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ABSTRACT

In recent years, approaches to approximating complex data distributions have been centered around
the generative adversarial networks (GANs) paradigm, eliminating the need for Markov chains in
generative stochastic networks or approximate inference in Boltzmann machines. Applying GANs
to image and video editing have been done in a supervised setting where external information about
the data allows the re-generation of real images with deterministic complex modifications, using
Invertible conditional GANs (IcGANs). Fader Networks extend on this idea by learning a post-
encoding latent space invariant to labeled features on the image, and re-generating the original image
by providing the decoder with alternate attributes of choice. In this paper, we explore the impacts of
modifications on the encoding and decoding convolutional blocks, analyzing the effects of droput in
the discriminator, implementations of different loss functions on the generated images’ quality using
appropriate metrics and extend the model by including Skip Connects. We finish by providing an
empirical assessment on how Fader networks develop a pseudo-understanding of higher-level image
features.

1 Introduction

Lample et al.’s Fader networks (FadNets) [11] are an encoder-decoder neural network that incorporates a discriminator
network along with an adversarial loss[5] to learn a latent representation space invariant to the labeled features. For
instance, an image of the same person with or without glasses, smiling or not smiling, would have in principle the
same latent representation. Their aim is achieving the ability to manipulate certain attributes of interest of images. In
the past, scholars have had attempts at this challenge (and more generally, unsupervised domain transfer) using various
models [24, 18, 22] with and without generative networks. However, as Lample et al. pointed out, training is usually
unsupervised, and domain transformation is usually ill-defined in a sense that there are no examples of transformations
(for instance, no real image of both a masculine and feminine version of a person). Approaches such as variational
autoencoders (VAEs) [10] have demonstrated promising results, however as domain transformation happens on a pixel
level, the model and its variants suffer from poor reconstruction quality (blurriness, reduced in color sharpness) and
often times hurts the interpretability and naturalness of the images. This effect is further emphasized when models
attempt to make relatively large changes on the image such as adding sunglasses or changing hairstyle, in a sense that
the necessary change takes up a large portion of the image pixels. Moreover, an inherent difference between VAEs
and GANs is that VAEs focus on a reconstruction loss whereas GANs rely on constructing realistic images. Fader
networks provide a new approach to domain transformation as the model incorporates a discriminator layer on top
of an auto-encoder architecture, and learns an invariant latent representation space, allowing explicit control on some
attributes of interest.

2 Related Work

Image generation. At the heart of unsupervised image generation is the Generator Adversarial Networks (GANs),
which use two neural networks, one as the discriminator and other as the generator, to iteratively improve the model
by playing a minimax game [5]. GANs aims at generating images without specific attributes. Several methods build
off the GAN architecture to produce images with specified attributes by conditioning the networks to emphasize
certain features, allowing the network to learn representations of those features, a more targeted approach to generative
learning. Example method includes infoGAN [2] which is able to learn distributed representations in an unsupervised



manner by disentangling writing styles from digit shapes on the MNIST dataset. InfoGAN is able to predict attributes
and reproduce them, but is not able to transform images. Despite GANs image synthesis powers, the generators
continue to operate as black boxes, the understanding of various aspects of the image synthesis process, such as the
origin of stochastic features, is still lacking [1]. It is often difficult to automatically discover high-level attributes such
as glasses, age, or gender in the GAN paradigm without introducing a certain degree of inductive bias over the training
samples.

