmmJnnx4JrcJxvq7C2vrG5Vdwu7ezu7R/Yh0dtHSWKshaNRKS6PtFMcMlawEGwbqwYCX3BOv7kOvM7D0xpHsl7mMasH5KR5AGnBIw0sLGnA3yTMK0xwYIHwOUIV7yQwNgP0mBWGdhlp+rMgVeJm5MyytEc2F/eMKJJyCRQQbTuuU4M/ZQo4FSwWclLNIsJnZAR6xkqSch0P51/MsNnRhniIFKmJOC5+nsiJaHW09A3ndmJetnLxP+8XgLBZT/lMk6ASbpYFCQCQ4SzWPCQK0ZBTA0hVHFzK6ZjoggFE17JhOAuv7xK2rWqe1Gt39XKjas8jiI6QafoHLmojhroFjVRC1H0iJ7RK3qznqwX6936WLQWrHzmGP2B9fkDQ62ZcQ==</latexit>

<latexit sha1_base64="QoHHktH+fd5ZVlekPJITMJDvypU=">AAACB3icbVBNS8NAEN3U7/oV9SjIYhE8laSI1YsKXjwq2A9oStlsJ7p0swk7G6EEb178K148KOLVv+DNf+O2BtHqg4HHezO7My9MpUDjeR9OaWp6ZnZufqG8uLS8suqurTcxyTSHBk9kotshQ5BCQcMII6GdamBxKKEVDk5HfusGNIpEXZphCt2YXSkRCc6MlXruVoBRoBKh+qBMEEYIWgBSzDgHxOOeW/Gq3hjUq+4f7tXqdfqt+AWpkALnPfc96Cc8i+1rXDLEju+lppszbQSXcFsOMoSU8QG7go6lisWA3Xx8xy3dsUqfRom2pQwdqz8nchYjDuPQdsbMXOOkNxL/8zqZiQ66uVBpZkDxr4+iTFKT0FEotC80cCOHljCuhd2V8mumGTc2urINwZ88+S9p1qr+ftW7qFVOjoo45skm2Sa7xCd1ckLOyDlpEE7uyAN5Is/OvfPovDivX60lp5jZIL/gvH0C4PuZ8A==</latexit>

success?

<latexit sha1_base64="9A+dr9aUcwMhs7/Ygk0A2DyPHlc=">AAACB3icbVDLSgMxFM3UV62vUZeCBIvgqswU0a604MZlBfuATimZ9E4bmkmGJCOU0p0bf8WNC0Xc+gvu/BvTdkCtHrhwOOfe5N4TJpxp43mfTm5peWV1Lb9e2Njc2t5xd/caWqaKQp1KLlUrJBo4E1A3zHBoJQpIHHJohsOrqd+8A6WZFLdmlEAnJn3BIkaJsVLXPQx0FAjJRA+ECcJIg2KgcUQYTxVcdt2iV6r4p165gr2SN8M38TNSRBlqXfcj6EmaxvY1yonWbd9LTGdMlGGUw6QQpBoSQoekD21LBYlBd8azOyb42Co9HEllSxg8U39OjEms9SgObWdMzEAvelPxP6+dmqjSGTORpAYEnX8UpRwbiaeh4B5TQA0fWUKoYnZXTAdEEWpsdAUbgr948l/SKJf8s5J3Uy5WL7I48ugAHaET5KNzVEXXqIbqiKJ79Iie0Yvz4Dw5r87bvDXnZDP76Bec9y+2NpnT</latexit>

failure?

Figure 2. Phased Synthesis Schema

If 𝑝 is successfully

synthesized, then ⋎ is

synthesized such that its

output adheres to what

𝑝 specifies. If the syn-

thesis of 𝑝 fails, then

the reason for this fail-

ure may be that extra

information, which is

currently missing from

what 𝑓 computes, is re-

quired for the existence

of ⊙. Therefore, an at-

tempt is made to lift

𝑓 , and it is replaced

by a new function f ,

which additionally com-

putes the missing infor-

mation. Then, the at-

tempt to synthesize 𝑝 is

repeated for the new function f .

The synthesis of ⋎may also fail. In general, it is not always

possible or feasible to synthesize a piece of code (i.e. ⋎) that

adheres to a given specification (i.e. 𝑝). In this case, a new 𝑝

is requested with the hopes that a change in the predicate

will lead to a successful step (II). Once ⋎ is synthesized, the

algorithm proceeds to synthesize ⊙ as the only remaining

unknown, which is guaranteed to exist at this point. If this is

successful, the procedure concludes and (⋎, f, ⊙) is returned.
The synthesis loop is further constrained to only explore

implementations that are at least as efficient as the input

reference implementation, so that no useless divide-and-

conquer solutions are generated. One can iterate through the

loop to find a first valid solution, and continue to enumerate

several valid solutions.

Once the synthesis problem is decomposed as depicted in

Figure 2, the synthesis of ⋎ and ⊙ (boxes (II) and (III)) can

be performed in a relatively standard way through syntax-

guided synthesis, since each phase performs the synthesis of

a single unknown code component (Section 7). We propose

a novel algorithm for the synthesis of the divide predicate

𝑝 (box (I)), which also predicts if a lifting of 𝑓 will be re-

quired and produces the lifting. This algorithm, in the spirit

of deductive synthesis [17], simultaneously infers 𝑝 and any

required lifting f that would guarantee the existence of a

join implementation ⊙, without the need to implement the

dashed loop (for guessing f) depicted in Figure 2.

In Figure 2, the input is a single-pass function 𝑓 over a

collection. In our technique, we accept an iterative or re-

cursive implementation as input and produce an equivalent

single-pass function 𝑓 automatically. This step is described

in [10]. In summary, in this paper:

• We lay out the theoretical foundations to reduce the

problem of divide-and-conquer synthesis from the

specification of Figure 1 to one more amenable to au-

tomation (Section 4).

• We propose a phased synthesis algorithm that synthe-

sizes the triple of unknowns (⋎, f, ⊙) in three different

stages employing both syntax-guided synthesis and

deductive synthesis techniques (Section 5).

• We propose a novel algorithm based on deductive syn-

thesis that can efficiently discover two unknowns, a

divide predicate and a lifting of 𝑓 (Section 6). Our

proposed automated lifting algorithm surpasses pre-

viously known algorithms [8, 9] in that it can infer

conditional accumulators to extend the signature of

the function which were not possible before.

• We illustrate through a set of benchmarks that an im-

plementation of our proposed approach can synthesize

highly nontrivial divide-and-conquer solutions based

on simple input implementations.

2 Motivating Example

We use an example to illustrate the types of programs that

our approach can synthesize automatically. Additionally,

the example underlines the following two observations: (i)

there are often several acceptable divide-and-conquer im-

plementations of a given function, and (ii) synthesizing a

divide-and-conquer solution is not solely about discovering
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the division and join operators, but may also require a lifting

of the original input code.

Consider a set of (input) points on a 2D plane. A point is

Pareto optimal if all the other points are either below or to

the left of this point. Let 𝑝.𝑥 and 𝑝.𝑦 denote the coordinates

of point 𝑝 . Formally:

𝑝 ⋗ 𝑝 ′ ⇐⇒ 𝑝.𝑥 ≥ 𝑝 ′.𝑥 ∨ 𝑝.𝑦 ≥ 𝑝 ′.𝑦

POP(𝑋 ) = {𝑝 ∈ 𝑋 | ∀𝑝 ′ ∈ 𝑋, 𝑝 ⋗ 𝑝 ′}.

The code in Figure 3 computes POP(𝑋 ) where the input𝑋

List <Point > l = [];

List <Point > tmp = [];

for(i = 0; i < n; i++) {

Point p = A[i];

bool b = true;

tmp = [];

for(e in l) {

if(e ⋗ p)tmp.append(e);

b = b && (p ⋗ e); }

if (b) tmp.append(p);

l=tmp;

}

Figure 3. Single pass POP

is a list of points. At each

iteration, the set of opti-

mal points is updated by

maintaining the points

that remain optimal with

respect to the new input,

and adding the new in-

put if it is optimal with

respect to all currently

optimal points. If the di-

vide operator is taken as

the trivial split of the in-

put list, then the correct

join matching this divide has a quadratic time complexity.

By the Master Theorem [5], the complexity of the resulting

naive divide-and-conquer algorithm isO(𝑛2), whichmatches

that of the original input implementation.

Other divide functions yield algorithms with lower as-

ymptotic complexities. We briefly introduce three such algo-

rithms with a two-way divide, a two-way divide with lifting

and a three-way divide, all of which our tool Parsynt can

automatically synthesize.

The solution with a two-way divide is illustrated on the

right: a (pivot) point 𝑝 is chosen by taking the point with the

Pivot :

max (p.x + p.y)

maximum sum of coordinates, which is

guaranteed to be Pareto optimal. The

point set is then partitioned into two

sets: the set of points (vertically) above

and strictly below 𝑝 . The optimal points

of the original point set is then the con-

catenation of the lists of optimal points from each partition.

If the pivot is chosen at random, and therefore not guar-

anteed to be Pareto optimal, then the Pareto optimal points

Pivot :

randomly chosen

point

of the top partition all remain optimal.

But of the ones in the bottom partition,

those which are to the left of the right-

most point of the top partition have to

be removed. This cannot be done with-

out a lifting. Some additional informa-

tion, for example the rightmost point of each partition, is

needed so that the join can correctly combine the two Pareto

optimal sets by pruning the result from the bottom partition.
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Figure 4. Speedups of sequential divide-and-conquer implemen-

tations of POP relative to implementation in Figure 3

Finally, in the implementation with a three-way divide,

a point is chosen at random and the rightmost point above

this point is chosen as the pivot. The point set is partitioned

into three subspaces (as illustrated on

the right): the points above, to the right,

and below and to the left of the pivot.

The third partition (hatched) does not

contain any Pareto optimal point. The

Pareto optimal points for the other two

partitions are optimal for the original point set and therefore

the join operator can simply concatenate the results from

these two partitions.

All algorithms, except the naive one, partition the space

in linear time, and join the results in constant or linear

time, which puts them in the same asymptotic complexity

class 𝑂 (𝑛 log𝑛). However, the performance of these solu-

tions varies significantly depending on the composition of

the input data; specifically, the ratio of the Pareto optimal

points to the total number of points. The graph in Figure 4

illustrates the speedups of the different divide-and-conquer

implementations relative to the input implementation of Fig-

ure 3. The horizontal axis is the ratio of optimal points in the

input list (of size 2× 105). When the ratio of optimal points is

very small, the naive implementation performs significantly

better than all other implementations, with speedups reach-

ing 80x. When there are very few Pareto optimal points, the

(quadratic) join operator defaults to a constant time complex-

ity. As the ratio of optimal points increases, the performance

of the naive implementation decreases to drop below all the

other algorithms. Our tool produces all algorithms automati-

cally and the user selects the best for their specific usage.

3 Background and Notation

Let Sc be a type that stands for any scalar type used in typical

programming languages, such as int and bool, whenever

the specific type is not important in the context. Scalars are
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assumed to be of constant size, and conversely, any constant-

size representable data type is assumed to be scalar. Con-

sequently, all operations on scalars are assumed to have

constant time complexity. Type S defines the set of all se-

quences of elements of type Sc. The concatenation operator

• : S × S → S defined over sequences is associative. The

sequence type stands in for arrays, lists, or any collection

data type that admits a linear iterator and an associative com-

position operator. A function ℎ : S → 𝐷 is rightwards iff

there exists a binary operator ⊕ : 𝐷 × Sc → 𝐷 such that for

all 𝑥 ∈ S and 𝑎 ∈ Sc, we have ℎ(𝑥 • [𝑎]) = ℎ(𝑥) ⊕ 𝑎. A right-

wards function can be defined by a left fold over a sequence:

ℎ(𝑥) = foldl ⊕ ℎ( []) 𝑥 . A leftward function is defined anal-

ogously using the recursive equation ℎ( [𝑎] • 𝑥) = 𝑎 ⊗ ℎ(𝑥).
A function is single-pass if it is leftwards or rightwards.

4 Decomposing D&C Specification

The input to our approach is an implementation of a single-

pass function 𝑓 : S → 𝐷 . To accommodate generic reference

implementations, whichmay be a (nested) loop or a recursive

function performing multiple passes over the input data,

we propose a (source-to-source) translation in [10]. This

translation converts an arbitrary iterative or recursive input

implementation to a single pass recursive function 𝑓 .

