
Information Leak in the Chord Lookup Protocol

Charles W. O’Donnell and Vinod Vaikuntanathan
MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139, USA
{cwo,vinodv}@mit.edu

Abstract

In Peer-to-peer (P2P) systems, it is often essential that
connected systems (nodes) relay messages which did not
originate locally, on to the greater network. As a result,
an intermediate node might be able to determine a large
amount of information about the system, such as the query-
ing tendencies of other nodes. This represents an inherent
security issue in P2P networks. Therefore, we ask the
following question: Through the observation of the network
traffic in a P2P network, what kind of information can an
adversarial node learn about another node in the same
network ? In this paper, we study this question in the case
of a specific P2P system - Chord [10]. We also study the
effects of the parameters of Chord (such as finger-table size)
and the various enhancements to Chord (such as location
caching and data caching) on the amount of information
leaked.

1. Introduction

Peer-to-peer (P2P) systems that are not designed with
security as one of the main objectives, tend to require
a remarkable amount of trust from their participants for
correct operation. In particular, a node must trust that the
other nodes implement the same protocol and that they do
not pool together data to infer some global information
about the system. On the other hand, designing a P2P sys-
tem that is perfectly secure usually involves a considerable
compromise in efficiency. In this context, it is interestingto
see how much security is preserved by a P2P system even
though it isnot designed to be secure.

Privacy in a distributed system has different manifesta-
tions -data privacy, wherein a participantP wants the con-
tent of his communication to be hidden from eavesdroppers
andanonymity, whereinP does not want eavesdroppers to
know that it is participating in some communication.

Anonymity is a desirable property of a distributed system
such as a Peer-to-Peer (P2P) network. In the context of

a P2P system, anonymity has at least two dimensions -
Requester anonymityprotects the privacy of the initia-
tor of a message whereasStorage anonymityattempts to
hide the eventual destination of a message. Unstructured
P2P systems such as Freenet [2] have been designed with
anonymity as one of the main goals, whereas P2P systems
such as Gnutella [9] and structured lookup protocols such as
Chord [10] do not mention anonymity as a design objective.
In this paper, we evaluate the anonymity of the Chord
lookup protocol in the presence of a restricted class of
adversaries that we callpassive observers.

Chord is a basic lookup mechanism that can be used as
a building block in a larger protocol that implements, for
example, a distributed filesystem. The Cooperative Filesys-
tem (CFS) is an example of such a higher level application
that uses Chord [3]. Such an application might enhance the
features of Chord, such as data caching, which potentially
affects the anonymity properties of the system. We study
some typical situations in which Chord is used and how
these situations affect the anonymity of Chord.

Many variations of the Chord protocol make it highly
parameterizable. We study the effect of various parame-
ters such as finger table size and location caching on the
anonymity of the Chord lookup protocol. Specifically, we
show that such variations improve the requester anonymity
without degradation in some other parameters of concern
such as lookup time.

2. Outline of Chord protocol

In this section, we provide a brief description of the
basic version of Chord [10], the anonymity of which we
subsequently analyze. It is necessary to work with a specific
version of the protocol, since the different versions have
widely differing degrees of anonymity (as we show later).

Chord is a distributed hash table (DHT) that supports just
one operation: given a keyκ, determine the nodeN whereκ
is stored. The nodes and data items are assigned identifiers
from flat key space, typically from the set{0, 1, . . . , 2m −
1}. The identifier of a node is derived by hashing its IP

address and a virtual node identifier, using a cryptographic
(one-way) hash function. The identifier of a data item is
computed by hashing the keyword descriptors of the data.
The nodes and data are arranged in the identifier circle
modulo2m. The successor of a node or data item is the node
that is closest (in a clockwise sense) to it in the identifier
circle.

Chord uses Consistent hashing [6] to associate data items
with nodes. Each data item is stored in its successor node.
This invariant is maintained when nodes join or leave. In
this work, we are concerned with a stable Chord network.
i.e, one in which no node joins or leaves.