Conditional image generation. Conditional image generation is mid-way between completely supervised and un-
supervised learning. It draws from the conditional generative model for learning to disentangle the hidden factors of
variation within a set of labeled observations [15]. However, in [15], their framework can only generate the images
rather than modifying an existing image based on attributes. Methods from unsupervised domain transfer can also be
applied to this area in which one maps an image from one domain to the other without supervision [7, 12, 8]; this is
relevant to our work as the domain would correspond to an attribute value. In this area, specifically applied to trans-
forming attributes is the conditional GAN (cGAN) and its extension, the Invertible conditional GAN (IcGAN) [18].
The IcGAN trains a GAN where the introduction of external information allows it to determine specific representations
of the generated images. Then it evaluates encoders to inverse the mapping of the cGAN, i.e., mapping a real image
into a latent space and a conditional representation. The IcGAN can be used to reconstruct and modify real images of
faces conditioning on specified attributes, just as our method aims to do. As such, it is used as a baseline in the FadNet
paper. However, we do not include the IcGAN in our analysis as it it beyond the scope of an ablation study. Similar
work done by Yan et al. [23] proposed an attribute-conditioned deep variational auto-encoder framework that enables
image generation from visual attributes. Note however that Yan et al.’s model can not directly modify the attributes of
images. Yin et al. [25] formulate a semi-latent facial attribute space that systematically learns the relationship between
user-define and latent attributes. It is capable of transforming several attributes of an image at a time, however it is
prohibitively computationally expensive given our current resources.

Adversarial training. The training criterion used in this method is derived from the work on learning invariant latent
spaces using adversarial training in domain adaptation [4, 3] and robust inference [14]. In these works, the end goal is
to filter out nuisance variables, however we require the opposite. That is, we learn generative models and invariance is
used to force the decoder to use attributes in its reconstruction.

3 Fader Networks

Let X and Y be the training set of images and associated attributes. Y can be any binary attribute of a face such as
glasses/no glasses, young/old, mouth open/mouth closed, moustache/no moustache, etc. However, for simplicity, in
this paper Y will be the binary attribute of whether the image is of a male or female. We thus have a training set
D = (x1, y1), ..., (xm, ym), of m pairs (image, gender) (xi ∈ X, yi ∈ Y ). The Fader networks goal is to learn from
D a model that will generate an output (x′, y′) from an input (x, y), where x′ is a generated version of input image x
whose attribute y has been ”transformed” into y′.

Encoder-decoder architecture. The fader network is based on an encoder-decoder architecture with domain-
adversarial training on the latent space (see Figure (1) for an outline of the model). The encoder, Eθenc

: X → IRN , is
a convolutional neural network with parameters θenc that maps an input image x to its N -dimensional latent represen-
tation Eθenc(x). The decoder, Dθdec is a deconvolutional network with parameters θdec that produces a new version of
the input image given its latent representation Eθenc

(x) and any attribute vector y′. In the Fader Networks paper the
auto-encoding loss function used is the mean square error, MSE, that measures the quality of the reconstruction at the
pixel level of an input x given its true attribute vector y:

LAE(θenc, θdec) =
1

m

∑
(x,y)∈D

||Dθdec(Eθenc
(x), y)− x||22 (1)

The purpose of the encoder-decoder is that modifying y inDθdec(Eθenc(x), y) generates images with different targeted
attributes, but everything else in the image xwill remain the same. In this simplistic architecture, the decoder will learn
to ignore the attributes and thus have no effects on y on a test set. To alleviate this problem, the authors’ proposed
approach is to learn latent representations that are invariant with respect to the attributes. Simply put, given two
versions of the same image x and x′ that differ only in their attribute value, the two latent representations E(x) and
E(x′) should be the same as well. When this invariance is satisfied, the decoder uses the attribute to reconstruct the
original image. As this cannot be easily added to the loss function, the authors propose using adversarial training on
the latent space so as to incorporate this constraint into the loss function.

This ”constraint”, the discriminator, is an additional neural network that is trained to identify the true attributes y of
a training pair (x, y) given Eθenc

(x). The authors explain that the invariance is obtained by learning on the encoder
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Eθenc such that the discriminator is unable to identify the true attribute y. Similar to generative adversarial networks,
GAN’s, this corresponds to a two-player game in which, informally, the discriminator tries to distinguish whether a
feature y is in the encoded space Eθenc(x) or not, while the encoder tries to fool the discriminator.