The goal of this section is to start with a generic specifica-

tion for divide-and-conquer and transform it to a tractable

specification for search-based synthesis. A general divide-

and-conquer algorithm comprises of a divide function ⋎ :

S → S𝑐 and a join function ⊙ : 𝐷𝑐 → 𝐷 (with 𝑐 > 1) that

satisfy the specfication:

Ψ(⊙, ⋎) ≡ ∀𝑧 ∈ S :

𝑓 (𝑧) = ⊙
(
𝑓 (⋎(𝑧).1), 𝑓 (⋎(𝑧).2), . . . , 𝑓 (⋎(𝑧).𝑐)

)
(1)

Since ⊙ and ⋎ must be computable, the solution space for

them is the set of recursive functions. To accommodate full

automation, we focus on a slightly more limited universe of

divide functions, namely those that partition the input space.

To simplify the formal notation, we restrict 𝑐 to be pre-

cisely 2. All formal statements stated and proved in this

paper generalize to any value for 𝑐 , and therefore this does

not cause a loss in generality. The stronger specification for

partition divide-and-conquer algorithms is:

Ψ
◦ (⊙, ⋎) ≡ ∀𝑧 ∈ S : 𝑓 (𝑧) = 𝑓 (⋎(𝑧).1) ⊙ 𝑓 (⋎(𝑧).2)

∧ �̃� =
�
⋎(𝑧).1 ∪ �

⋎(𝑧).2 (2)

where �̃� denotes the set of elements of sequence 𝑧.

Note that both Ψ and Ψ
◦ admit trivial (useless) solutions.

For example, a valid solution for ⋎ is to divide a sequence

𝑠 into the sequence 𝑠 and the empty sequence [], and let

⊙ return its first component. To rule these out, we add a

constraint on the sizes of individual outputs generated by ⋎

over a universe of inputs. It requires the existence of at least

one input which would divide a list of length𝑚 + 𝑘 into two

sublists of arbitrary sizes𝑚 and 𝑘 . Formally:

𝜒 (⋎) ≡ ∀𝑚,𝑘 ∈ N, ∃𝑧 ∈ S : |⋎(𝑧).1| =𝑚 ∧ |⋎(𝑧).2| = 𝑘

Note that this can be extended to multi-way divides in a

straightforward way. Combining Ψ◦ from Equation 2 with 𝜒

will result in our first concrete specification with non-trivial

solutions:

Ψ
• (⋎, ⊙) ≡ Ψ

◦ (⋎, ⊙) ∧ 𝜒 (⋎) (3)

Ψ
• (a strict strengthening of Ψ) is the precise specifica-

tion we aim to use for divide-and-conquer synthesis. Yet

this specification defines a huge (intractable) search space

for existing search-based program synthesis techniques. We

propose a way to decompose this specification such that ⋎

and ⊙ can be synthesized independently, even though they

are related through Ψ
•.

Key insight. Themost straightforward division operation is

the inverse of sequence concatenation, that is, the sequence

𝑧 is divided into any pair of sequences 𝑧1 and 𝑧2 such that

𝑧 = 𝑧1 •𝑧2. The key observation is that a general divide ⋎ sat-

isfying Ψ• can be defined as a composition of a sequence per-

mutation function and this trivial divide. That is, if Ψ•(⋎, ⊙)
then there exists a permutation function 𝜋 : S → S such

that ∀𝑧 ∈ S : 𝑧 = 𝜋 (⋎(𝑧).1 • ⋎(𝑧).2). This a simple conse-

quence of the constraint �̃� =
�
⋎(𝑧).1 ∪ �

⋎(𝑧).2.
The insight leads to the specification below, which makes

use of a predicate 𝑝 : S × S → Bool and a permutation

function 𝜋 instead of the divide function ⋎:

Φ(𝜋, 𝑝, ⊙) ≡ 𝜒• (𝑝) ∧ ∀(𝑥,𝑦) ∈ S2 :

𝑝 (𝑥,𝑦) ⇒ 𝑓 (𝜋 (𝑥 • 𝑦)) = 𝑓 (𝑥) ⊙ 𝑓 (𝑦) (4)

where 𝜒 is reformulated for 𝑝 as

𝜒• (𝑝) = ∀𝑚,𝑘 ∈ N, ∃𝑥,𝑦 ∈ S2 : |𝑥 | =𝑚 ∧ |𝑦 | = 𝑘 ∧ 𝑝 (𝑥,𝑦)

The new specification is only a reframing of our problem,

and as the following theorem states, Ψ• can be used instead

of Φ without a compromise.

Theorem 4.1. The specifications Ψ• (defined in Equation 3)

and Φ (defined in Equation 4) are mutually realizable.

So far, we have reformulated the problem of synthesizing

a divide and a join operation to a different yet equirealizable

problem of synthesizing a predicate 𝑝 and a join operation.

This is an intermediate step that facilitates the independent

algorithmic synthesis of 𝑝 and ⊙, in contrast to the mono-

lithic task that is put forward by the specification Φ. First,

we discuss how this can be achieved through a specialization

of the synthesis problem.

4.1 Permutation Invariance

If 𝑓 is not sensitive to the order of elements in its input

sequence, then 𝜋 can be eliminated from Φ.
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Definition 4.2 (Permutation invariant). A function 𝑓 is per-

mutation invariant iff for all permutation functions 𝜋 and all

lists 𝑥 ∈ S, 𝑓 (𝑥) = 𝑓 (𝜋 (𝑥)).

If 𝑓 is permutation invariant and (𝜋, 𝑝, ⊙) is a solution for

Φ, then (𝜋 ′, 𝑝, ⊙) for any permutation function 𝜋 ′ is also a

valid solution to Φ. Therefore, we can simply replace 𝜋 with

the identity permutation and simplify Φ to:

Φ
•(𝑝, ⊙) ≡ ∀𝑥,𝑦 ∈ S2 :

𝑝 (𝑥,𝑦) ⇒ 𝑓 (𝑥 • 𝑦) = 𝑓 (𝑥) ⊙ 𝑓 (𝑦) ∧ 𝜒• (𝑝) (5)

Theorem 4.3. If the function 𝑓 is permutation invariant then

the specifications Φ• and Ψ
• are mutually realizable.

An insight from the proof (in Appendix B.2) is the nec-

essary relation between 𝑝 and ⋎, which must satisfy ∀𝑧 ∈
S, 𝑝 (⋎(𝑧).1, ⋎(𝑧).2).

The practicality of Φ• (over Ψ•) is that without 𝜋 , one can

synthesize 𝑝 and ⊙ in two independent (synthesis) steps as

discussed in Sections 5 and 6.

4.2 Splitting Divides

The results in Section 4.1 are theoretically crisp, but seem

restricted in the sense that they do not apply if the function

is not permutation invariant. It turns out that solutions to

specification Φ
• go beyond divide functions for permutation

invariant functions. Consider splitting divides as formally

defined below.

Definition 4.4 (Splitting divide). Adivide function ⋎ : S →
S × S is a splitting divide if ∀𝑧 ∈ S : 𝑧 = ⋎(𝑧).1 • ⋎(𝑧).2.

A splitting divide ⋎ can also be synthesized (indirectly)

through the specification Φ
•. The reason goes as follows.

The restriction of Ψ• to splitting divides is:

Ψ
★(⋎, ⊙) ≡ 𝜒 (⋎) ∧ (𝑧) = 𝑓 (⋎(𝑧).1) ⊙ 𝑓 (⋎(𝑧).2)

∧ ∀𝑧 ∈ S : ⋎(𝑧).1 • ⋎(𝑧).2 = 𝑧 (6)

Proposition 4.5. If Ψ★ is realizable then so is Φ•.

Proposition 4.5 concludes that whenever a splitting divide

solution exists, Φ• also presents a corresponding solution.

The converse does not hold; there may exist a solution for Φ•

while no solution for Ψ★ exists. Note that splitting divides

provide valid divide-and-conquer implementations for many

instances where 𝑓 is not permutation invariant.

So far we have argued how Φ
• can be used to generate

two different generic class of divide-and-conquer algorithms.

Theoretically, there is no guarantee that either 𝑓 is a permu-

tation invariant or a splitting divide for 𝑓 exists. Practically,

however, we have not come across a single case for this. Nev-

ertheless, to close the theoretical gap, in Appendix B.4, we

discuss a general construction that translates an arbitrary

function 𝑓 to a permutation-invariant implementation of it

𝑓 . We prove that realizability of Φ• for 𝑓 implies realizability

of Φ• for 𝑓 . Therefore, if 𝑓 is not permutation invariant and

a splitting divide does not exist, then one can theoretically

synthesize a divide-and-conquer solution for 𝑓 instead.

5 Synthesizing Divide-and-Conquer

The intention with the design of a divide-and-conquer imple-

mentation is to either obtain a better performing sequential

algorithm or a parallelizable algorithm. In both cases, the

resulting algorithm should not have a worse computational

complexity than the input reference implementation. Note

that the specification(s) from Section 4 carry no guaran-

tees about the computational complexity of the synthesized

code. We first introduce sufficient conditions that guarantee

a reasonable computational complexity for the synthesized

program. Then, we provide a refinement of the schema in

Figure 2 that incorporates these complexity constraints and

makes explicit use of specifications introduced in Section 4.

5.1 Complexity of Divide-and-Conquer

The time complexity of synthesized divide-and-conquer al-

gorithms can be measured through the Master Theorem

[5]. Under the assumption that the divide operator is bal-

anced, the time complexity is defined through the recurrence

𝑇 (𝑛) = 𝑘𝑇 (𝑛/𝑐) +𝑤 (𝑛), where𝑤 (𝑛) captures the combined

complexities of ⊙ and ⋎, and 𝑐 and 𝑘 respectively determines

the number of subproblems created and recursively solved.

In our synthesis context, we assume𝑤 (𝑛) to have simple

polynomial complexity, that is O(𝑛𝑚) for some𝑚 ≥ 0, since

it is difficult to relate logarithmic complexities to syntax. We

use a triple (𝑚,𝑘, 𝑐) to denote the complexity budget for a

divide-and-conquer algorithm, fromwhich (through theMas-

ter Theorem) its asymptotic complexity can be calculated.

In a typical divide-and-conquer algorithm, there is usually

a tension between the complexity of divide and join func-

tions. If the algorithm does more work upfront, to perform a

favourable division, then the task of combining will become

simpler. Conversely, if it performs a cheap division, a more

elaborate join will be required. Quick sort and merge sort can

be respectively considered instances of the two scenarios.

We use this insight to enumerate different possible solutions

to synthesis. The 𝑂 (𝑛𝑚) total cost for divide and join oper-

ations is computed as the combination of the complexities

𝑂 (𝑛𝑚⋎ ) for division and 𝑂 (𝑛𝑚⊙ ) for join.

5.2 Synthesis Paradigm

Figure 5 illustrates a precise instantiation of the schema

presented earlier in Figure 2, incorporating a complexity

budget and the specifications introduced in Section 4. Our

synthesis algorithm maintains an internal budget for the

join operation, which is initialized to the smallest possible

value B⊙ = (𝑚⊙, 𝑘, 𝑐) = (0, 1, 2). The algorithm attempts to

synthesize a solution within budget B⊙ , and if it fails then it
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Single-pass Function f

<latexit sha1_base64="GBMpJ9Mliq1a8K6nxmgJ44PhW6Y=">AAACFnicbVDLSgMxFM3UV62vUZe6CLaCG8tMEeqyKIjLivYB7VAyaaYNzWSG5I5Yhm78Cj/BrX6AO3Hr1rU/YvpY2OqBC4dz7s3NPX4suAbH+bIyS8srq2vZ9dzG5tb2jr27V9dRoiir0UhEqukTzQSXrAYcBGvGipHQF6zhDy7HfuOeKc0jeQfDmHkh6UkecErASB37sK0DfMtlT7DTmGiNrxJJxxYuBIWOnXeKzgT4L3FnJI9mqHbs73Y3oknIJFBhXmu5TgxeShRwKtgo1040iwkdkB5rGSpJyLSXTq4Y4WOjdHEQKVMS8ET9PZGSUOth6JvOkEBfL3pj8T+vlUBw7qVcxgkwSaeLgkRgiPA4EtzlilEQQ0MIVdz8FdM+UYSCCW5uiwb+MDKpuIsZ/CX1UtE9K5ZvSvnKxSyfLDpAR+gEuaiMKugaVVENUfSIntELerWerDfr3fqYtmas2cw+moP1+QPH2p81</latexit>

<latexit sha1_base64="eg9bR8GZTMPjIxHxD8pSR2PkIGk="></latexit>

Synthesize p s.t.
9" 2 B! s.t. Φ•(p,")

<latexit sha1_base64="qi6uh3cq5dfs6G06HSkG47d+duM="></latexit>

Synthesize g s.t.
∀x ∈ S : p(g(x))

success?