Finger Table: Each nodeni stores in its finger table
the address of the successor node of the identifier ID(ni)
+ 2i (mod2m) for all i from 0 tom − 1. This information
is maintained so that queries can be routed quickly to the
destination.

Routing of Queries :Typically, the query for a data item
has to be propagated along the Chord ring till it reaches
the node that stores the data (assuming that the data item
exists in the ring). In therecursive modeof querying, each
node finds the entry in its finger table that is the closest
preceding node of the data item and routes the query to
that node. This request gets propagated recursively forward.
After it reaches the node that stores the data item, some
information about the data is passed back along the reverse
path. This information could be either the data itself or the
IP address of the node that stores the data. In the latter case,
the requester has to contact the node that stores the data
(using the IP address that it obtained) and retrieve the data.
In the iterative modeof querying , the initiator of a request
queries nodes that are successively closer to the data item.
When a query reaches a node, it replies with the entry in
its finger-table that is the closest preceding node of the data
item. Finally, the initiator of the request queries the node
that actually stores the data, at which point, the data item is
returned.

The specific implementation of Chord that we work with
uses SHA-1 to obtain the identifiers of nodes and data items.
In fact, any one-way hash function whose output “looks
random” suffices for our purposes. For more details on the
Chord protocol, we refer the reader to [10].

3. Adversaries and Anonymity

Now we describe our model of the adversaries and a
quantitative tool we use to measure the anonymity in the
system. We are concerned with the case when the adversary
is apassive observer. A passive observer chooses the virtual
node identifier that it wants to use and joins the Chord ring.
It follows the Chord protocol in forwarding the queries and
has a valid finger table. It logs all the queries that pass
through it and tries to infer information about the system.

Note that a passive observer can only view those requests
which are routed through itself, it cannot eavesdrop on other
links.

Others have developed models of anonymity measure-
ment [4], and its affect on communications protocols [11]
[12] [8]. We use the anonymity set formulation from [5].

We define theper-request anonymity set[5] of a node
N with respect to a requestx to be the set of possible
originators ofx as seen by nodeN . Also, if nodeN does not
see a messagex, then the per-request anonymity set ofN
with respect tox is defined to be the set of all nodes (other
than N itself) in the system. This convention is justified
because, when a nodeN does not see requestx, it has no
information about the activity in the network (such as the
routing of requestx) and is therefore, completely oblivious
of the possible initiators ofx.

The larger the per-request anonymity set of a node
N with respect to a requestx, the more anonymous the
originator ofx is relative to nodeN . This intuition is made
more precise below.

3.1. Definitions and Notations

Definition 1 (Per-Request Anonymity Set). The per-
request anonymity set for a nodeN with respect to a request
x for a data itemD, denotedPN,D

x , is the set of possible
initiators of requestx, as seen by nodeN .

When the nodeN and the dataD referred to are clear
from the context, we abbreviatePN,D

x to Px.

Definition 2 (Average Anonymity Set). The size of the
average anonymity set for a nodeN with respect to data
item D, denotedAN,D, is the expected value of|PN,D

x |,
when computed over a uniform distributions on the set of
possible requests for the data itemD.

AN,D = Ex(|PN,D
x |)

We use the size of the average anonymity setAN,D to
measure the sender-anonymity of the system with respect
to a particular nodeN and a data itemD. Note that this
implicitly assumes that the requests for the dataD origi-
nates from nodes that are randomly distributed in the Chord
ring. This is indeed the case when a cryptographic hash-
function (such as SHA-1) whose output “looks” random is
used to obtain the node IDs, and the adversaries in question
are passive observers.

Hereafter, we useN andM to denote specific nodes in
the Chord ring, andn to denote the total number of nodes.
Also, m denotes the number of bits in the node identifier.