Discriminator objective. The discriminators objective is to determine the true attribute y of a training pair (x, y). It
outputs the probabilities of an attribute vector, Pθdis(y|Eθenc

(x)), where θdis is the discriminators parameters. Its loss
depends on the current state of the encoder as:

Ldis(θdis|θenc) = −
1

m

∑
(x,y)∈D

logPθdis(y|Eθenc(x)) (2)

As the discriminator tries to determine whether a feature y is in the encoded space or not, while the encoder tries to fool
the discriminator, this process leads to the removal of the feature y from the Eθenc

(x) by the encoder. The encoded
feature Eθenc

(x) therefore does not have any information of y. However, since the decoder needs to reconstruct the
same input image, Eθenc

(x) has to maintain all information, except y and the decoder should get the feauture y from
the input of the decoder.

Adversarial objective. The objective of the encoder is now two fold; to ”fool” the discriminator from predicting
y given Eθenc

(x), while also providing enough information so that the decoder can reconstruct the image x given
Eθenc

(x) and y. Formally, the objective of the encoder is to compute a latent representation that optimizes these two
objectives. The discriminator makes a mistake when it predicts 1-y. Given the discriminator’s parameters, the loss of
the encoder-decoder is now:

L(θenc, θdec|θdis) =
1

m

∑
(x,y)∈D

||Dθdec(Eθenc
(x), y)− x||22 − λElogPθdis(1− y|Eθenc

(x)) (3)

where λE > 0 controls the trade-off between the quality of the reconstruction and the invariance of the latent repre-
sentations. Small values of λE will limit the decoder’s dependency on the latent code y and will result in poor effects
when altering attributes, while large values will restrain the amount of information of x contained inEθenc

(x) and will
result with blurry images.

Figure 1: Main architecture. An image and attribute pair (x, y) is given as input. The encoder maps x to the latent
representation z; the discriminator is trained to predict y given z whereas the encoder is trained to make it impossible
for the discriminator to predict y given z only. The decoder should reconstruct x given (z, y). At test time, the
discriminator is discarded and the model can generate different versions of x when fed with different attribute values.

4 Reproduction of Papers Results

In this section we present the methods used by the authors in the paper, as well as their results and our results from
reproducing their models.

Ck is a convolution-BatchNorm-ReLU layer with k filters. Convolutions use kernel of size 4 × 4, with a stride of 2,
and padding of 1. They use leaky-ReLUs with a slope of 0.2 in the encoder, and simple ReLUs in the decoder.
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The encoder is composed of the following 7 layers:

C16 − C32 − C64 − C128 − C256 − C512 − C512 (4)

To provide the decoder with image attributes, they append the latent code to each layer given as input to the decoder,
where the latent code of an image is the concatenation of the one-hot vectors representing the value of its attributes.
They append the latent code as additional constant input channels for all the convolutions of the decoder. Denoting
n the number of attributes, (hence a code of size 2n), the decoder is symmetric to the encoder, but uses transposed
convolutions for the up-sampling:

C512+2n − C512+2n − C256+2n − C128+2n − C64+2n − C32+2n − C16+2n (5)

The discriminator is a C512 layer followed by a fully-connected neural network of two layers of size 512 and n
respectively.

Dropout The authors add dropout [19] to the discriminator, with a dropout rate of 0.3 in all their experiments. Fol-
lowing [7], the authors also tried to add dropout in the first layers of the decoder, but this turned out to significantly
decrease the performance.

Discrimination cost scheduling. The authors use a variable weight for the discriminator loss coefficient λE . They set
λE to 0 and the trained the model like a normal auto-encoder. λE is linearly increase to 0.0001 over the first 500,000
iterations to gradually make the model produce invariant representations. The authors note that this was crucial in their
experiments as without it they observed the encoder was effected too much by the loss coming from the discriminator,
even for low values of λE .