<latexit sha1_base64="m0QBFS0gZ2SXee1BgjDCQrofKPQ=">AAAB/nicbVBPS8MwHE3nvzn/VcWTl+AQPI12DKsXHXjxOMFtwlpGmqZbWJqUJBVGGfhVvHhQxKufw5vfxmwrotMHgcd7v1/y8sKUUaUd59MqLS2vrK6V1ysbm1vbO/buXkeJTGLSxoIJeRciRRjlpK2pZuQulQQlISPdcHQ19bv3RCoq+K0epyRI0IDTmGKkjdS3D3wV+1xQHhGuocowJkpd9u2qU3NmgE7t9LxR9zz4rbgFqYICrb794UcCZ4m5BDOkVM91Uh3kSGqKGZlU/EyRFOERGpCeoRwlRAX5LP4EHhslgrGQ5pgQM/XnRo4SpcZJaCYTpIdq0ZuK/3m9TMdnQU55mmnC8fyhOGNQCzjtAkZUEqzZ2BCEJTVZIR4iibA2jVVMCe7il/+STr3mNmreTb3avCjqKINDcAROgAs80ATXoAXaAIMcPIJn8GI9WE/Wq/U2Hy1Zxc4++AXr/QuiOJXs</latexit>

Divde-and-Conquer Code (g, f ,!)

<latexit sha1_base64="EMKuBbSp/KifsXdqjvpewa7DDtM="></latexit>

success?

<latexit sha1_base64="m0QBFS0gZ2SXee1BgjDCQrofKPQ=">AAAB/nicbVBPS8MwHE3nvzn/VcWTl+AQPI12DKsXHXjxOMFtwlpGmqZbWJqUJBVGGfhVvHhQxKufw5vfxmwrotMHgcd7v1/y8sKUUaUd59MqLS2vrK6V1ysbm1vbO/buXkeJTGLSxoIJeRciRRjlpK2pZuQulQQlISPdcHQ19bv3RCoq+K0epyRI0IDTmGKkjdS3D3wV+1xQHhGuocowJkpd9u2qU3NmgE7t9LxR9zz4rbgFqYICrb794UcCZ4m5BDOkVM91Uh3kSGqKGZlU/EyRFOERGpCeoRwlRAX5LP4EHhslgrGQ5pgQM/XnRo4SpcZJaCYTpIdq0ZuK/3m9TMdnQU55mmnC8fyhOGNQCzjtAkZUEqzZ2BCEJTVZIR4iibA2jVVMCe7il/+STr3mNmreTb3avCjqKINDcAROgAs80ATXoAXaAIMcPIJn8GI9WE/Wq/U2Hy1Zxc4++AXr/QuiOJXs</latexit>

<latexit sha1_base64="NiOUvt1z12ZpSB3EsG2Cw5fuUHQ="></latexit>

Synthesize ! 2 B!

s.t. Ψ•(g,!)

(I)

<latexit sha1_base64="C1krp8Nj01NSP4LkBpunQGO0L7Q="></latexit>

(II)

<latexit sha1_base64="S0cmBOKhuhe5NVDrl0rbasLtOjU="></latexit>

(III)

<latexit sha1_base64="FvSR3e3e2ewt5TGSEVdqf9GFugA=">AAACm3icdZHbattAEIbX6ilRT057WQpLTSGFIiTVcZy7kNzUpRcprZOAJcxoNXKWrLTq7qpghF6jT9Pb9B3yNl3ZcpuUdmBhmP+bw84kpeDa+P51z7lz9979B1vb7sNHj5887e88O9WyUgynTAqpzhPQKHiBU8ONwPNSIeSJwLPk8rjVz76h0lwWX8yyxDiHRcEzzsDY0LzvRzqLVmVmapHEte/5B6Pxu723vheOh6NgaJ290cE4DBu6O5lM3sz7gw1DNwzdMDTw/JUNSGcn853e5yiVrMqxMEyA1rPAL01cgzKcCWzcqNJYAruEBc6sW0COOq5XMzX0tY2kNJPKvsLQVfRmRg251ss8sWQO5kL/rbXBf2mzymTjuOZFWRks2LpRVglqJG33RFOukBmxtA4wxe2slF2AAmbsNm91ydJ2ACka141SzCKBpqxqmEe2uRD6awWq/WUnycRK9Xrl9ULBsqFrMBG2Xkf/wUv1u9JNwLVn2Oya/t85Db1g6O1/CgeHR91BtsgL8orskoDsk0PynpyQKWHkO/lBrshP56Vz7HxwPq5Rp9flPCe3zJn+At0azJs=</latexit>

success?

<latexit sha1_base64="m0QBFS0gZ2SXee1BgjDCQrofKPQ=">AAAB/nicbVBPS8MwHE3nvzn/VcWTl+AQPI12DKsXHXjxOMFtwlpGmqZbWJqUJBVGGfhVvHhQxKufw5vfxmwrotMHgcd7v1/y8sKUUaUd59MqLS2vrK6V1ysbm1vbO/buXkeJTGLSxoIJeRciRRjlpK2pZuQulQQlISPdcHQ19bv3RCoq+K0epyRI0IDTmGKkjdS3D3wV+1xQHhGuocowJkpd9u2qU3NmgE7t9LxR9zz4rbgFqYICrb794UcCZ4m5BDOkVM91Uh3kSGqKGZlU/EyRFOERGpCeoRwlRAX5LP4EHhslgrGQ5pgQM/XnRo4SpcZJaCYTpIdq0ZuK/3m9TMdnQU55mmnC8fyhOGNQCzjtAkZUEqzZ2BCEJTVZIR4iibA2jVVMCe7il/+STr3mNmreTb3avCjqKINDcAROgAs80ATXoAXaAIMcPIJn8GI9WE/Wq/U2Hy1Zxc4++AXr/QuiOJXs</latexit>

<latexit sha1_base64="Hr6LzJ5CPcx708hU3BUknp7PoQQ=">AAACA3icbVDLSgMxFM34rPU16k43wVZwNcwUxW7UghuXFewDOkPJZDJtaCYZkoxQSsGNv+LGhSJu/Ql3/o1pO6BWDwQO59x7c+8JU0aVdt1Pa2FxaXlltbBWXN/Y3Nq2d3abSmQSkwYWTMh2iBRhlJOGppqRdioJSkJGWuHgauK37ohUVPBbPUxJkKAepzHFSBupa+/7Kva5oDwiXMNyCs/LMEZMkUvYtUuuU/VO3EoVuo47xTfxclICOepd+8OPBM4SMwkzpFTHc1MdjJDUFDMyLvqZIinCA9QjHUM5SogKRtMbxvDIKBGMhTTPbDJVf3aMUKLUMAlNZYJ0X817E/E/r5PpuBqMKE8zTTiefRRnDGoBJ4HAiEqCNRsagrCkZleI+0girE1sRROCN3/yX9KsON6p495USrWLPI4COACH4Bh44AzUwDWogwbA4B48gmfwYj1YT9ar9TYrXbDynj3wC9b7FweNlnM=</latexit>

p = false?

<latexit sha1_base64="4WcSEa4JPGQCY/V52ljAgpBAOJQ=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4WrJFsScpePFYwX5Iu5Rsmm1Dk+ySZIVS+iu8eFDEqz/Hm//GtF1Qqw8GHu/NMDMvSgU3FuNPb2V1bX1js7BV3N7Z3dsvHRw2TZJpyho0EYluR8QwwRVrWG4Fa6eaERkJ1opG1zO/9cC04Ym6s+OUhZIMFI85JdZJ910To0wZYnulMvarwTmuVBH28RzfJMhJGXLUe6WPbj+hmWTKUkGM6QQ4teGEaMupYNNiNzMsJXREBqzjqCKSmXAyP3iKTp3SR3GiXSmL5urPiQmRxoxl5DolsUOz7M3E/7xOZuNqOOEqzSxTdLEozgSyCZp9j/pcM2rF2BFCNXe3IjokmlDrMiq6EILll/+SZsUPLnx8WynXrvI4CnAMJ3AGAVxCDW6gDg2gIOERnuHF096T9+q9LVpXvHzmCH7Be/8C1RCQaQ==</latexit>

unsat

<latexit sha1_base64="fdXGbOMAfxSNbP7ERwzaP8lRuFc=">AAACCXicbVDLSgMxFM3UV62vUZdugq3gqswUxa6k6EZ3FewDOkPJpJk2NJMMSUYoQ7du/BU3LhRx6x+482/MtANq9UDgcM495N4TxIwq7TifVmFpeWV1rbhe2tjc2t6xd/faSiQSkxYWTMhugBRhlJOWppqRbiwJigJGOsH4MvM7d0QqKvitnsTEj9CQ05BipI3Ut6GnQnjNsckoAitehPQII5ZeTPueGAhd6dtlp1p3T5xaHTpVZ4Zv4uakDHI0+/aHNxA4iQjXmCGleq4Taz9FUlPMyLTkJYrECI/RkPQM5Sgiyk9nl0zhkVEGMBTSPK7hTP2ZSFGk1CQKzGS2qVr0MvE/r5fosO6nlMeJJhzPPwoTBrWAWS1wQCXBmk0MQVhSsyvEIyQR1qa8kinBXTz5L2nXqu5p1bmplRvneR1FcAAOwTFwwRlogCvQBC2AwT14BM/gxXqwnqxX620+WrDyzD74Bev9C9dFmcg=</latexit>

Increase B!

<latexit sha1_base64="YaVyuk2pzDBMKwvyrfYIl0VRHVY=">AAAB83icdVDLSgMxFM34rPVVdekmWAQXMiS1ZepGCm5cVrAP6JSSSTNtaGYmJBmhDP0NNy4UcevPuPNvzLQVVPRA4HDOvdyTE0jBtUHow1lZXVvf2CxsFbd3dvf2SweHbZ2kirIWTUSiugHRTPCYtQw3gnWlYiQKBOsEk+vc79wzpXkS35mpZP2IjGIeckqMlXx57kfEjIMwC2eDUhm5uILwhQeRW0Weh7ElHrqs1eoQu2iOMliiOSi9+8OEphGLDRVE6x5G0vQzogyngs2KfqqZJHRCRqxnaUwipvvZPPMMnlplCMNE2RcbOFe/b2Qk0noaBXYyT6h/e7n4l9dLTVjvZzyWqWExXRwKUwFNAvMC4JArRo2YWkKo4jYrpGOiCDW2pqIt4eun8H/Srri45qLbarlxtayjAI7BCTgDGHigAW5AE7QABRI8gCfw7KTOo/PivC5GV5zlzhH4AeftE4Ckkf4=</latexit>

p, f

<latexit sha1_base64="RbGCYj56MRQl1Cf1u3hPnik10TE=">AAAB/XicdVDLSgMxFM34rPVVHzs3wSK4kCFTW6ZupODGZQX7gLaUTHqnDc08SDKFOhR/xY0LRdz6H+78G9OHoKIHAodz7uWeHC8WXGlCPqyl5ZXVtfXMRnZza3tnN7e3X1dRIhnUWCQi2fSoAsFDqGmuBTRjCTTwBDS84dXUb4xAKh6Ft3ocQyeg/ZD7nFFtpG7usM0SKcYjgLN2QPXA81N/0s3lie0UiHPuYmIXies6jiEuuSiVytixyQx5tEC1m3tv9yKWBBBqJqhSLYfEupNSqTkTMMm2EwUxZUPah5ahIQ1AddJZ+gk+MUoP+5E0L9R4pn7fSGmg1DjwzOQ0ofrtTcW/vFai/XIn5WGcaAjZ/JCfCKwjPK0C97gEpsXYEMokN1kxG1BJmTaFZU0JXz/F/5N6wXZKNrkp5iuXizoy6Agdo1PkIBdV0DWqohpi6A49oCf0bN1bj9aL9TofXbIWOwfoB6y3T2szldo=</latexit>

g, f

<latexit sha1_base64="wRjJ5HmKiqMbObdXRwR2ul2/3M0=">AAACBHicdVA9SwNBEN2LXzF+RS3TLAbBQo69mHDaSMDGMoLRQC6Evc1cXNy7PXb3hHCksPGv2FgoYuuPsPPfuIkRVPTBwOO9GWbmhang2hDy7hTm5hcWl4rLpZXVtfWN8ubWhZaZYtBmUkjVCakGwRNoG24EdFIFNA4FXIbXJxP/8gaU5jI5N6MUejEdJjzijBor9cuVgGVKjG4A9oOYmqswyqPxPg7kQJp+uUpcr0a8Ax8Tt0583/Ms8clRo3GIPZdMUUUztPrlt2AgWRZDYpigWnc9kppeTpXhTMC4FGQaUsqu6RC6liY0Bt3Lp0+M8a5VBjiSylZi8FT9PpHTWOtRHNrOyaH6tzcR//K6mYkOezlP0sxAwj4XRZnARuJJInjAFTAjRpZQpri9FbMrqigzNreSDeHrU/w/uai5XsMlZ/Vq83gWRxFV0A7aQx7yUROdohZqI4Zu0T16RE/OnfPgPDsvn60FZzazjX7Aef0ARNCYfg==</latexit>

g, f ,!