4. Anonymity in Chord

In this section, we present some analytical results on
the anonymity of Chord. First, let us look at how much

flexibility an adversary has in placing herself at a specific
position in the Chord ring. Note that if the IP address
and a virtual node identifier are assigned by a centralized
authority, the passive observer can do no better than random
in positioning herself in the Chord ring. This is because of
the fact that the output of the hash function is randomly
distributed.

Another issue that confronts us is to determine how many
requests a particular node sees on an average. The larger
the number of requests for a data itemD that a node sees,
the better is its estimate of the frequency with whichD is
accessed.

Theorem 1. Given a data itemD, the expected number of
messages that traverse a random nodeA is Θ(log n).

Proof. Assume that each node sends out a single request for
a particular data item. Each request passes through at most
O(log n) hops before it reaches the data. The total number
of pairs (N, R) such that nodeN has seen requestR is,
therefore,O(n log n). The average number of requests that
a particular nodeN sees is therefore,O(log n).

The results of our simulations show that this value is
close to 1

2 log n. Therefore, a randomly placed node sees
roughly log n

2n
fraction of the requests for a data itemD.

Next we estimate the amount of requester anonymity and
storage anonymity that the two versions of Chord - iterative
and recursive - provide.

4.1. Storage Anonymity

We say that a P2P system provides storage anonymity if
the requests for a particular data item does not reveal the
node where the data is stored. It is easy to see that neither
the iterative nor the recursive flavor of Chord provide
any storage anonymity. In both the iterative and recursive
version, the adversary could request for a data itemD, and
in the response obtain the IP address of the node that stores
D.

4.2. Requester Anonymity

It is an easy observation that the iterative version of
Chord providesno requester anonymity at all. But it turns
out that the recursive flavor of Chord provides high degree
of anonymity against passive observers in a certain statisti-
cal sense.

Let us obtain some intuition about our result. First of all,
observe that if the (adversarial) nodeN is further away from
the dataD, it sees fewer requests forD, and is therefore,
more oblivious of who is requestingD. On the other hand,
whenN does see a request forD, it is much more certain
about where the request originated from. For example, in
Figure 1, when node 1000 gets a request for the data, it

knows that the request must have originated from 0000.
On the other hand, whenN is close toD, it sees more
requests, but for every request thatN sees, the number of
possible originators is relatively large. This trade-off makes
it interesting to study how the anonymity varies with the
distance betweenN andD.

.

Node storing data, D

00**

0101

0110

0101

0

0111

1100

1110

1111

1011

1010

1000

1001

1101

Figure 1. Slices in a chord ring of size 16. The
slices are numbered relative to the data item. The
arrows indicate that the node at slice 1101 can
receive a request for data D from nodes at slices
1100, 1011, 1001 or 0101.

Theorem 2. Given a data itemD, the expected size of
the anonymity set of a nodeN at a distanced (counter-
clockwise) from the data with respect to the requests forD,
i.e,AN,D is at least n

12d2 + n(1 − 1
d
) − 2.

Proof. Divide the Chord ring into equally-sized slices la-
beled0, . . . , n − 1 such that the node storing the data item
is in slice 0. Also assume that the nodes are uniformly
distributed in the Chord ring, such that each slice of2m

n

identifiers contains exactly one node and that node appears
in the midpoint of the slice (Figure 1) - we call this the
uniformity assumption.

We represent the slice numbers as a binary string of
length log n. i.e, s ∈ {0, 1}logn. We also denote a set of
slices such that their slice numbers have 1’s in the firstk
bits and 0 in the(k + 1)th bit asI(k). We also define slice
n − 1 to be inI(log n). For example,I(0) is the set of all
slices from0, 1, . . . , 2log n−1 − 1.

Note that a node in slicex can receive requests only from
another node in slicex − 2i for somei. Suppose the node
is in I(k). It receives requests fromk other nodes, in slice

numbersx − 2i, for i = log n − 1, . . . , log n − k. This is
because such nodes havex as their longest hop to the data.
On the other hand, it does not receive requests from nodes
in slicesx − 2i, for i = log n − k − 1, . . . , 0, since such
nodes have another longer hop to the data.