Model selection. The authors use Mean Squared Error (MSE) to measure the reconstruction error on original images,
and used a classifier to predict image attributes to check if the model properly swapped the attributes of an image. At
the end of each epoch, they swap the attributes of each image in the validation set and measure how well the classifier
performed on the decoded images. Finally, they use human evaluation on images from the train set reconstructed with
swapped attributes.

4.1 Experiment

Setup

The authors use the celebA dataset [13], which contains 200,000 images of celebrities of shape 178 × 178 annotated
with 40 attributes. We limit our experiments to the modification of the ”Male” attributes only, due to limited com-
putational resources. For pre-processing, they crop the images to 178 × 178, and re-size them to 256 × 256, which
is the resolution used in all figures of the paper. Image values are normalized to [-1, 1]. All models are trained with
Adam [9], using a learning rate of 0.002, Adam’s exponential decay rate for the first moment estimation variable β1
= 0.5, and a batch size of 32. They perform data augmentation by flipping horizontally images with 0.5 probability
at each iteration. As model baseline, they use IcGAN [18] with the model provided by the authors and train it on
the same dataset. In our experiments, due to limited computational resources, we restricted our experiments to image
sizes of 128 × 128 instead of 256×256, and made our validation splits off of 120,000 training samples instead of the
entire dataset. The λE trade-off term was scheduled to linearly increase every 300,000 iterations instead of 500,000
iterations. We found this hyperparameter to be optimal due to using different dimensions than the ones proposed in
the original paper.

Quantitative evaluation method

The authors evaluation of their Fader Networks is based on two criterion: the naturalness, that measures the quality of
the generated images, and the accuracy, that measures how well the attribute was swapped. Given the unsupervised
nature of this task, the authors used Mechanical Turk [11] to evaluate their criterion. They produce the images using
their method and IcGANs as a baseline. They compare the real image without any transformations, FadNet AE
and IcGAN AE, that reconstruct original images without attribute alterations, and FadNets Swap and IcGAN Swap,
that generates the images with one swapped attribute. In their study, they swapped the Mouth, Gender and Glasses
attributes.

The authors use Mechanical Turk workers to evaluate their models which we cannot use due to financial constraints.
As such, we implemented two neural networks that proxy the Mechanical Turk, which we call Neural Mechanical
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Turk for accuracy and naturalness which we denote as NMT-A and NMT-N, respectively. The NMT’s will provide us
with the accuracy and naturalness metrics of the competing models.

NMT-A. The accuracy metric is a standard ResNet-18 [21] which classifies the generated images for a specified
attribute on the same dataset. We trained the ResNet-18 to distinguish males from females on 20,000 celebrity images
with a batch size of 64 on 10 epochs, which was enough for us to get approximately 95.0% accuracy. The training and
validation ratio used was 4:1. We used the standard cross-entropy loss and normalized the image from their original
integer domain [0, 255] to a real domain [0,1].

NMT-N. The modified naturalness metric that is implemented for the generated images is the Fréchet Inception Dis-
tance (FID) [6]. FID makes use of the Inception Network [20] to extract features from intermediate layers and then
model those features’ data distribution as a Gaussian. FID is calculated by the following equation:

FID(x, g) = ||µx − µg||2 + Tr(
∑
x

+
∑
g

−2(
∑
x

∑
g

)
1
2 ) (6)

Where x represents the real images and g represents the generated images, and Tr is used to sum up the diagonal
elements of the respective covariance matrices for x and g. FID assesses covariance matrices and means of the two
inferred Gaussians, thus giving us a measure of how strongly connected two datasets are. If the FID measure is lower,
this corresponds to the generated images being similar to the real images, and hence we associate this to a higher
”naturalness” of the image. As Heusel et al.[6] noted, FID is found to be close to human evaluation, justifying our
choice of using the metric. We did not choose the use of Inception Score (IS), a very popular metric in the literature,
due to the fact that it doesn’t rely on the statistics of real world samples and generated samples to formalize a statement
about quality and diversity of the two datasets. Moreover, FID is more robust to high variance in the dataset than IS,
as noted by Heusel et al. In all of our experiments, we use a custom implementation [16] as opposed to the original
implementation on Tensorflow, due to compatibility issues.