<latexit sha1_base64="oCyFak6Ug71Gb5S2D1LnLs9ImeY="></latexit>

B! too large?

<latexit sha1_base64="NZwoXvfFz2UdGmNN49qZgM4Lb/w=">AAAB63icdVDLSgMxFM34rPVVdekmWARXQ6a1Y5dFN11WsA9oh5JJM21okhmSjFCG/oIbF4q49Yfc+Tdm2goqeuDC4Zx7ufeeMOFMG4Q+nLX1jc2t7cJOcXdv/+CwdHTc0XGqCG2TmMeqF2JNOZO0bZjhtJcoikXIaTec3uR+954qzWJ5Z2YJDQQeSxYxgk0uNTE3w1IZucivVvw6RG615tUuK5b4HvJRFXouWqAMVmgNS++DUUxSQaUhHGvd91Biggwrwwin8+Ig1TTBZIrHtG+pxILqIFvcOofnVhnBKFa2pIEL9ftEhoXWMxHaToHNRP/2cvEvr5+aqB5kTCapoZIsF0UphyaG+eNwxBQlhs8swUQxeyskE6wwMTaeog3h61P4P+lUXK/mottKuXG9iqMATsEZuAAeuAIN0AQt0AYETMADeALPjnAenRfnddm65qxmTsAPOG+fTiKOag==</latexit>

Halt

Figure 5. Phased Synthesis Schema

increases the budget until it reaches a limit, where the divide-

and-conquer code will end up with higher computational

complexity than the input implementation. At the high level,

the algorithm proceeds in three phases:

(I) The weakest divide predicate 𝑝 is synthesized that sat-

isfies the specification ∃⊙ : Φ• (𝑝, ⊙). At this stage,
the algorithm does not synthesize an implementation

for ⊙ but rather guarantees its existence within bud-

get B⊙ . An algorithm for (I) is the key (algorithmic)

contribution of this paper and appears in Section 6.

(II) A divide operation ⋎ matching 𝑝 is synthesized. ⋎

is the lowest (time) complexity divide operation that

satisfies ∀𝑥 ∈ S : 𝑝 (⋎(𝑥)). As a direct consequence
of the conceptual contributions presented in Section

4, this phase can be efficiently implemented using a

straightforward syntax-guided synthesis routine.

(III) An implementation of ⊙ (within budget B⊙) is synthe-

sized such that Ψ•(⋎, ⊙) holds. Similar to (II), this step

can be implemented using a straightforward syntax-

guided synthesis routine.

The loop between steps (I) and (II) may succeed several

times, for increasing values of B⊙ , and therefore, it can enu-

merate many valid solutions when more than one exist.

If step (I) fails to discover a predicate 𝑝 , the default value

false is returned which triggers the step to be repeated with

a higher budget B⊙ . The fact that 𝑝 is the weakest predicate

implicitly guarantees that it satisfies 𝜒•, and therefore, it

does not have to explicitly appear as part of Φ• (𝑝, ⊙).
The algorithm also produces a lifting of 𝑓 to guarantee

the existence of ⊙ in step (I), if one is required. In other

words, the 𝑓 as it appears in Φ
• (𝑝, ⊙) may be the original

𝑓 or a lifting f (of 𝑓 ) that facilitates the existence of the ⊙.
Our proposed algorithm for synthesis of 𝑝 in Section 6 also

accommodates the computation of f , if necessary.

In step (II), the algorithm attempts to synthesize ⋎ such

that total complexity of divide-and-conquer algorithm based

on the budget (max (𝑚⊙,𝑚⋎), 𝑘, 𝑐) is at most as computa-

tionally expensive as 𝑓 . A failure in this step means that a

divide function matching the predicate 𝑝 cannot be synthe-

sized. If step (II) fails, then B⊙ is increased so that a different

predicate is produced in step (I).

B⊙ = (𝑚⊙, 𝑘, 𝑐) is increased first by incrementing 𝑘 until

𝑘 = 𝑐 , and then by incrementing𝑚 until the complexity of

𝑓 is reached, and finally by incrementing 𝑐 . Note that there

is no theoretical bound on 𝑐 , but it is often a small constant

and therefore a small bound is preset for it in this loop. The

loop terminates when B⊙ reaches its limit.

By the end of step (II), the algorithm has synthesized

a divide operation ⋎ that satisfies the specification ∃⊙ :

Ψ
•(⋎, ⊙) such that the combined cost of ⋎, known since it

has been synthesized, and ⊙, known through B⊙ , does not

surpass the asymptotic complexity of 𝑓 . Therefore, step (III)

is guaranteed to succeed.

The solution space of possible divide-and-conquer algo-

rithms in each iteration subsumes that of the previous itera-

tion since B⊙ is increased. Therefore, a predicate solution

from an earlier iteration is a valid solution for a later itera-

tion. However, a new predicate, admitted through a bigger

B⊙ , is strictly weaker than a predicate from an earlier itera-

tion . This is precisely why to ensure progress, we actively

seek the weakest predicate that satisfies the constraints in

step (I). This also guarantees that upon termination, the al-

gorithm explores all possible divide-and-conquer solutions

with a join function of polynomial time complexity within

acceptable range.

6 Deductive Recursion Synthesis

This section presents an algorithm for step (I) in Figure 5.

The goal is to find a divide predicate 𝑝 such that there is a

join function ⊙ within a given budget B⊙ = (𝑚⊙, 𝑘, 𝑐) that
satisfies Φ• (𝑝, ⊙), that is (for 𝑐 = 2):

∀𝑥,𝑦 ∈ S2 : 𝑝 (𝑥,𝑦) ⇒ 𝑓 (𝑥 • 𝑦) = 𝑓 (𝑥) ⊙ 𝑓 (𝑦). (7)

Key insight. In the above specification, 𝑓 is the known

recursive function, 𝑝 is an unknown recursive predicate and

⊙ is an unknown recursive function. The idea is to use the

recursive definition of 𝑓 to infer the recursive definition

of 𝑝 (and ⊙). We do this by induction on the two 𝑓 input

parameters 𝑥 and 𝑦, and the two ⊙ input parameters 𝑓 (𝑥)
and 𝑓 (𝑦) (unless they are scalars). Starting with empty lists,

one can solve for 𝑝 and ⊙ for lists of increasing sizes, and

then extrapolate a recursive definition for 𝑝 (and for ⊙).
Since 𝑓 is rightwards single-pass, it is sufficient to perform

induction only on 𝑦 and on 𝑓 (𝑥), but not on 𝑥 . We start

with an intuitive explanation of the algorithm through an

example, and then present the formal details.

Recall example POP from Section 2. We illustrate how a

recursive definition of 𝑝 may be discovered for the 2-way
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Figure 6. Expression of the unfolding POP(𝑥 • [𝑎1])

divide in one of the divide-and-conquer instances discussed

for POP. To simplify the presentation of this instance, we

assume that we know ⊙ = • a priori, even though this is

not generally the case. We start by doing induction on 𝑦 and

POP(𝑥). We let 𝑦 = [𝑎1] and 𝑦 = [𝑎1, 𝑎2] for two different

instances, and POP(𝑥) = [𝑠1, 𝑠2]. Note that the list elements

are symbolically denoted by variables 𝑎1, 𝑎2, 𝑠1, and 𝑠2.
Expression (𝑖) in Figure 6 is the result of inlining the re-

cursive definition of POP(𝑥 • [𝑎1]). Since 𝑥 is fixed, one
can view POP(𝑥 • [𝑎1]) as the unfolding of function POP
starting from POP(𝑥). Observe that expression (𝑖) in no way
resembles the format of Equation 7, and the expression of 𝑝
cannot be guessed from it. Using a few simple rewrite rules,
specifically (𝑐 ? 𝑎 : 𝑏) ⊕𝑑 → 𝑐 ? 𝑎⊕𝑑 : 𝑏⊕𝑑 and the factoring
of conditionals, expression (𝑖) can be rewritten to expression
(𝑖𝑖) 1. Note that in expression (𝑖𝑖), the then-expression is
equal to POP(𝑥) • POP( [𝑎1]). Therefore, if the highlighted
expression is true, then POP(𝑥•[𝑎1]) = POP(𝑥)•POP( [𝑎1]),
which makes the highlighted expression our best conjecture
for 𝑝 (𝑥, [𝑎1]). Yet, one unfolding is not sufficient for deduc-
ing a recursive definition for 𝑝 . Therefore, we repeat this
process with 𝑦 as a list of two elements, which will produce
a conjecture for 𝑝 (𝑥 • [𝑎1, 𝑎2]). If we compute the expression
for POP(𝑥 • [𝑎1, 𝑎2]) and rewrite it, we get:

POP(𝑥 • [𝑎1, 𝑎2]) =
(
¬(𝑎1 ⋗ 𝑎2) ∨ 𝑝 (𝑥, [𝑎1])

)
∧
(
¬(𝑎2 ⋗ 𝑎1)∨

(𝑠1 ⋗ 𝑎2 ∧ 𝑠2 ⋗ 𝑎2 ∧ 𝑎2 ⋗ 𝑠1 ∧ 𝑎2 ⋗ 𝑠2)
)
?

POP(𝑥) • POP( [𝑎1, 𝑎2]) : POP(𝑥 • [𝑎1, 𝑎2])

The expression for 𝑝 (𝑥, [𝑎1, 𝑎2]) is again identifiable from

the conditional operator at the root. Observe that both ex-

pressions are instances of the more general pattern ∀𝑟 ∈
POP(𝑦),∀𝑠 ∈ POP(𝑥), 𝑠 ⋗ 𝑟 ∧ 𝑟 ⋗ 𝑠 , which is precisely the re-

cursive definition that our algorithm extrapolates from these

two instances through a recursion discovery (RD) step. We

say well-formed expressions like these are in normal form.

Φ
• can be transformed to:

∀(𝑥,𝑦) ∈ S2 : 𝑓 (𝑥 •𝑦) = 𝑝 (𝑥,𝑦) ? 𝑓 (𝑥) ⊙ 𝑓 (𝑦) : 𝑓 (𝑥 •𝑦) (8)

where 𝑝 appears as a conditional subexpression of the right-

hand side, rather than as a precondition in Equation 7. This

facilitates the identification of normal forms through the

transformation of the expression of 𝑓 (𝑥 • 𝑦).
We made the simplifying assumption that ⊙ = •, but

in general, it is unknown. Therefore, instead of knowing

that POP(𝑥) • POP( [𝑎1, 𝑎2]) is the join expression, we have

1Appendix C.1 spells out the rewriting steps for the interested reader.

to characterize the shape of valid join expressions. Then,

based on Equation 8, a guess is made for a subexpression

representing 𝑝 based on the expression under the condition

having the right shape.