NodeN will receive from nodeM all the requests of
other nodes pending at nodeM as well as nodeM ’s own
request. How many requests does nodeN see? It can be
proven by induction that if a nodeN is in slicex ∈ I(k),
then it receives2k − 1 requests in total fromk other
nodes. It can also be proven thatx receives2i−1 requests
from a node in slicex − 2log n−i. Whenx receives2i−1

requests from a node, it is confronted with2i−1 possibilities
for the origin of those requests (since each node initiated
exactly one request, the2i−1 requests thatx gets has2i−1

possible origins). Also, nodex does not seen−2k requests.
Therefore the average size of its anonymity set is

1

n
(

∑

0<i≤k

22(i−1) + (n − 2k)(n − 1)) ≥
4k

3n
+ n − 2k − 2

Suppose a node is inI(k). Then its distanced to the slice
0 is bounded as2log n−k−1 ≤ d < 2log n−k. i.e, n

2k+1 ≤
d < n

2k . This means that the anonymity set of nodex is at
least of size n

12d2 + n(1 − 1
d
) − 2.

Corollary 1. The average size of anonymity set over all
nodes in the Chord ring isΩ(n).

Corollary 2. The number of requests for a dataD seen
by a nodeN at a distanced from D (counter-clockwise) is
O(n

d
).

Corollary 3. Assume that a nodeN gets a requestx to data
D from nodeN ′ which is at a distanced from N . Then,
PN,D

x is O(n
d
).

Thus we can see that the minimum size of the average
anonymity setAN,D of any nodeN is aboutn/12 (which
happens when the node is closest to the data). Since the
maximum size of the anonymity set isn− 1, it follows that
Chord provides a high degree of anonymity.

The uniformity assumption used in the proof is justified
because nodes are distributed uniformly in the Chord ring,
due to the randomness of the output of the hash function.
The simulation results also support Theorem 2.

5. Simulations

Empirically, we would like to confirm our theoretical
predictions of the average size of the anonymity set of a
node at any given distance from a data key which is being
queried. Also important are the number of requests seen
at different distances, which we will normalize to be a
distance between0 and 1. A node which owns the data

keyκ being queried is considered to be at distance0, while
the furthest possible node from this has the identifier value
κ + 1 mod2m.

We would also like to inspect the effect of implementa-
tion variations to the Chord protocol on average anonymity.
The Chord protocol definition requires only that every node
maintains a single pointer to that nodes’ successor node for
protocol correctness. Beyond this, Chord implementations
choose to maintain more state information, such as finger
table and caches, to improve performance. Naturally the
addition of pointers to other nodes decreases the number of
hops taken during a request, and consequentially decreases
the expected number of requests any node will see around
the ring.

We examine the differences between implementation
parameters by simulating lookups on a stable Chord net-
work. Not only does this confirm theoretical results, but
most easily shows the patterns of non-deterministic request
propagation caused by modifications such as caches. Unless
otherwise noted, in all of the following simulations, a ring
of 10, 000 uniformly random nodes was created, using32
bits for the key/node identifiers, a standard finger table size
of log m = 32 and successor list size of1. To determine the
average number of requests seen at any given distance, we
place5000 data elements in the network (in a uniformly
random manner) and had every node make exactly one
request for each element in a similarly random order. All
requests are assumed to be carried out successfully, and
the results are averaged across all5000 lookups according
to distance. Since every node makes only one request, the
average requests seen count is indicative of how many
unique nodes have propagated a message through any given
distance point, and the count can then be used to determine
the average anonymity set size. All graphs are smoothed
using a moving window average so as to distinguish the
most important trends.