Indeed the NMT’s are proxies for the Mechanical Turk and will result in different results from the paper. On this note,
we stress that with this scheme, we are not able to assess the difference between the original reported results and our
results, due to using different metrics. Despite this short coming, the NMT’s will still be of much use throughout our
ablation study as it provides us with a rough indication of how our different models perform under various conditions,
comparing to a baseline FID calculated from replicating the same experiment. Further, it will act as the baseline to
which we compare any alterations to the models.

Results

Using almost the same hyperparameters as the authors, we implement the FadNet on the celebA data set by swapping
genders of people in the image. We follow the same method of evaluation by using the real images as a control,
FadNet AE and FadNet Swap as the competing models. Table 1 shows the results of the Fader Network paper’s and
ours results. Note that the Replication Naturalness is an FID score, with a value closer to zero being preferred.

Model Naturalness Accuracy
Lample et al. (%) Replication (FID score) Lample et al. (%) Replication (%)

Real Image 88.6 3.8 97.6 94.7
FadNet AE 78.8 32.6 94.5 98.8

FadNet Swap 45.3 41.3 76.6 99.7

Table 1: Evaluation of naturalness and swap accuracy for each model by swapping the gender attribute. Under Lample
et al. The naturalness score is the percentage of images that were labeled as “real” by human evaluators to the question
“Is this image a real photograph or a fake generated by a graphics engine?”, and the accuracy score is the classification
accuracy by human evaluators on the values of each attribute. Under Replication, naturalness score is the FID score
from the NMT-N (the lower the better), and the accuracy score is the accuracy from the NMT-A

As expected, the results from the authors paper and ours differ. Given that we used two different evaluation methods
this is normal. Furthermore, we used slightly different hyperparameters as well as different image dimensions, the
crucial parameter to get the results right. Nevertheless, the replication results is the best proxy results we can produce
to perform robustness tests on the FadNet given our resources available.
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5 Ablation

To test the robustness of the model and evaluate the importance of its various components, we examine the number of
encoder layers, excluding dropout, discriminator cost scheduling and various loss functions. The baseline results that
we will compare all ablation results to is the results derived above in Table 1.

We focus on the effects of swapping gender attributes in order to demonstrate the behavior of the model with respect
to the changes that are conducted. Experiments are carried out in a ”all else remain equal” fashion, meaning that if it
hasn’t been explicitly stated, one can assume we are using the original hyperparameters and implementations. This is
to avoid later confusion.

5.1 Loss Functions

The loss function for the fader network in the original paper is the classical MSE loss function (1). In order to observe
the changes in the quality of the images, we use several loss functions such as Mean Absolute Error (MAE), Huber
Loss in place of the original MSE from the autoencoder loss, and PatchGAN [7] instead of the standard discriminator
loss in the model’s overall loss function (3). Table 2 displays the results under the various loss functions.

Using either the MAE loss or the Huber loss results in no significant differences or changes in the generated images
compared to the author’s original implementation of MSE, as justified by FID scores obtained from a generated dataset
using a model trained with those losses. This result may be because of the lack of drastic outliers within the dataset.
MSE harshly penalizes points which are outliers due to the squared term, resulting in a higher error, while MAE does
not and is more robust to outliers. Therefore due to the lack of significant outliers, the MSE and MAE are behaving
as if they were the same loss function. The Huber Loss function encompasses both the MSE and the MAE as around
the origin by some hyperparameter delta, the loss function resembles that of the MSE and beyond delta, resembles
L1 loss. Our hypothesis of a similar behavior to MSE and MAE was proven, as there was no drastic change in the
accuracy and FID reported.

