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t. Se
ret sharing is a very important primitive in 
ryptographyand distributed 
omputing. In this work, we 
onsider 
omputational se-
ret sharing (CSS) whi
h provably allows a smaller share size (and hen
egreater eÆ
ien
y) than its information-theoreti
 
ounterparts. ExtantCSS s
hemes result in su

in
t share-size and are in a few 
ases, likethreshold a

ess stru
tures, optimal. However, in general, they are noteÆ
ient (share-size not polynomial in the number of players n), sin
ethey either assume eÆ
ient perfe
t s
hemes for the given a

ess stru
ture(as in [10℄) or make use of exponential (in n) amount of publi
 informa-tion (like in [5℄). In this paper, our goal is to explore other 
lasses ofa

ess stru
tures that admit of eÆ
ient CSS, without making any otherassumptions. We 
onstru
t eÆ
ient CSS s
hemes for every a

ess stru
-ture in monotone P . As of now, most of the eÆ
ient information-theoreti
s
hemes known are for a

ess stru
tures in algebrai
 NC2. Monotone Pand algebrai
 NC2 are not 
omparable in the sense one does not in
ludeother. Thus our work leads to se
ret sharing s
hemes for a new 
lass ofa

ess stru
tures. In the se
ond part of the paper, we introdu
e the no-tion of se
ret sharing with a semi-trusted third party, and prove that inthis relaxed model eÆ
ient CSS s
hemes exist for a wider 
lass of a

essstru
tures, namely monotone NP .Keywords: Se
ret sharing, 
omputationally bounded players, a

essstru
tures, monotone P.1 Introdu
tionSe
ret sharing s
hemes prote
t the se
re
y and integrity of information by dis-tributing the information over di�erent lo
ations (not ne
essarily geographi
al).This for
es the adversary to atta
k multiple lo
ations in order to learn or destroythe information. In a se
ret sharing proto
ol, the dealer shares his se
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alled threshold model, the sharing is done so that subsets of? Work done when the author was at the Indian Institute of Te
hnology, Madras.?? Finan
ial support from Infosys Te
hnologies Limited, India is a
knowledged.? ? ? Finan
ial support from the Ministry of Information Te
hnology, Government of Ko-rea is a
knowledged.



t + 1 (or more) players 
an later 
orre
tly re
onstru
t the se
ret, while subsetsof t (or fewer) players 
annot re
onstru
t it. This notion 
an be generalized byspe
ifying a family of authorized subsets of the n players, 
alled a

ess stru
-tures. The dealer shares the se
ret in su
h a way that only authorized subsetsof players 
an re
onstru
t the se
ret while the players in non-authorized subsets
annot.1.1 Why Computational Se
ret Sharing ?CSS s
hemes allow us to a
hieve a better information rate than is possible withinformation theoreti
 s
hemes. The information rate of a se
ret sharing s
hemeis the maximum length of a (player's) share per unit size of the se
ret. Thismeasure is of interest when the size of the message to be shared is large. Forinstan
e, it is possible ([10℄) to t-share a se
ret, in the threshold model, withthe share of ea
h player being only 1t as long as the se
ret (whi
h is 
learlyoptimal). Indeed, Beguin and Cresti [1℄ have shown that it is possible to a
hievethe optimal information rate for any a

ess stru
ture provided that a �xed lengthse
ret 
an be shared on the same a

ess stru
ture. The above s
hemes build onthe idea of information dispersal algorithms [13℄. CSS s
hemes whi
h make useof a bulletin board on whi
h an arbitrary amount of information 
an be publishedhave also been proposed ([5℄).Clearly, a se
ret sharing s
heme 
an be 
alled eÆ
ient only if the informationrate is polynomially bounded as a fun
tion of the number of players n. Further-more, we posit that the amount of information published on the bulletin boardbe polynomial in n. Note that the CSS of [1℄ is not appli
able when there isno known eÆ
ient se
ret sharing s
heme for the 
orresponding a