6. Data Caching

The existence of a data cache is one of the more com-
mon implementation extensions to a Chord base system.
With data caching, every node will cache data values (and
corresponding keys) which it has already made a query
for and retrieved. Data caching can be independent of the
underlying Chord protocol, and exist at a higher application
layer. Cache entries do not change the forwarding decisions
of lookups, but simply return the requested data before
the lookup reaches the responsible owner node. In this
fashion, a lookup is routed as it normally would until it
is prematurely halted with the halting node returning the
requested data. Systems such as CFS [3] implement data
caching in what is called theblock store layer which sits
above theChord layer.

 100

 50

 25

 10

 5

 1

 0.6

 0.4
 1 0.5 0.25 0.1 0.05 0.025 0.01

N
um

be
r o

f r
eq

ue
st

s
se

en
 (l

og
ar

ith
m

ic
)

Normalized distance to data key (logarithmic)

No cache
L-cache size=128 - Initiator scheme
D-cache size=128 - Initiator scheme

(a)

 9980

 9985

 9990

 9995

 10000

 0.75 0.5 0.25 0.1 0.05 0.025 0.01 0.003 0.001

Av
g.

 s
iz

e
of

 a
no

ny
m

ity
 s

et

Normalized distance to data key (logarithmic)

No cache
L-cache size=128 - Initiator scheme
D-cache size=128 - Initiator scheme

(b)

Figure 2. Data caching effects on anonymity (a)
Number of requests seen per node (b) Anonymity
set size per node

In an initiator data caching scheme, when an initiating
node queries for a specific data key, and receives a valid
data value, that data value is placed within the initiating
node’s data cache, possibly evicting other nodes within
the cache. Alternately in apath cachingscheme, a tighter
protocol/caching coupling would allow every node along
the request return path to add the data item to its data
cache. This is what is done in CFS and gives a much greater
dispersement of any one data value around a Chord ring,
although at the cost of higher eviction rates (on average
1
2 log N nodes will cache a data value on a single request).
In all of our simulations, we assume an LRU replacement
policy and that caches never become stale or invalid.

In Figure 2(a) we see that adding data caching impacts
the number of requests seen at distances close to the data
key tremendously. The data cache all but removes the

requests seen at the nodes within a very close proximity to
the data key. The result, shown in Figure 2(b), emphasizes
the difference between the sizes of the uncached average
anonymity sets and the cached average anonymity sets.
One can see that, in an uncached system, a point must be
at a distance of approximately0.025 to have an average
anonymity set size above99%, and must be at a distance
of 0.25 to match the average anonymity set size of a point
at 0.1 in a cached system. In a network of10, 000 nodes,
this corresponds to250 more nodes which boast an average
anonymity set size of greater than99%.

In Figure 2(b) we only mention a data cache of size128,
however, it can be seen from Figure 3(a) and 3(b) that even a
single element of cache in every node will exhibit a similar
utilization rate. This logarithmic graph shows two nearly
overlapping utilization rates for initiator caching, and two
nearly overlapping rates for path caching. The difference in
data cache size makes almost no difference at distances near
to the data key. The utilization rate is the frequency with
which the data cache is used, opposed to the finger table, as
the source for the next forward hop of a request.

Our simulations tested both initiator caching and path
caching, as can be seen in Figure 3(a). Path caching pro-
duced a significantly higher utilization rate than initiator
caching, likely because single data requests fill the data
caches of as many aslogn nodes which were on the request
path. While the utilization rate increase is evident, it turns
out that this does not improve average anonymity set size
all that much. This follows as the initiator caching scheme
already raises this metric to very high levels, where there is
little room for improvement.

7. Routing Variations

A more tightly coupled protocol/application implemen-
tation can be created which allows for changes to the
forward routing of queries. Unlike data caching, which
simply halts a request path, a routing variation will simply
supply the lookup protocol with alternative forward nodes
to send a request to. This has the possibility to forward a
request to a node which is much closer to the data key,
decreasing the total number of hops that request will take.
Some of the ways these alternative nodes can be discovered
are through variable finger tables, successor list extension,
and location caching.