However, with the PatchGAN implementation as an adversarial loss along with MSE, we found that it decreased the
sharpness and quality of the generated images. The blurry result may be caused by the distribution of the data, which
is highly important. Ideally for PatchGAN, the dataset would consist of several images of the same kind of face and
an equal amount of images for each kind. In the celebA dataset, the images are of different people, which results in a
non-uniform distribution of the types of faces PatchGAN would be considering. Figure 2 shows the results from the
various loss functions.

Model Naturalness Accuracy
MAE Huber Loss PatchGAN MAE Huber Loss PatchGAN

FadNet AE 34.8 35.0 87.5 93.3 94.5 82.2
FadNet Swap 50.0 45.5 99.9 96.8 97.8 83.0

Table 2: Evaluation of naturalness and swap accuracy for each model by swapping the gender attribute. The Repli-
cation baseline results are compared to the results for the FadNet when implemented with Huber Loss, MAE and
PatchGAN loss. Naturalness score is the accuracy from the NMT-N, and the accuracy score is the accuracy from the
NMT-A

5.2 Encoder and decoder layers

Our experiments with modifying encoder and decoder layer sizes conclude that the model works reasonably well at
5 to 7 convolutional blocks both in the encoder and the decoder, which are the setups we used to generate the results
reported in this paper. However, any number beyond that threshold is sure to return poor results. We hypothesize this is
due to the fact that the neural network becomes highly sensitive to noise, thus a higher variance, as it picks up weaker
features that do not necessarily contribute to the encoding or the decoding process (i.e. changes in the background of
the image). We compare the replication results with FadNet with 4 and 8 layers, respectively. The results are shown
in Table 3.

By changing the layers, we note that naturalness increases for both 4 and 8 layers, however changing the layers
decreases the accuracy for both 4 and 8 layers relative to the replication results. This is similar to the findings of
the authors as they noted that optimal range of layers was between 5-7, and deviating from this range would reduce
performance, which it has on both naturalness and accuracy.
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(a) Original Image (b) Replica-
tion,MSE

(c) Huber (d) PatchGAN (e) MAE (f) SkipConnect

Figure 2: Quality of images after transformations under various loss functions with the FadNet Swap.

Model Naturalness (NTM-N) Accuracy
Replication 4 Layers 8 Layers Replication 4 Layers 8 Layers

Real Image 3.8 - - 94.7 - -
FadNet AE 32.6 45.5 62.7 98.8 97.4 86.9

FadNet Swap 41.3 52.3 79.8 99.7 97.4 78.5

Table 3: Evaluation of naturalness and swap accuracy for each model by swapping the gender attribute. The Replica-
tion baseline results are compared to the results for the FadNet when implemented with 4 and 8 layers, respectively.
Naturalness score is the accuracy from the NMT-N, and the accuracy score is the accuracy from the NMT-A

5.3 Dropout

We analyze the effects of excluding dropout in the discriminator. We set the dropout rate to 0.3. As the authors
attempted to implement dropout in the first layers of the decoder but found it to decrease the results, we did not
implement it here either.

Model Naturalness Accuracy
Replication (p = 0.3) No Dropout Replication (p = 0.3) No Dropout

Real Image 3.8 - 94.7 -
FadNet AE 32.6 32.0 98.8 98.8

FadNet Swap 41.3 45.9 99.7 98.0

Table 4: Evaluation of naturalness and swap accuracy for each model by swapping the gender attribute. The Repli-
cation baseline results are compared to the results for the FadNet when implemented with out drop out. Naturalness
score is the accuracy from the NMT-N, and the accuracy score is the accuracy from the NMT-A

We realize that despite Lample et al. claiming that discriminator dropouts were essential to the swapping quality,
our experimental results proved the contrary as there is negligible difference between FID scores of dropout and no-
dropout models, as well as accuracy (Table 4). Although there are strong benefits in using dropouts as a regularizer
for the discriminator, we argue that penalizing the λE scheduling term in the overall loss function acts as a regularizer
as the gradual linear increment penalizes the fader loss in the long run. Since we ran our experiments at a lower λE
scheduling value than the authors (300,000 iterations), our model has stronger regularization as the loss gets taxed on
faster.
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6 Model Extensions: Skip Connections