<latexit sha1_base64="KR6ZtxiPlqKxHOZvtXBPGt3L2J4="></latexit>

Induction Parameters

f (x), y

<latexit sha1_base64="Ly/VQ8o/1wJO8oiZqfw5ljrnzYs=">AAACEHicbVC7TsMwFHV4lvIKMLJYtIiyVEklBGMFC2OR+pKaqHIcp7VqO5HtIKqon8DCr7AwgBArIxt/g9tmgJYjWTo69+FzT5AwqrTjfFsrq2vrG5uFreL2zu7evn1w2FZxKjFp4ZjFshsgRRgVpKWpZqSbSIJ4wEgnGN1M6517IhWNRVOPE+JzNBA0ohhpI/XtM09FnoipCInQsCmRUFEsOSxHlQfoBSljRMPxeblvl5yqMwNcJm5OSiBHo29/eWGMU27WYoaU6rlOov0MSU0xI5OilyqSIDxCA9IzVCBOlJ/NDprAU6OE0Bgxz9iaqb8nMsSVGvPAdHKkh2qxNhX/q/VSHV35GRVJqonA84+ilEEdw2k6MKSSYM3GhiAsqfEK8RBJhLXJsGhCcBdPXibtWtW9qDp3tVL9Oo+jAI7BCagAF1yCOrgFDdACGDyCZ/AK3qwn68V6tz7mrStWPnME/sD6/AF9/Zwz</latexit>

Transform f(x • y)

<latexit sha1_base64="HnFjzpuG6ocK8bj1m3rmUvIt4wQ=">AAAB83icdVDLSgMxFM34rPVVdekmWARXQ1Jbpu6KIrisYB/QKSWTZtrQTGZIMkIZ+htuXCji1p9x59+YaSuo6IHA4Zx7uScnSATXBqEPZ2V1bX1js7BV3N7Z3dsvHRy2dZwqylo0FrHqBkQzwSVrGW4E6yaKkSgQrBNMrnK/c8+U5rG8M9OE9SMykjzklBgr+dcDPyJmHIRZOBuUysjFFYTPPYjcKvI8jC3x0EWtVofYRXOUwRLNQendH8Y0jZg0VBCtexglpp8RZTgVbFb0U80SQidkxHqWShIx3c/mmWfw1CpDGMbKPmngXP2+kZFI62kU2Mk8of7t5eJfXi81Yb2fcZmkhkm6OBSmApoY5gXAIVeMGjG1hFDFbVZIx0QRamxNRVvC10/h/6RdcXHNRbfVcuNyWUcBHIMTcAYw8EAD3IAmaAEKEvAAnsCzkzqPzovzuhhdcZY7R+AHnLdPjh2SCg==</latexit>

Ef

<latexit sha1_base64="mthpZToxkoCiN4HowJaDX9rn3Ww=">AAAB7nicdVDLSgMxFM34rPVVdekmWARXQ1Jbpu6KIrisYB/QDiWTybShmcmQZIQy9CPcuFDErd/jzr8xfQgqeuDC4Zx7ufeeIBVcG4Q+nJXVtfWNzcJWcXtnd2+/dHDY1jJTlLWoFFJ1A6KZ4AlrGW4E66aKkTgQrBOMr2Z+554pzWVyZyYp82MyTHjEKTFW6lwP+jKUZlAqIxdXED73IHKryPMwtsRDF7VaHWIXzVEGSzQHpfd+KGkWs8RQQbTuYZQaPyfKcCrYtNjPNEsJHZMh61makJhpP5+fO4WnVglhJJWtxMC5+n0iJ7HWkziwnTExI/3bm4l/eb3MRHU/50maGZbQxaIoE9BIOPsdhlwxasTEEkIVt7dCOiKKUGMTKtoQvj6F/5N2xcU1F91Wy43LZRwFcAxOwBnAwAMNcAOaoAUoGIMH8ASendR5dF6c10XrirOcOQI/4Lx9ApRUj74=</latexit>

E!

<latexit sha1_base64="Nj9UT3Mh49+GnVq40sj3jsaxi+M=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GnqyjDkGRfAY0cRAMoSeTk/SpGehu0cIQz7BiwdFvPpF3vwbO4ugog8KHu9VUVXPTwRXGuMPK7eyura+kd8sbG3v7O4V9w/aKk4lZS0ai1h2fKKY4BFraa4F6ySSkdAX7M4fX8z8u3smFY+jWz1JmBeSYcQDTok20s1lP+kXS9jGbqXs1hG2KzWnVi0b4jrYxRXk2HiOEizR7Bffe4OYpiGLNBVEqa6DE+1lRGpOBZsWeqliCaFjMmRdQyMSMuVl81On6MQoAxTE0lSk0Vz9PpGRUKlJ6JvOkOiR+u3NxL+8bqqDupfxKEk1i+hiUZAKpGM0+xsNuGRUi4khhEpubkV0RCSh2qRTMCF8fYr+J+2y7dRsfF0tNc6XceThCI7hFBw4gwZcQRNaQGEID/AEz5awHq0X63XRmrOWM4fwA9bbJ3daje0=</latexit>

Ep

<latexit sha1_base64="A0nemM4wcx7RnOY48sh+Ws01CA4=">AAACBXicbVC7TsMwFHV4lvIKMMJg0SKVpUoqIRgrYGAsiD6kJqocx2mtOnZkO0hV1IWFX2FhACFW/oGNv8FtM0DLkSwdnXPv9b0nSBhV2nG+raXlldW19cJGcXNre2fX3ttvKZFKTJpYMCE7AVKEUU6ammpGOokkKA4YaQfDq4nffiBSUcHv9Sghfoz6nEYUI22knn3kqcjjgvKQcA3vrqHnwUrZE6HQ5dOeXXKqzhRwkbg5KYEcjZ795YUCp7GZhRlSqus6ifYzJDXFjIyLXqpIgvAQ9UnXUI5iovxsesUYnhglhJGQ5pldpurvjgzFSo3iwFTGSA/UvDcR//O6qY4u/IzyJNWE49lHUcqgFnASCQypJFizkSEIS2p2hXiAJMLaBFc0IbjzJy+SVq3qnlWd21qpfpnHUQCH4BhUgAvOQR3cgAZoAgwewTN4BW/Wk/VivVsfs9IlK+85AH9gff4ALP+XDg==</latexit>

RD
(!)

<latexit sha1_base64="daz0T0RmVSi/0ZqbEUAQnr0BB3w=">AAACAXicbVDLSgMxFM34rPU16kZwE2yFuikzBdFlURcuq9gHdIaSyWTa0EwyJBmhDHXjr7hxoYhb/8Kdf2PazkJbDwQO59x7c+8JEkaVdpxva2l5ZXVtvbBR3Nza3tm19/ZbSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwauK3H4hUVPB7PUqIH6M+pxHFSBupZx96KvK4oDwkXMO7a+h5sFJOyqc9u+RUnSngInFzUgI5Gj37ywsFTmMzBzOkVNd1Eu1nSGqKGRkXvVSRBOEh6pOuoRzFRPnZ9IIxPDFKCCMhzTN7TNXfHRmKlRrFgamMkR6oeW8i/ud1Ux1d+BnlSaoJx7OPopRBLeAkDhhSSbBmI0MQltTsCvEASYS1Ca1oQnDnT14krVrVPas6t7VS/TKPowCOwDGoABecgzq4AQ3QBBg8gmfwCt6sJ+vFerc+ZqVLVt5zAP7A+vwB+4uVRA==</latexit>

RD
(p)

<latexit sha1_base64="bINoimekAW7CKOoFTX12Vz2/6oE=">AAACC3icbVC7TsMwFHV4lvIKMLJYbZHKUiWVEIwVMDAWRB9SE1WO67RWHTuyHaQq6s7Cr7AwgBArP8DG3+C0GaDlSJaOzn343BPEjCrtON/Wyura+sZmYau4vbO7t28fHLaVSCQmLSyYkN0AKcIoJy1NNSPdWBIUBYx0gvFVVu88EKmo4Pd6EhM/QkNOQ4qRNlLfLnlcUD4gXENPhfDuGnoerFa8COlREKbhtHLat8tOzZkBLhM3J2WQo9m3v7yBwElklmKGlOq5Tqz9FElNMSPTopcoEiM8RkPSM5SjiCg/nd0yhSdGGcBQSPOMqZn6eyJFkVKTKDCdmUe1WMvE/2q9RIcXfkp5nGjC8fyjMGFQC5gFAwdUEqzZxBCEJTVeIR4hibA28RVNCO7iycukXa+5ZzXntl5uXOZxFMAxKIEqcME5aIAb0AQtgMEjeAav4M16sl6sd+tj3rpi5TNH4A+szx+omZmE</latexit>

RD
(f)

The diagram on the right summa-

rizes the procedure. First, based on in-

duction parameters of increasing size,

the expressions of the unfoldings of

𝑓 (𝑥 • 𝑦) are transformed to normal

forms (see Section 6.1). The relevant

sets of subexpressions for 𝑝 , ⊙, and
a possible lifting f are extracted from

the normal forms for successive un-

foldings (see Section 6.2). Synthesizing

𝑝 is the main goal of this procedure. In some instances, when

the transformation works well, the set 𝐸⊙ is precise enough

so that ⊙ can be discovered through recursion discovery.

But, this is not always the case, and the only guarantee of

this step is its existence within budget B⊙ . Lifting is done

when required, and the transformation produces the candi-

date set 𝐸f (see Section 6.3). Finally, a recursion discovery

(RD) subroutine extrapolates recursive definitions for 𝑝 , ⊙,
and f respectively out of the sets of expressions 𝐸𝑝 , 𝐸⊙ , and

𝐸f . (see Section 6.4).

6.1 Normal Forms

We first present a characterization of the expression (a nor-

mal form) of ⊙ informed by a budget B⊙ .

B⊙-normal form. A B⊙-normal form intuitively describes

the shape of the expression of 𝑓 (𝑥) ⊙ 𝑓 (𝑦). To characterize

the unfolded expression of a join within

budget B⊙ we define B⊙-normal forms

parameterized by the budget, and the in-

put expressions of the join 𝑓 (𝑥) and 𝑓 (𝑦).
For a budgetB⊙ = (𝑚⊙, 𝑘, 𝑐), the normal

form illustrated on the right character-

izes the expression of the join in the form of the expression

skeleton ¤𝑆 . The leaves completing the skeleton are the inputs

to ⊙ which should be filled with 𝑓 (𝑥) or 𝑓 (𝑦). If ¤𝑆 is meant

to characterize a join within budget B⊙ , then it can admit

at most 𝑘 inputs parameters. For example, since both 𝑓 (𝑥)
and 𝑓 (𝑦) appear in the expression on the right, it is only in

normal form for 𝑘 = 2.

The join should be computable in𝑂 (𝑛𝑚⊙ ) time. Recall that

normal forms are defined for expressions of fixed size result-

ing from unfoldings on inputs of fixed size, as the example in

the beginning of this section suggests. We define a notion of

cost for these expressions such that when a general recursive

⊙ is synthesized using the normal form, we will have the

guarantee that ⊙ ∈ 𝑂 (𝑛𝑚⊙ ). An expression is in normal form

if it adheres to a particular shape and has a particular cost.

An expression skeleton of degree 𝑘 , denoted ¤𝑆𝑘 , is an ab-

stract syntax tree (AST) described by the grammar on the
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¤𝑆𝑘 = ¤𝑆𝑘 ⊖ ¤𝑆𝑘 | ¤𝑆𝑘 < ¤𝑆𝑘

| ¬ ¤𝑆𝑘 | ¤𝑆𝑘 • ¤𝑆𝑘

| ¤𝑆𝑘 .𝑚

| ¤𝑆𝑘 [ 𝑗] where 𝑗 ∈ N

| ¤𝑆𝑘 ? ¤𝑆𝑘 : ¤𝑆𝑘

| ??𝑖 where 0 < 𝑖 ≤ 𝑘

| true | false | 𝑛 ∈ int
⊖: arithmetic or boolean

operator.

<: comparison operator.

.𝑚: field acessor.

right, where the leaves are con-

stants or indexed holes ??𝑖 with

1 ≤ 𝑖 ≤ 𝑘 . Given a set of input ex-

pressions 𝐸 = {𝑒𝑖 }1≤𝑖≤𝑘 , ¤𝑆
𝑘 [𝐸] de-

notes the expression constructed

by replacing the hole ??𝑖 in ¤𝑆𝑘 by

expression 𝑒𝑖 , for all 1 ≤ 𝑖 ≤ 𝑘 .

In our algorithm, ¤𝑆𝑘 character-

izes the shape of a join of arity

𝑘 , and the 𝑒𝑖 ’s stand for the in-

puts to the join function, for in-

stance 𝑓 (𝑥) and 𝑓 (𝑦). Note that

skeletons have a fixed degree 𝑘 , since 𝑘 is the number of

parameters of ⊙ fixed by the budget.

The cost associated to each skeleton is a vector ®𝑚 of length

𝑐 (the number of partitions produced by ⋎). Semantically,

it represents the conjecture that ¤𝑆𝑘 [𝐸] is computable in

𝑂 (𝑛𝑚𝑎𝑥 ( ®𝑚) )2 time for arbitrary inputs 𝐸 of size 𝑛. Note that

𝐺 is a bounded expression, and the 𝑒𝑖 that the algorithm

considers are bounded, at each step of the inductive reason-

ing. Yet, the final join function has to have the right time

complexity over arbitrary-sized inputs.

Intuitively, one can establish the complexity of the join

operator by examining the candidate skeletons over different

induction steps. The skeleton from the previous induction

step and its associated cost forms a context that is used as a

parameter to determine the cost of the new skeleton for the

current induction step.