ess stru
ture.Similarly, the CSS s
heme of [5℄ be
omes ineÆ
ient when the size of the a

essstru
ture is not polynomial in n. Our interest in studying CSS is due to the fa
tthat there may exist a

ess stru
tures that have eÆ
ient CSS s
hemes but donot permit any other (information theoreti
) eÆ
ient se
ret sharing s
heme.Most of the results in extant literature on se
ret sharing s
hemes deal withinformation-theoreti
 se
ret sharing.We know that eÆ
ient information-theoreti
perfe
t linear se
ret sharing s
hemes exist only if the a

ess stru
ture is in alge-brai
 NC2 \mono, the 
lass of monotone languages whi
h 
an be 
omputed byalgebrai
 
ir
uits of logarithmi
 size and log-squared depth. Non-linear s
hemesappear to be more powerful [2℄. However, there remains a large gap betweenthe known upper bounds and lower bounds in the 
ase of information theoreti
se
ret sharing.1.2 Boolean formulas and Boolean 
ir
uitsThe 
ontribution of the �rst part of this paper is the 
onstru
tion of eÆ
ient CSSs
hemes for all a

ess stru
tures whi
h 
an be 
omputed by monotone Boolean
ir
uits of polynomial size. This 
omplexity 
lass is known as mP , for monotoneP . Monotone Boolean 
ir
uits di�er from monotone Boolean formulas in that inthe former, the output of a node 
an serve as the input of more than one node.



We say that gates in a monotone Boolean 
ir
uit 
an have a fanout of more thanone. Another way of understanding the di�eren
e is that a monotone Boolean
ir
uit is a dire
ted a
y
li
 graph where ea
h node represents an AND gate or anOR gate whereas a monotone Boolean formula is a tree with the same property.This makes monotone Boolean 
ir
uits mu
h more powerful than formulas. Infa
t, it was believed that monotone Boolean 
ir
uits 
ould simulate any (deter-ministi
) Turing ma
hine a

epting a monotone set (thus making mP equivalentto P \mono, the 
lass of monotone languages in P ), but Razborov ([14℄) provedthat this is not the 
ase.1Benaloh and Lei
hter [3℄, in their landmark result on the existen
e of linearperfe
t se
ret sharing s
hemes for any monotone a

ess stru
ture (as �rst de�nedin [8℄), showed how to 
ombine se
ret sharing s
hemes a
ross AND and ORgates (in other words, how to realize se
ret sharing s
hemes for the union andinterse
tion of two a

ess stru
tures) and re
ursively applied this result to theBoolean formula 
omputing the a

ess stru
ture. Our 
onstru
tion is similar inspirit. We represent the Boolean 
ir
uit 
omputing the a

ess stru
ture as agraph whose nodes are AND, OR, or FANOUT gates. (The FANOUT gatetakes a single input and produ
es multiple 
opies of the input. We do this inorder that the FANOUT is the only gate with more than one output.) Withea
h edge of this graph, we asso
iate a (virtual) se
ret, whi
h we 
all the shareof that edge. The shares of the input wires of the 
ir
uit form the shares of theplayers. The sharing s
heme has the property that a subset S of players 
an
ompute the share of some edge E if the wire 
orresponding to E evaluates to 1when the 
ir
uit is given (the en
oding of) S as input. We show how to asso
iateshares with edges in su
h a way that the above property is 
arried a
ross AND,OR and FANOUT gates.Our te
hniques are similar in spirit to Yao's landmark garbled 
ir
uit 
on-stru
tion ([15℄), but very di�erent in appli
ation sin
e in the 
ase of se
ret shar-ing, non-intera
tivity is essential. Thus our result does not follow from Yao'ssin
e se
ret sharing proto
ols 
annot be expressed as spe
ial 
ase(s) of intera
-tive se
ure fun
tion evaluation proto
ols.1.3 Semi-trusted third partyOur se
ond result deals with se
ret sharing using a semi-trusted third party.The use of this 
onstru
t is to introdu
e a limited amount of intera
tivity intothe proto
ol, and thus in
rease its power. Just as the relaxation of the se
urityrequirement from information theoreti
 to 
omputational se
urity allows us togive proto
ols for a broader 
lass of a