Skip connections are extra connections between nodes in different layers of a neural network that skip one or more
layers of nonlinear processing. Applying skip connections within layers has been shown to improve the overall training
of a model [17]. Within our model, we implement two skip connections, one between the C16 layer of our encoder and
C16 of our decoder, and the second between the C32 layer of our encoder and C32 of our decoder. We hypothesize that
adding these skip connections will augment the quality of the reconstructed image, because now not only our decoding
layer is getting input from the latent space but also from the original unmodified image. Table 5 shows the results
from implementing Skip Connects. Despite this gain in quality, as our experiments have demonstrated, we observe a
decreased capability of the model to swap attributes, reflected by the end results after swapping looking almost nearly
identical to the original images. It could be that the decoder was overpowered by the skip connections as they were
weighted heavier than the actual input from the latent space and the corresponding swapped attributes assigned to the
images. This effect is observed as shown by Figure 2 (f) where there is an obvious superior reconstruction quality,
however a poor attribute swapping quality.

Model Naturalness Accuracy
Replication Skip Connect Replication Skip Connect

Real Image 3.8 - 94.7 -
FadNet AE 32.6 32.5 98.8 98.0

FadNet Swap 41.3 35.0 99.7 56.6

Table 5: Evaluation of naturalness and swap accuracy for each model by swapping the gender attribute. The baseline
results are compared to the FadNet with Skip Connect. Naturalness score is the accuracy from the NMT-N, and the
accuracy score is the accuracy from the NMT-A

We highlight the fact that the swapping accuracy significantly decreased. As stated before, this is evidence that skip-
connections overpower connections from decoded layers. From the choice of the loss function, we hypothesize that the
reconstruction loss part of the fader loss function had greater gradients during backpropagation than the discriminator
loss. To avoid this problem with skip connections, as in maintaining a minimum reconstruction loss while keeping the
accuracy stable, we suggest regularizing the reconstruction loss only.

7 Discussion

We reserve this section to discuss the way fader networks swap attributes and hallucinate a different version of some
original image, as analyses of our results has been provided. As various failures in wrong hyperparameter tuning
have shown, often times the resulting sets of images with swapped attributes resemble nothing more than the original
image (with some reconstruction loss) but juxtaposed with the same template of attributes. For example, with a fader
network trained to be gender invariant, pictures of various women whose feminine attribute have been swapped for
masculine have the same pattern of facial hair and jawline juxtaposed onto them. We understand this generic ”male”
template to be the model’s probabilistic inference of what most likely contributes to an image being labeled as ”male”
versus ”female”. This template was learned during the training process of the network, and at test time, the fader
network essentially tries to shape the original latent space according to that template. It could then be understood that
the template is a form of neural understanding of the features, as it is actually not only manipulating local pixels but
entire regions of pixels. We conjecture that this same observation could be made with other attributes as well, i.e. the
network tries to put similar pairs of eyewear onto different images, for instance.

8 Conclusion

In this paper, we performed an ablation study, as well as extended the Fader Network created by Lample et al. that
generates variations of images by changing the gender attribute of images on the celebA dataset. The Fader Network
architecture is based on enforcing the invariance of the latent space with respect to the image attributes. The main
advantage of this network is that, unlike the recent literature of image transformations that most notably use the GAN
architecture, it does not apply a GAN to the decoder output. This allows it to be used in areas other than image
generation such as speech, or text, where the backpropogation through the decoder can be challenging due to the
non-differentiable text generation process. Our ablation study found that the results in the Lample et al. paper hold
true. However, we found that the autors claims about the importance of the dropout in the discriminator to not be that
important as it is regularized by the λE scheduling parameter.
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8.1 Statement of Contribution

Viet and Marie implemented the Fader Network, as well as performed the ablation study. Marcos assisted with the
ablation study. All three wrote the report.
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