The context consists of a skeleton ¤𝑆𝑘𝑝𝑟𝑒𝑣 , a cost conjecture

®𝑚, and an identifier 0 < 𝑖𝑐 ≤ 𝑐 for the induction parame-

ter expanded in the current induction step. Initially, ®𝑚 = ®0,
and a skeleton of minimal size is assumed in the first induc-

tion step. The cost ®𝑚 of a skeleton ¤𝑆𝑘 is determined based

on the subexpression relation between ¤𝑆𝑘 and ¤𝑆𝑘𝑝𝑟𝑒𝑣 . If ¤𝑆𝑘

is not changed in the current induction step, one can infer

that its computation takes constant time with respect to

the current induction parameter 𝑖𝑐 . Otherwise, ¤𝑆
𝑘
𝑝𝑟𝑒𝑣 must

appear as a subexpression of ¤𝑆𝑘 , since the target of synthe-

sis is a recursive function. If there is a new hole ??𝑖 in ¤𝑆𝑘 ,
which is not part of ¤𝑆𝑘𝑝𝑟𝑒𝑣 , then the induction component 𝜇 (𝑖)

that corresponds to the hole is updated (𝜇 maps the input

of the skeleton to induction components). Otherwise, the

current induction component is updated. Intuitively, since

if ¤𝑆𝑘 =
¤𝑆𝑘𝑝𝑟𝑒𝑣 then

®𝑚[𝑖𝑐 ] = 0;

else if No new hole in ¤𝑆𝑘 then

®𝑚[𝑖𝑐 ] = 1;

else if New hole ??𝑖 in ¤𝑆𝑘 then

®𝑚[𝜇 (𝑖)] = 1;

. . .;

an extra subexpression ap-

pears in ¤𝑆𝑘 , there is an ad-

ditional computation step

required for one induction

step, and the computation

takes linear time. The algo-

rithm is illustrated on the

right, but it is missing a few

cases, which seem to be uncommon in practice and did not

2𝑚𝑎𝑥 (®𝑣) is the maximum of the components of vector ®𝑣.

occur in the synthesis of any of our benchmarks. The com-

plete algorithm, listing all cases, appears in Appendix C.2.

Definition 6.1 (B⊙-normal form). An expression 𝑒 is inB⊙-

normal form in context𝐶 , for a budget B⊙ = (𝑚⊙, 𝑘, 𝑐), with
respect to a family of expressions 𝐸 = {𝑒𝑖 }1<𝑖≤𝑘 , iff there

exists a skeleton ¤𝑆𝑘 such that 𝑒 = ¤𝑆𝑘 [𝐸] and𝑚𝑎𝑥 ( ®𝑚) =𝑚⊙ ,

where ®𝑚 is the cost of ¤𝑆𝑘 in context 𝐶 .

We say that an expression isB⊙-normalizable in context

𝐶 with respect to 𝐸 if it can be rewritten to an expression in

B⊙-normal form in context𝐶 with respect to 𝐸. The context

is only mentioned explicitly if it is relevant.

Multi-way conditional expression. If 𝑝 (𝑥,𝑦) ≡ true, i.e.

any division is acceptable, then 𝑓 (𝑥 • 𝑦) is B⊙-normalizable

with respect to {𝑓 (𝑥), 𝑓 (𝑦)}. But, if a special division is nec-

essary, then the shape of the expression 𝑝 (𝑥,𝑦)?𝑓 (𝑥) ⊙ 𝑓 (𝑦) :
𝑓 (𝑥 •𝑦) (from Equation 8) hints at the fact that only a subtree

of the AST, after rewriting, is in B⊙-normal form. This is

the subexpression that appears under the then branch of the

conditional expression.

Definition 6.2. An expression 𝑒 = {𝑒𝑖 if 𝑏𝑖 | 𝑖 ∈ 𝐼 } is a multi-

way conditional expression (MC-expression) with branch

conditions {𝑏𝑖 }𝑖∈𝐼 , if branch expressions {𝑒𝑖 }𝑖∈𝐼 do not con-

tain any

Example 6.3. Let ↑ denote the infix operator returning the
maximum of two values.We use a computation of the longest

increasing subsequence (LIS) of a list of integers as our

running example in this section. The single-pass function

LIS : [int] → int × int × int with signature (𝑐𝑙,𝑚𝑙, 𝑝𝑟𝑒𝑣),
where𝑚𝑙 is the length of the longest increasing subsequence

and 𝑐𝑙 is the length of the longest increasing suffix, is defined

as (for any sequence 𝑥 , state 𝑠 , and integer 𝑎):

LIS( []) = (0, 0,−∞) LIS(𝑥 • [𝑎]) = LIS(𝑥) ⊕ 𝑎

𝑠 ⊕ 𝑎 = let 𝑐𝑙 = 𝑠 .𝑝𝑟𝑒𝑣 < 𝑎 ? 𝑠 .𝑐𝑙 + 1 : 0 in (𝑐𝑙, 𝑐𝑙 ↑ 𝑠 .𝑚𝑙, 𝑎)

We consider the second unfolding starting from LIS(𝑥) =
(𝑐𝑙0,𝑚𝑙0, 𝑝𝑟𝑒𝑣0), with input [𝑎1, 𝑎2]. The expression of LIS(𝑥•
[𝑎1, 𝑎2]).𝑚𝑙 is translated to aMC-expression with 4 branches:

1:𝑚𝑙0 ↑ 𝑐𝑙0 + 1 ↑ 𝑐𝑙0 + 1 + 1 if (𝑎1 < 𝑎2) ∧ (𝑝𝑟𝑒𝑣0 < 𝑎1)

2: 𝑚𝑙0 ↑ 𝑐𝑙0 + 1 ↑ 0 if (𝑎1 ≥ 𝑎2) ∧ (𝑝𝑟𝑒𝑣0 < 𝑎1)

3: 𝑚𝑙0 ↑ 0 ↑ 0 + 1 if (𝑎1 < 𝑎2) ∧ (𝑝𝑟𝑒𝑣0 ≥ 𝑎1)

4: 𝑚𝑙0 ↑ 0 ↑ 0 if (𝑎1 ≥ 𝑎2) ∧ (𝑝𝑟𝑒𝑣0 ≥ 𝑎1)
⌟

The expression of the divide predicate 𝑝 intuitively corre-

sponds to the subset of brancheswhere the expressions under

guards match the expressions of the function ⊙. Formally, in

a MC-expression 𝑒 = {𝑒𝑖 if 𝑏𝑖 | 𝑖 ∈ 𝐼 }, a boolean expression 𝑏

isolates the subset of branches 𝐼 ′ ⊆ 𝐼 iff ∀𝑖 ∈ 𝐼 ′ : 𝑏𝑖 =⇒ 𝑏

and ∀𝑖 ∈ 𝐼 \ 𝐼 ′ : 𝑏𝑖 =⇒ ¬𝑏.
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6.2 Expression Transformation

Given an unfolding of 𝑓 (𝑥 • 𝑦), we first transform it into an

MC-expression. Then we check which branches have expres-

sions that are B⊙-normalizable by attempting to normalize

them. The expression of 𝑝 is exactly the expression isolating

the subset of branches that are successfully rewritable to

B⊙-normal forms, and the expression of ⊙ is the skeleton

defining the normal forms.

Example 6.4. Recall Example 6.3 and suppose that we have a

constant time budget for ⊙. In the second induction step, the

two inputs of the join are {(𝑐𝑙0,𝑚𝑙0, 𝑝𝑟𝑒𝑣0), LIS( [𝑎1, 𝑎2])}.
Branch 3 and 4 expressions can be rewritten to a B⊙-normal

form, witnessed by the skeleton ¤𝑆2 =??1.𝑚𝑙 ↑??2.𝑚𝑙 , which

can be computed in constant timewith cost (0, 0) (accounting
for the context from previous step).

However, there is no normal form of cost (0, 0) for the
branches 1 and 2: the branches contain subexpressions of

the form 𝑐𝑙0 + 1 + . . . that grow in size with each induction

step, so the inferred cost in these branches is (0, 1).
Branches (3,4) are normalizable for a constant-time budget,

and the expression of the predicate is identified by isolating

those branches: 𝑝 (LIS(𝑥), [𝑎1, 𝑎2]) = 𝑎1 ≤ 𝑝𝑟𝑒𝑣0. ⌟

Any expression in the program can be transformed to an

MC-expression. The first step consists in using a strongly nor-

malizing rewrite system, with rules similar to the ones used

in the introductory example of this section (complete list

in Appendix A.3). The expression generated by the rewrite

system is an MC-expression. Then a solver eliminates the

branches that are infeasible; that is, each branch with index

𝑖 such that ¬𝑏𝑖 is valid is removed.

The B⊙-normal form generalizes the constant normal

forms and recursive normal forms defined in [9]. Normal-

izing a symbolic expression to a B⊙-normal form can be

done by small adjustments in the rewriting process from

[9], which in turn is a relatively standard cost-based rewrite

system. We list the rewrite rules used in Appendix A.2. Note

that the context forB⊙-normalization depends on the branch

of the MC-expression. Each branch has a matching branch at

the previous induction step, from which the context is taken.

With an ideal normalization process, the predicate ex-

pressions synthesized are guaranteed to correspond to the

expressions of the weakest predicate that ensures a join op-

erator ⊙ exists within budget B⊙ , since at each unfolding

stage, all the branches that are B⊙-normalizable are isolated.

But, since reachability of an existing B⊙-normal form is un-

decidable [8, 9], the weakness of 𝑝 cannot be theoretically

guaranteed for all inputs. This also implies that the join

cannot be always synthesized by our algorithm.

6.3 Automatic Lifting

During the process of identifying B⊙-normalizable subex-

pressions, instead of discovering a clean B⊙-normal form,

the expression sometimes normalizes to a tree of the form

illustrated on the right. There are leaves corresponding to

𝑓 (𝑥) and 𝑓 (𝑦) as before, but there is also
a leaf that corresponds to subcomputa-

tions not already performed by 𝑓 . The

figure labels this as a new function 𝑔(𝑦).
The normal form implies that the join op-

erator needs access to the result of 𝑔(𝑦)
to produce the overall result. Hence, 𝑓 needs to lifted to

compute 𝑔 in addition to its original computation.

Normalization of a single branch of an MC-expression

can have three possible outcomes: (i) success (i.e. no lifting

required), (ii) lifting required, or (iii) failure, when the cost

of the expression surpasses the budget. One can aim for a

solution based on all branches in class (i) (with no lifting), or

for one based on all branches in classes (i) and (ii) to produce

the weakest predicate supported by the lifting.

Example 6.5. Recall Example 6.4; a predicate 𝑝 is discovered

without a need for lifting (i.e. branches 3 and 4 belong in

class (i)). Suppose now that we aim to identify all branches

as normalizable; this will lead to 𝑝 ≡ 𝑡𝑟𝑢𝑒 , then ⋎ being the

random splitting, an instance of a MapReduce solution. For

this a lifting is required, since subexpressions of the form

𝑐𝑙0 + (1 + . . .), which appear branches 1 and 2, have to be

precomputed to maintain the possibility of a constant-time

join. The exact expression depends on the condition 𝑎1 < 𝑎2,

therefore we derive the auxiliary computation 𝑔1 ( [𝑎1, 𝑎2]) =
𝑎1 < 𝑎2 ? 1 + 1 : 1. Additionally, the condition isolating

branches (3,4), 𝑎1 ≤ 𝑝𝑟𝑒𝑣0 has to be available for join, the

extra auxiliary 𝑔2 ( [𝑎1, 𝑎2]) = 𝑎1 is also required. Therefore,

branches 1 and 2 belong in class (ii). ⌟

A similar deductive-style automated lifting was intro-

duced for lists in [8] and extended to multidimensional lists

in [9]. But with the aid of MC-expressions, we can infer

strictly more expressive auxiliary computation in this paper,

in particular we can synthesize conditional auxiliary compu-

tations. More details about the procedure and an example

are presented in Appendix C.3.

6.4 Recursion Discovery

The goal of recursion discovery is to deduce the recursive

definition of a function from its unfoldings. In [8, 9], a proce-

dure is proposed for solving this exact problem. It operates

by using subtree isomorphisms to identify different stages of

a recursive computation in an input set of expressions. We

apply their procedure as a black-box in two instances: the

divide predicate and the lifting discovery.

At each step of the induction process, the unfoldings of the

rightwards single-pass function 𝑓 from an initial state 𝑓 (𝑥)
on sequence 𝑦 are transformed to expressions of the form

𝑝 (𝑓 (𝑥), 𝑦) ? 𝑓 (𝑥) ⊙ f (𝑦) : 𝑓 (𝑥 • 𝑦). With an ideal normal-

ization process, this would allow to identify the unfoldings
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of ⊙, 𝑝 and 𝑔, a function that computes the information re-

quired in addition to 𝑓 in the lifting f . As noted in Section 6.1

no such ideal procedure exists, and in practice we can only

identify the expressions of 𝑝 (𝑓 (𝑥), 𝑦) and 𝑔(𝑦), but not ⊙,
for the different values of 𝑓 (𝑥) and 𝑦 during the induction

process.