ess stru
tures, the relaxation of the non-intera
tivity requirement results in a further broadening. We prove that, usinga semi-trusted third party, eÆ
ient CSS s
hemes exist for any 
lass of a

essstru
tures in monotone NP (denoted mNP ). This is the 
lass of languagesa

epted by monotone non-deterministi
 Turing ma
hines in polynomial time,1 Razborov showed superpolynomial lower bounds for the monotone 
ir
uit 
omplexityof the mat
hing fun
tion.



whi
h also turns out to be the 
lass of monotone languages in NP . Clearly, thisin
ludes all a

ess stru
tures that 
ould possibly be interesting in pra
ti
e.The notion of a semi-trusted third party has been made use of in proto
olsfor fair ex
hange ([6℄). It allows two parties to ex
hange a se
ret in su
h a waythat neither party 
an gain an unfair advantage by aborting the proto
ol at anypoint. To the best of our knowledge, however, se
ret sharing with a semi-trustedthird party has not been 
onsidered.A semi-trusted third party may try to deviate from the proto
ol, but it
annot 
ollude with any of the players. It 
annot be trusted with any of theprivate information of the other players. Therefore, in the 
ase of se
ret sharing,we have the restri
tion that the semi-trusted third party should neither gainknowledge of the se
ret nor be able to identify the a

ess set of players that triesto determine the se
ret. We make these notions formal in the next se
tion.Semi-trusted third parties are worthy of study be
ause, unlike trusted thirdparties, they are readily realizable in pra
ti
e. Indeed, [6℄ have suggested thatin networks su
h as the internet, a random player 
an be 
hosen as a semi-trusted third party. In su
h a s
enario, the third party is both geographi
allyand logi
ally separated from the players, and thus the possibility of both thethird party and some of the other players 
oming under the 
ontrol of a 
ommonadversary is remote. Another pra
ti
al possibility is for a bank to play the roleof a semi-trusted third party.2 Preliminaries and De�nitionsTo begin with, we formally de�ne the 
on
ept of Computational Se
ret Sharingfor general a

ess stru
tures. A Se
ret Sharing s
heme is a proto
ol between theset of players P = fP1; P2; : : : ; Png and a dealer D, where we assume D =2 P . Ana

ess stru
ture A � 2P 
onsists of sets of players quali�ed to re
over the se
ret.It is natural to 
onsider only monotone a

ess stru
tures A, that is, if A 2 Aand A � A0 � P , then A0 2 A. The set �A = 2P � A is 
alled the adversarystru
ture. A set of players A 2 A is 
alled an a

ess set or a quali�ed subset.A set of players A =2 A is 
alled an adversary set or a non-quali�ed subset. Weasso
iate a 
lass of a

ess stru
tures fAng with a languageLA = fx = x1x2 : : : xn : xi 2 f0; 1g; fPijxi = 1g 2 AngWe make statements su
h as \the a

ess stru
ture A is in monotone P",when we a
tually mean to say that LA 2 monotone P .The set of all possible se
rets is 
alled the se
ret domain (denoted by S) andthe set of all possible shares is 
alled the share domain (denoted by S0). Now,we formally de�ne a 
omputational se
ret sharing s
heme.De�nition 1 (Computational Se
ret Sharing). A 
omputational se
ret shar-ing s
heme is a proto
ol � between D and P to share a se
ret S 2 S, respe
tiveto an a