7.1. Variable Finger Table Size

As described [10], the Chord protocol prescribes each of
then nodes within the network to maintain a finger table.
Accordingly, a network with anm-bit key/node identifier
space will have nodes which contain finger tables of size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 0.5 0.25 0.1 0.01 0.001 0.0001

D
-c

ac
he

 u
til

iz
at

io
n

ra
te

Normalized distance to data key (logarithmic)

D-cache size= 1 - Initiator scheme
D-cache size=128 - Initiator scheme
D-cache size= 1 - Path scheme

D-cache size=128 - Path scheme

(a)

Scheme Cache Size Avg. Utilization Rate

Data/Init 1 14.7%
Data/Init 32 15.0%
Data/Init 128 16.2%
Data/Path 1 30.7%
Data/Path 32 31.0%
Data/Path 128 32.2%

(b)

Figure 3. Data caching utilization rates

m. For every nodeni, eachith entry of its finger table is the
first node which succeeds ID(ni) by at least2i−1.

However, the finger table size is relatively unimportant
as long as the entry pattern is maintained. Therefore, it
is possibly advantageous to fix the finger table size to a
different value to perhaps adhere to strict node memory
requirements, or to take advantage of extra memory space.
The finger table for am-bit key/node identifier space
can then be defined more generally as a table of sizef
where theith finger table entry points to the successor of
ID(ni)+2

m
f

(i−1). With this, the maximum hop count for a
lookup decreases tolog N

1+log m
f

, although the finger table size

increases by a factor ofm
f

.
Using our model which hasm = 32 bits in the

key/node identifiers, we show the average requests seen
per node in Figure 4 given the finger table sizes of
f = {64, 32, 24, 16, 8} entries.

What can be seen, is that a variation in the finger table
size merely causes a shifts in the curve of the requests seen,
allowing a few requests to be seen further away from the
data key. The number of requests seen in these ranges are
minimal though, so the average anonymity set size remains
relatively unchanged. The number or requests seen within
the closest distances to the data key still increase at an
exponential rate, as described by the above equation. Thus,

variation in finger table size does very little to boost the
most problematic average anonymity set sizes, found at
nodes very near the data key.

 50

 25

 10

 5

 2.5

 1

 0.6

 0.4
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r o

f r
eq

ue
st

s
se

en
 (l

og
ar

ith
m

ic
)

Normalized distance to data key

(orig) Finger table size= 32
Finger table size= 16
Finger table size= 8

Finger table size= 64

Figure 4. Variable finger table size effects on
anonymity

7.2. Successor List size

As already mentioned, for correctness, a chord node is
required to maintain one successor node. However, an im-
plementation may choose to retain a list of itsS successors
to improve lookup performance (as well as aid in node
joins/leaves). In this case, when a noden receives a request
for a data keyκ, a node will first search its successor list
to determine if any entrysi is the owner of that data key
(ID(n) < κ < ID(si)). If no entry is the data key’s owner,
the node continues to check its finger table for forwarding
of the request.

By nature, an increase in the successor list tends only
aid those nodes immediately preceding the data key owner,
as can be seen in Figure 5. Here its quite evident that the
average anonymity set size remains nearly the same across
all sizes of successor lists until approximately a distanceof
0.004 away from the data key. More exactly, the average
anonymity set sizes diverge at a distance equal to the
size difference between the two successor lists. Increased
successor list sizes can boost the average anonymity set
sizes at distances near the data-key, however the increase
could be considered marginal, a form of “too-little too-late.”