Recursion discovery is used to produce a recursive defini-

tion of 𝑝0 : 𝐷 × S → Bool from the unfoldings of 𝑝0, i.e. the

expressions of the form 𝑝0 (𝑓 (𝑥), 𝑦), for different inputs 𝑓 (𝑥)
and 𝑦. The function 𝑝0 is defined recursively by an opera-

tor ⊗ such that 𝑝0 (𝑓 (𝑥), 𝑦 • [𝑎]) = 𝑝0 (𝑓 (𝑥), 𝑦) ⊗ (𝑓 (𝑥), 𝑦, 𝑎).
Note that 𝑝0 (𝑓 (𝑥), 𝑦) may be false, which means no corre-

sponding divide can be discovered. Once 𝑝0 is discovered, the

divide predicate 𝑝 is simply defined as 𝑝 (𝑥,𝑦) = 𝑝0 (𝑓 (𝑥), 𝑦).
Recursion discovery is also used to discover a recursive

definition of a lifting of 𝑓 when necessary. It produces a

function 𝑔 from the expressions 𝑔(𝑦) (for different values of
𝑦) identified after normalization, which is then tupled with

𝑓 to form a lifting f .

Example 6.6. In Example 6.5, we identified bounded expres-

sions that correspond to the required lifting. From a set of

such expressions, recursion discovery deduces a recursive

definition for 𝑔1, with signature (𝑐𝑜𝑛𝑑, 𝑎𝑢𝑥):

𝑔1 (𝑥 • [𝑎]) = let 𝑐 = 𝑔1 (𝑥).𝑐𝑜𝑛𝑑 ∧ (𝑓 (𝑥).𝑝𝑟𝑒𝑣 < 𝑎) in

let 𝑏 = 𝑔1 (𝑥) .𝑎𝑢𝑥 in (𝑐, 𝑐 ? 𝑏 + 1 : 𝑏)

The final lifting of LIS is LIS′(𝑥) = (LIS(𝑥), 𝑔1 (𝑥), ℎ𝑒𝑎𝑑 (𝑥))
since ℎ𝑒𝑎𝑑 is the trivial result of recursion discovery from

the unfoldings of 𝑔2 in Example 6.5. ⌟

7 Synthesizing Divide and Join

Once the divide predicate 𝑝 is successfully synthesized, the

two remaining tasks are the synthesis of the join function and

the synthesis the divide function using 𝑝 as its specification.

These are simple tractable synthesis problems for search-

based synthesis tools, which is precisely the reason why

we decomposed the problem in this particular manner. We

briefly explain each task (at the high level) for the sake of

the completeness of the paper.

7.1 Divide Function Synthesis

We use syntax-guided synthesis [3] to synthesize a divide

function according to specification ∀𝑧 ∈ S, 𝑝 (⋎(𝑧)) ∧ 𝜒 (⋎)
(from Section 4). For a SyGuS solution, the search space for

synthesis has to be defined.

If 𝑝 (𝑥,𝑦) ≡ true, then the inverse of concatenation is a

valid solution. Incidentally, it is the only valid constant-time

divide function. If 𝑝 (𝑥,𝑦) . true, we assume that ⋎ has at

least linear time complexity. By analyzing the predicate 𝑝 ,

we can distinguish whether only a splitting divide (Defini-

tion 4.4) is required, or a partition divide needs to be syn-

thesized. If the predicate 𝑝 (𝑥,𝑦) is a condition on a prefix of

its second argument 𝑦, then a splitting divide is synthesized.

The divide is constructed as a function that scans the input

sequence from a random location, until the condition on the

prefix starting from the location is met, at which point the

sequence is split into the current prefix and the suffix.

Otherwise, the divide is sketched [3] as a partition func-

tion that operates in two phases, first by selecting one or

more pivots, and then partitioning the elements of the inputs

list according to their relation to these pivots. For a given

sketch, a number 𝑞 of pivots is fixed. For a budget (𝑚,𝑘, 𝑐),
the unknowns are the 𝑞 pivot selection functions and 𝑐 − 1

two-way partition functions using the pivots. If no solution

for a given 𝑞 is found, 𝑞 can be increased. 2 pivots seemed to

be sufficient to cover all our benchmarks. The time complex-

ity is at least linear, but can be higher if the selection of pivot

requires super-linear time. While none of our benchmarks

required a super-linear pivot selection function, we success-

fully experimented with synthesizing one with our tool to

test its robustness. The example is a pivot constrained to be

the median of a list. Detailed descriptions of these sketches

are given in Appendix C.4.

7.2 Join Operator Synthesis

With ⋎ known, the specification is simplified to ∀𝑧 ∈ S,
𝑓 (𝑧) = 𝑓 (⋎(𝑧).1) ⊙ 𝑓 (⋎(𝑧).2). In general, this synthesis

problem is identical to a similar problem that was solved

in [9], with good theoretical guarantees. We do not repeat

that contribution here. Whenever the procedure described in

Section 6 succeeds in producing the join, the synthesis step

in (III) is effectively reduced to a bounded verification of the

already discovered ⊙, effectively checking that the divide-

and-conquer algorithm with the divide synthesized in step

(II) and the join operator inferred at step (I) is functionally

equivalent to the original function. For example, concatena-

tion, as the join for the two-way divide solution of POP, is

inferred at the divide predicate synthesis step.

8 Experimental Results

Our approach is implemented as an extension of the tool

Parsynt [20], which accepts as input C-like iterative pro-

grams with loops or functional programs written in Scheme.

It is implemented in OCaml [16] and uses Z3 [6] as SMT

solver and Rosette [25] as syntax-guided synthesis solver.

All experiments were run on a desktop with two 8-core Intel

Xeon E5-2620 and 32GB of RAM running Ubuntu 18.04.

To the best of our knowledge Parsynt is the only fully

automatic tool that can synthesize divide-and-conquer pro-

grams of the class described in this paper from a reference

implementation. A number of tools, including BIG𝜆 [23], and

Casper [1], synthesize various types of MapReduce [7] pro-

grams. The MapReduce model is too restrictive for splitting

or partitioning divides, and all the tools mentioned fail to

synthesize a solution for POP example from Section 2 or LIS

example from Section 6. GraSSP [11] goes slightly beyond

MapReduce and parallelizes single pass array computations,
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but the most expressive class they target is subsumed by

our solutions with splitting divides. An earlier version of

Parsynt [9] targets nested loops and performs lifting, but

the divide operations are limited to the inverse of concate-

nation. We use the most difficult benchmarks from GraSSP

as some of our simplest benchmarks.

Benchmarks. The theoretical results of Section 4 suggest

a classification of the algorithms targeted in this paper into

those with splitting divides (e.g. LIS) and those with partition-

ing divides (e.g. POP). We evaluate the efficacy and efficiency

of Parsynt in synthesizing divide-and-conquer algorithms

for two sets of benchmarks, one for each category. We col-

lected our benchmarks from algorithm textbooks and related

work on divide-and-conquer programming. These are non-

trivial iterative algorithms for which equivalent divide-and-

conquer algorithms according to Equation 1 exist. Those that

have a solution with a partitioning divide are listed in Table 1

and those with a splitting divide in Table 7(a). The first set

includes sophisticated algorithms, where some have several

distinct divide-and-conquer implementations, synthesized

using different budgets. The second set is composed of single-

pass algorithms computing counts or maximal lengths of

subsequences that have a given property.

Performance of Parsynt. Table 1 and Figure 7(a) report

the synthesis times for each phase of the synthesis procedure.

For each synthesis task in Table 1, we report the synthesis

times separately for each budget that led to a synthesized so-

lution. When the predicate synthesized is trivially true, there

is no need to synthesize a divide; these cases are denoted by

†. The synthesis times range from a few seconds to up to 26

min. The solutions with three-way divides (𝑐 = 3) require

significantly more time to be synthesized. This is due to the

fact that the size of the bounded model required by the syn-

thesis needs to be increased to take in account the increase

in dimension. All input implementations have 𝑂 (𝑛2) time

complexity3, and therefore the synthesized solutions with

𝑂 (𝑛 log𝑛) complexity are highly non-trivial, on par with the

three solutions of POP discussed in Section 2.

In Table 7(a), we report the times spent in the predicate

and the join synthesis steps. Note that the predicate synthesis

times listed are the combined times for both lifting and the

predicate synthesis step (which take place in one step).

The benchmarks for which GraSSP [11] can also synthe-

size a solution are highlighted in blue. Note that Parsynt

synthesizes two solutions for each benchmark against one for

the other tool. The synthesis times are overall small for these

benchmarks, but Parsynt still illustrates a time advantage

(see Appendix D.1). The rest of our benchmarks are rejected

by other tools (including GraSSP), because they require

lifting in the form of addition of one or more conditional

accumulators with a non-trivial accumulation operation.

3For the 𝑘-largest benchmark we consider the case where 𝑘 is large.

Table 1. Partitioning Divides: Columns 𝑝, ⋎, ⊙ present the syn-

thesis time (in seconds) for the respective functions, and column

𝑂 (?) lists the time complexity of the synthesized code. † indicates

that no divide needs to be synthesized, a greyed cell signals that

lifting was required, and × means that Parsynt fails.

B⊙ 𝑝 ⋎ ⊙ 𝑂 (?)

Sorting (0,2,2) 4.5 1.1 5.1 𝑛 log𝑛

𝑘-largest (0,2,2) 3.4 1.2 120 𝑛 log𝑛

Closest pair (0,2,2) 5.6 1.2 10 𝑛 log𝑛

Intersecting (0,2,2) 12 54 30 𝑛 log𝑛

intervals (0,3,3) 31 421 1.5 𝑛 log𝑛

Histogram (0,2,2) 4.1 1.1 25.3 𝑛 log𝑛

(2,2,2) 3.0 † 9.4 𝑛2

POP (0,2,2) 5.3 69 8.7 𝑛 log𝑛

(1,2,2) 6.2 20 240 𝑛 log𝑛

(2,2,2) 3.1 † 12 𝑛2

(0,2,3) 35 1560 91 𝑛 log𝑛

Minimal (0,2,2) 5.0 64 10.5 𝑛 log𝑛

points (1,2,2) 6.4 21.5 206 𝑛 log𝑛

(2,2,2) 3.0 † 11.5 𝑛2

(0,2,3) 35 1430 87.0 𝑛 log𝑛

Quadrant (0,2,2) 5.2 67 13 𝑛 log𝑛

orthogonal (1,2,2) 6.7 24.5 201 𝑛 log𝑛

convex hull (2,2,2) 3.0 † 12 𝑛2

(0,2,3) 35 1540 88 𝑛 log𝑛

Orthogonal (1,2,2) × × × 𝑛 log𝑛

convex hull (2,2,2) 6.1 † 24 𝑛2

Encircling set (0,2,2) × × × 𝑛 log𝑛

Quality of the synthesized code. The synthesized imple-

mentations for the benchmarks in Table 1 belong to one of

the two categories: (1) the synthesized divide-and-conquer

algorithm has a strictly lower asymptotic complexity than the

input sequential code (any row with 𝑂 (𝑛 log𝑛) complexity)

or (2) its asymptotic complexity is the same (about 22% of

the cases). In Section 2, we discussed how different input

distributions may result in a preference for one solution over

another, for the latter case.

The solutions with a splitting divide lead to scalable par-

allel implementations, as showcased in Figures 7(b) and 7(c).

In Figure 7(b) we compare the speedup of the different par-

allel implementations of the benchmarks of Table 7(a) with

varying number of threads, for an input of 1010 integers with

indivisible blocks of 100 elements in average. For each bench-

mark, we have two solutions: one with a splitting divide (plot-

ted with a continuous line) and one with a lifting (dashed

line). Both implementations scale in parallel with compa-

rable performance gains. The relative speedups for these

can also depend on the input data composition. Figure 7(c)

compares the relative speedups of the two implementations

of LIS, for varying sizes of increasing sequences in the input.

When increasing sequences are long, the splitting divide im-

plementation performs significantly worse than the one with

lifting. This observation generalizes across all benchmarks

that have splitting divide and lifting solutions, and makes a

case for why synthesizing two solutions is useful.
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(a)

𝑝 + ⋎ ⊙

Count 1(0+) 0.1 1.2

Count 1(0*)2 0.1 1.4

Count 1*2*3 0.2 3.1

Max dist. between 1s 0.2 2.6

Max sum between 0s 0.2 1.8

LIS 0.1 1.3

Largest peak 0.1 1.2

Longest 1* 0.1 1.2

Longest 1(0*)2 0.2 3.1

Longest even 0* 0.2 19.1

Longest odd (01)* 0.2 25.0

Longest 1(0*)2(0*)3 × ×

(b)

Lifted Splitting

(c)

Figure 7. Splitting Divides: Table (a) lists the synthesis times (in seconds) of the benchmarks with splitting divides. × indicates that the

tool failed to find a solution. Figure (b) illustrates the speedups of the parallel implementations. Figure (c) compares the speedups of two

parallel implementations of the LIS benchmark, for different ratios of size of increasing sequences to total size of input.

Limitations. Each table also lists the benchmarks that un-

derline the limitations of the various steps of our synthesis

process. We indicate by × the synthesis steps for which

Parsynt fails. For example, in Table 1 the solution for B⊙ =

(1, 2, 2) of the orthogonal convex hull benchmark, which re-

quires a complex lifting, could not be automatically synthe-

sized. The tool cannot synthesize the divide for the encircling

set benchmark because it involves the synthesis of a func-

tion with non-linear arithmetic operations. The benchmark

Longest 1(0*)2(0*)3 in the last row of Table 7(a) (where the

code computes the length of the longest substring matching

the regular expression 1(0∗)2(0∗)3) admits a splitting divide,

but the deductive synthesis procedure cannot infer a divide

predicate due to the large number of new variables required

to compute the predicate. The reader can refer to Appen-

dix E.1 where we outline how difficult it is to derive these

divide-and-conquer algorithms, even manually.

9 Related Work

There is a vast body of work on program synthesis. Here

we only survey the work related to divide-and-conquer syn-

thesis. Map-reduce is one of the most popular subclasses

of divide-and-conquer, which formally relies on the com-

putation being a list homomorphism, the precise class of

functions that can be written as a composition of a map and

a reduction (cf. first homomorphism theorem). The litera-

ture on divide-and-conquer synthesis can be divided into

two categories based on the class of input computations

targeted: (1) those with list homomorphisms as input, with

the aim of synthesizing efficient map-reduce [7] programs

[1, 14, 21, 23], (2) those that go beyond list homomorphisms

[8, 9, 11, 15, 19, 22], and target code with more dependen-

cies. In category (2), the techniques in [8, 9, 11] synthesize

list homomorphisms through some variation of lifting, the

approach in [22] uses symbolic execution at runtime and

to identify and defer dependencies, and Bellmania [15] tar-

gets input programs in the style of dynamic programming

and orchestrates an efficient execution schedule to accom-

modate the dependencies. A direct comparison with work

in [1, 9, 11, 23] with respect to the class of input programs

appears in Section 8.

Derivation of list homomorphisms includes approaches

based on the third homomorphism theorem [13, 14, 19], func-

tion composition [12], and quantifier elimination [18], as well

as those based on recurrence equations [4]. These techniques

are either not fully automatic, or rely on additional guidance

from the programmer beyond the input sequential code. In

contrast, the techniques in [8, 9, 11, 22] derive list homomor-

phisms automatically through lifting. The lifting performed

in [9] is strictly the most general one and subsumes the rest.

The class of divide-and-conquer algorithms targeted in

this paper is strictly more general than list homomorphisms,

and therefore more general than both categories (1) and (2)

of work mentioned earlier. To the best of our knowledge, no

prior work targets a class as general as this automatically. In

[24], manual synthesis of general classes is discussed.

10 Conclusion

We solve a program synthesis problem with three unknown

components, related through a single specification, by de-

composing it into tractable subtasks. The key takeaways

are: (1) our deductive synthesis technique based on induc-

tion, rewriting, and recursion discovery is a powerful method

for the synthesis of recursive code where another recursive

code is available as the functional specification, and (2) an

imperfect deductive synthesis algorithm can be utilized as
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an oracle producing powerful hints, which can be used to

decompose a monolithic synthesis problem with multiple un-

knowns into a sequence of more tractable synthesis problems

over subsets of these unknowns.

Our deductive synthesis module differs from the classic

one in that instead of operating on the source code, it manip-

ulates the results of its symbolic evaluation. Small variations

in code may result in the same symbolically evaluated term,

and therefore, the technique is more robust with respect to

syntactic variations in the input implementations.

Our approach in decomposing the monolithic divide-and-

conquer specification is in the spirit of multi-abduction [2]:

a specification with multiple unknowns is decomposed into

specifications for each unknown. The problem is that in this

domain, like many others, individual maximal specifications

for each component do not exist; a stronger specification on

divide would imply less work to be done at join time. We

exploit the structure of the problem to effectively enumer-

ate all admissible pairs of specifications, by relying on the

complexity of the join function to guide this enumeration.

References
[1] Maaz Bin Safeer Ahmad and Alvin Cheung. 2018. Automatically

Leveraging MapReduce Frameworks for Data-Intensive Applications.

In Proceedings of the 2018 International Conference on Management of

Data. ACM, New York, NY, USA, 1205ś1220. https://doi.org/10.1145/

3183713.3196891

[2] Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. 2016. Maximal Spec-

ification Synthesis. In Proceedings of the 43rd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. ACM,

New York, NY, USA, 789ś801. https://doi.org/10.1145/2914770.2837628

[3] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg,

Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin,

Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh

Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.

2015. Syntax-Guided Synthesis. In Dependable Software Systems Engi-

neering. 1ś25. https://doi.org/10.1109/FMCAD.2013.6679385

[4] Yosi Ben-Asher and Gadi Haber. 2001. Parallel Solutions of Simple

Indexed Recurrence Equations. IEEE Trans. Parallel Distrib. Syst. 12, 1

(Jan. 2001), 22ś37. https://doi.org/10.1109/71.899937

[5] Jon Louis Bentley, Dorothea Haken, and James B Saxe. 1978. A General

Method for Solving Divide-and-Conquer Recurrences. Technical Report.

https://doi.org/10.1145/1008861.1008865

[6] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An efficient

SMT solver. In International conference on Tools and Algorithms for

the Construction and Analysis of Systems. Springer, 337ś340. https:

//doi.org/10.1007/978-3-540-78800-3_24

[7] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified

Data Processing on Large Clusters. Commun. ACM 51, 1 (Jan. 2008),

107ś113. https://doi.org/10.1145/1327452.1327492

[8] Azadeh Farzan and Victor Nicolet. 2017. Synthesis of Divide and

Conquer Parallelism for Loops. In Proceedings of the 38th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion. ACM, 540ś555. https://doi.org/10.1145/3140587.3062355

[9] Azadeh Farzan and Victor Nicolet. 2019. Modular Divide-and-conquer

Parallelization of Nested Loops. In Proceedings of the 40th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion. ACM, 610ś624. https://doi.org/10.1145/3314221.3314612

[10] Azadeh Farzan and Victor Nicolet. 2021. From Iterative Implementa-

tions to Single-pass Functions. (2021). http://www.cs.toronto.edu/

~azadeh/resources/papers/functional_translation.pdf (manuscript).

[11] Grigory Fedyukovich, Maaz Bin Safeer Ahmad, and Rastislav Bodik.

2017. Gradual Synthesis for Static Parallelization of Single-Pass Array-

Processing Programs. In Proceedings of the 38th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation. As-

sociation for Computing Machinery, New York, NY, USA, 572ś585.

https://doi.org/10.1145/3140587.3062382

[12] Allan L. Fisher and Anwar M. Ghuloum. 1994. Parallelizing Complex

Scans and Reductions. In Proceedings of the ACM SIGPLAN 1994 Confer-

ence on Programming Language Design and Implementation. 135ś146.

https://doi.org/10.1145/773473.178255

[13] Alfons Geser and Sergei Gorlatch. 1997. Parallelizing Functional

Programs by Generalization. In Proceedings of the 6th International

Joint Conference on Algebraic and Logic Programming. 46ś60. https:

//doi.org/10.1017/S0956796899003536

[14] Sergei Gorlatch. 1996. Systematic Extraction and Implementation of

Divide-and-Conquer Parallelism. In Proceedings of the 8th International

Symposium on Programming Languages: Implementations, Logics, and

Programs. 274ś288. https://doi.org/10.1007/3-540-61756-6_91

[15] Shachar Itzhaky, Rohit Singh, Armando Solar-Lezama, Kuat Yessenov,

Yongquan Lu, Charles Leiserson, and Rezaul Chowdhury. 2016. De-

riving divide-and-conquer dynamic programming algorithms using

solver-aided transformations. In ACM SIGPLAN Notices, Vol. 51. ACM,

145ś164. https://doi.org/10.1145/3022671.2983993

[16] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier

Rémy, and Jérôme Vouillon. 2018. The OCaml system release 4.07:

Documentation and user’s manual. (2018).

[17] Zohar Manna and Richard Waldinger. 1979. Synthesis: dreams →

programs. IEEE Transactions on Software Engineering 4 (1979), 294ś328.

https://doi.org/10.1109/TSE.1979.234198

[18] Akimasa Morihata and Kiminori Matsuzaki. 2010. Automatic Paral-

lelization of Recursive Functions Using Quantifier Elimination. In

Functional and Logic Programming, 10th International Symposium,

FLOPS 2010, Sendai, Japan, April 19-21, 2010. Proceedings. 321ś336.

https://doi.org/10.1007/978-3-642-12251-4_23

[19] Kazutaka Morita, Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang

Hu, and Masato Takeichi. 2007. Automatic Inversion Generates Divide-

and-conquer Parallel Programs. In Proceedings of the 28th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion. 146ś155. https://doi.org/10.1145/1273442.1250752

[20] Victor Nicolet. 2017. Parsynt. https://github.com/victornicolet/

parsynt

[21] Cosmin Radoi, Stephen J. Fink, Rodric Rabbah, and Manu Sridharan.

2014. Translating Imperative Code to MapReduce. In Proceedings of the

2014 ACM International Conference on Object Oriented Programming

Systems Languages & Applications. 909ś927. https://doi.org/10.1145/

2660193.2660228

[22] Veselin Raychev, Madanlal Musuvathi, and Todd Mytkowicz. 2015.

Parallelizing User-defined Aggregations Using Symbolic Execution.

In Proceedings of the 25th Symposium on Operating Systems Principles.

153ś167. https://doi.org/10.1145/2815400.2815418

[23] Calvin Smith and Aws Albarghouthi. 2016. MapReduce Program

Synthesis. In Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation, Vol. 51. 326ś340.

https://doi.org/10.1145/2980983.2908102

[24] Douglas R Smith. 1985. Top-down synthesis of divide-and-conquer

algorithms. Artificial Intelligence 27, 1 (1985), 43ś96. https://doi.org/

10.1016/0004-3702(85)90083-9

[25] Emina Torlak and Rastislav Bodík. 2013. Growing solver-aided lan-

guages with rosette. In ACM Symposium on New Ideas in Programming

and Reflections on Software, Onward! 2013, part of SPLASH ’13, Indi-

anapolis, IN, USA, October 26-31, 2013. 135ś152. https://doi.org/10.

1145/2509578.2509586

986

https://doi.org/10.1145/3183713.3196891
https://doi.org/10.1145/3183713.3196891
https://doi.org/10.1145/2914770.2837628
https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1109/71.899937
https://doi.org/10.1145/1008861.1008865
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3140587.3062355
https://doi.org/10.1145/3314221.3314612
http://www.cs.toronto.edu/~azadeh/resources/papers/functional_translation.pdf
http://www.cs.toronto.edu/~azadeh/resources/papers/functional_translation.pdf
https://doi.org/10.1145/3140587.3062382
https://doi.org/10.1145/773473.178255
https://doi.org/10.1017/S0956796899003536
https://doi.org/10.1017/S0956796899003536
https://doi.org/10.1007/3-540-61756-6_91
https://doi.org/10.1145/3022671.2983993
https://doi.org/10.1109/TSE.1979.234198
https://doi.org/10.1007/978-3-642-12251-4_23
https://doi.org/10.1145/1273442.1250752
https://github.com/victornicolet/parsynt
https://github.com/victornicolet/parsynt
https://doi.org/10.1145/2660193.2660228
https://doi.org/10.1145/2660193.2660228
https://doi.org/10.1145/2815400.2815418
https://doi.org/10.1145/2980983.2908102
https://doi.org/10.1016/0004-3702(85)90083-9
https://doi.org/10.1016/0004-3702(85)90083-9
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background and Notation
	4 Decomposing D&C Specification
	4.1 Permutation Invariance
	4.2 Splitting Divides

	5 Synthesizing Divide-and-Conquer 
	5.1 Complexity of Divide-and-Conquer
	5.2 Synthesis Paradigm

	6 Deductive Recursion Synthesis
	6.1 Normal Forms
	6.2 Expression Transformation
	6.3 Automatic Lifting
	6.4 Recursion Discovery

	7 Synthesizing Divide and Join
	7.1 Divide Function Synthesis
	7.2 Join Operator Synthesis

	8 Experimental Results
	9 Related Work
	10 Conclusion
	References