7.3. Location Caching

Location caching uses a cache to remember prior queries
initiated by a node, just as data caching, however it does
not store the data value, but instead the location of the data
owner. These data owner nodes are then used in conjunction
with the existing statically determined finger table to choose

 9400

 9500

 9600

 9700

 9800

 9900

 10000

 0.05 0.025 0.01 0.004 0.001

Av
g.

 s
iz

e
of

 a
no

ny
m

ity
 s

et

Normalized distance to data key (logarithmic)

Successor list size= 1
Successor list size= 8

Successor list size=16
Successor list size=32
Successor list size=64

Figure 5. Successor List Avg. anonymity set size
for

how to best forward new requests which pass through. This
is a kind ofdynamic finger tablewhich creates entries which
branch out to the extent of recent successful requests.

Similar to data caching, an initiator caching scheme will
save the identifier of some data’s owner in the initiating
node’s location cache following a successful query for that
data. A path caching scheme can alternately have every
node along the request path place the data owner identifier
into its location cache. We make similar assumptions on the
location cache as we did for data caches.

When processing an incoming query, a node along the
request path will inspect its finger table and location cache
to determine a forwarding node which is closest to the
requested data key. It is worth pointing out that location
cache entries not only refine the granularity of matches
in the finger table, but can also contain nodes which are
far beyond the ID(ni)+m

2 maximum entry for anm-bit
identifier space system. In this sense a location cache can
extend the finger reach of Chord nodes. Further, location
cache entries are much more versatile than data cache
entries because a location cache entry will match all keys
between itself and the nearest preceding finger table entry,
instead of just a single data key. Even though a data cache
match will terminate the forward path of a query, a location
cache can drastically decrease the number of required hops
beginning even at the initiator.

Figure 2(b) shows how location caching impacts average
anonymity set sizes, while Figure 2(a) shows the number
of requests seen at any particular distance. Similar to data
caching, it is clear that location caching drastically im-
proves the average anonymity set size at distances near to
the data key, although not quite as much. Interestingly, a
location cache performs better than a data cache for the
distances between0.05 and0.5, however a data cache gives
better results for the distances which are closest to the data
key.

The caching method shown is initiator caching, because
it was found that, for location caching, there was almost
no difference between path caching and initiator caching,
as can be seen in Figure 6(b). This follows because path
caching would tend to lower the utilization rate at distances
which see more requests on average (because of higher
eviction rate). It was also found that the size of the location
cache mattered very little to the average anonymity set size.
Figure 6(b) shows the difference between varying location
cache sizes, however, as can be seen in Figure 6(a), the
location cache is predominantly used at distances from the
key which normally would have large average anonymity
set sizes.

The nature of how the location cache is used can be seen
by its intersection with the data cache average requests seen
at the distance0.05 in Figure 2(a), as well as its utilization
pattern in Figure 6(a). Distances far from the data key
tend to have high utilization rates, where they presumably
forward the request to points very near to the data key.
Once a request has reaches a distance near to the data key,
the chances of location cache aiding are reduced greatly.
From this we conclude that location caching does well to
increase the average anonymity set size for the vast majority
of distances, and data caching does a better job of increasing
the average anonymity set size at the very closest distances.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 0.75 0.5 0.25 0.125 0

L-
ca

ch
e

ut
iliz

at
io

n
ra

te

Normalized distance to data key

L-cache size= 1
L-cache size= 8

L-cache size=32

(a)

Scheme Cache Size Avg. Utilization Rate

Loc/Init 1 14.4%
Loc/Init 8 56.1%
Loc/Init 32 80.9%
Loc/Path 1 14.3%
Loc/Path 8 55.9%
Loc/Path 32 80.8%

(b)

Figure 6. Location cache utilization rates (a)(b)

8. Related Work

Other recent work concerning the anonymity of P2P sys-
tems has been done, concurrently to our own. Kannan and
Bansal [7] also investigated anonymity concerns of a Chord
network, but they focus on quantifying the anonymity of
request initiatorsas opposed to bounding an attacker’s
advantage. They emphasize the use of virtual nodes by an
initiator as a means to increase anonymity. Borisov and
Waddle [1] go further and construct a more general model
of anonymity for any peer-to-peer network.

9. Conclusion

We have shown that even though Chord does not have
anonymity as a design goal, it does in fact provide a high
amount ofrequester anonymity, against restricted types of
adversaries. Though upon first inspection, Chord appears
highly ordered and publicly observable, we show that a high
majority of adversaries have little chance of identifying the
initiator of a lookup.

We confirmed our theoretical results via simulations,
and investigated possible extensions introduced in Chord
systems. We displayed the kinds of tradeoffs involved
between the amount of state kept by each participant node,
and the amount of anonymity in the system as a whole.
We also showed the impact of the different extensions to
Chord on its anonymity. Even minimal location caching cre-
ating increases the amount of anonymity within a system,
while data caching requires marginally larger cache sizes to
achieve similar results. Larger successor lists also increase
the anonymity set size of nodes close to data keys, an
important consideration, however variation of finger table
size does little to increase the practical anonymity of a
system.

It has to be added that our approach is limited in that
we formally analyze the impact of only passive observers.
To see how active adversaries can complicate the situation,
consider the following simple extension to the passive
observer model: We give a node in the Chord ring the flexi-
bility to choose its virtual node identifier(VID) maliciously.
This allows a group of passive observers to skew the density
distribution in the Chord ring, which could potentially be
useful to the adversary.

Further work in this topic could include a consideration
of multiple cooperating adversaries, and what a confed-
eration of active adversaries could do to undermine the
inherent anonymity of the Chord protocol. It would also
be interesting to see an analysis of how splits and merges
could affect the anonymity of a system. Investigations into
other adversarial attacks would also be useful, such as active
attacks which attempt to render a denial-of-service for a
major portion of the network.

10. Acknowledgments

We would like to thank Hari Balakrishnan for his invalu-
able comments and the inspiration for this topic, as well as
all of the anonymous reviewers for their useful suggestions.

References

[1] N. Borisov and J. Waddle. Anonymity in structured peer-
to-peer networks. www.cs.berkeley.edu/˜ kubitron/courses/
cs294-4-F03/ projects/ borisovwaddle.pdf, Dec. 2003.

[2] I. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, and
B. Wiley. Protecting free expression online with freenet.
IEEE Internet Computing, 6(1):40–49, 2002.

[3] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01), Chateau Lake Louise, Banff,
Canada, Oct. 2001.

[4] C. Diaz, S. Seys, J. Claessens, and B. Preneel. Towards
measuring anonymity. In R. Dingledine and P. Syverson,
editors, Proceedings of Privacy Enhancing Technologies
Workshop (PET 2002). Springer-Verlag, LNCS 2482, April
2002.

[5] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer
anonymizing network layer. Proceedings of the ACM
Conference on Computer and Communications Security
(CCS 9). Washington, D.C., 2002.

[6] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed cachine protocols for relieving hot spots on the
world wide web. Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing, pages 654–663,
1997.

[7] K. J. Kumar and M. Bansal. Anonymity in chord.
www.cs.berkeley.edu/˜ kjk/chord-anon.ps, Dec. 2002.

[8] A. D. R. Michael K. Reiter. Crowds: Anonymity for web
transactions.ACM TISSEC, 06 1998.

[9] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the
gnutella network: Properties of large-scale peer-to-peer
systems and implications for system design.IEEE Internet
Computing Journal, 6(1), 2002.

[10] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications.IEEE
Transactions on Networking, 11, 2003.

[11] M. Wright, M. Adler, B. Levine, and C. Shields. An
analysis of the degradation of anonymous protocols. InISOC
Symposium on Network and Distributed System Security,
Febrauary 2002.

[12] M. Wright, M. Adler, B. Levine, and C. Shields. Defending
anonymous communication against passive logging attacks.
In Proc. IEEE Symposium on Research in Security and
Privacy, Berkeley, CA, May 2003.