ess stru
ture A su
h that



{ The dealer D transmits a share Si 2 S0 to the player Pi, for i = 1; 2; : : : ; n.D retires from the proto
ol immediately afterwards.{ There is a polynomial-time algorithm �REC su
h that �REC(Si1 ; Si2 ; : : : ; Sim)= S with probability 1 if fPi1 ; Pi2 ; : : : ; Pimg 2 A.{ For any set of players fPi1 ; Pi2 ; : : : ; Pimg =2 A and any (possibly randomized)polynomial-time algorithm �ADV , Prob[�ADV (Si1 ; Si2 ; : : : ; Sim) = S℄ � 1jSj
for all 
onstants 
 and suitably 
hosen jSj.In our se
ret-sharing s
hemes, the domains of the se
ret and of the sharesare the same, and this 
ommon domain is a �nite �eld, whi
h we denote by F .De�nition 2 (Se
ret sharing using a semi-trusted third party). A 
om-putational se
ret sharing s
heme using a semi-trusted third party is a pair ofproto
ols � and � between a dealer D, the set of players P and a third party T ,to share a se
ret S 2 S, respe
tive to an a

ess stru
ture A su
h that{ In the sharing proto
ol �, the dealer D transmits a share Si 2 S0 to theplayer Pi, for i = 1; 2; : : : ; n, and a share S0 to T . D retires from the proto
olimmediately afterwards.{ The re
onstru
tion proto
ol � is an intera
tive proto
ol between T and somesubset A � P, represented by the virtual player P , at the end of whi
h:� T should not obtain any information about S or about A.� If A 2 A then P should be able to 
ompute the se
ret S with 
ertainty inpolynomial time.� If A =2 A, then the probability that P 
an 
ompute S in polynomial timeshould be negligible.Monotone Boolean 
ir
uit. A monotone Boolean 
ir
uit is a Boolean 
ir
uit
onsisting of AND, OR and FANOUT gates 
onne
ted by wires. Both ANDand OR gates have two inputs and one output; FANOUT gates have one inputand two outputs. AND and OR gates perform Boolean multipli
ation and ad-dition respe
tively on their inputs, while the FANOUT gates propagate theirinput to both outputs. The 
ir
uit has n input wires (whi
h are not the outputof any gate) and one output wire (whi
h is not the input of any gate).There are two values asso
iated with ea
h wireW of the 
ir
uit - the Booleanvalue of W obtained by the evaluation of the 
ir
uit on some input assign-ment and the share value asso
iated with W during the sharing and re
onstru
-tion pro
ess. The Boolean value of W 
orresponding to an input assignmentx1; x2; : : : ; xn is denoted by Eval(W;A) where (x1; x2; : : : xn) is the en
oding ofA. We abuse notation and denote Eval(W;A) by Eval(W ) when it is 
lear whi
hset of players A we are referring to. Given a wire W in the 
ir
uit, we denote byV (W ) the share-value asso
iated with W .De�nition 3 (Nondeterministi
 Boolean 
ir
uit). A nondeterministi
 
ir-
uit for a Boolean fun
tion f(x1; x2; : : : xn) is a 
ir
uit C with standard inputsx1; x2; : : : xn and auxiliary inputs y1; y2; : : : ym, where m = poly(n), su
h thatif f(x1; x2; : : : xn) = 1, then there is a assignment for the inputs y su
h thatC(x1; x2; : : : xn; y1; y2; : : : ym) = 1 and if f(x1; x2; : : : xn) = 0, then there is nosu
h assignment.



We model su
h a 
ir
uit as a dire
ted a
y
li
 graph whose nodes are AND,OR, NOT , or FANOUT gates.De�nition 4 (Monotone nondeterministi
 Boolean 
ir
uit). A mono-tone nondeterministi
 Boolean 
ir
uit is a nondeterministi
 Boolean 
ir
uit inwhi
h a gate that (transitively) depends on a standard input2 
annot be a NOTgate.Given an a

ess stru
ture A inmNP , we asso
iate with it the monotone non-deterministi
 Boolean 
ir
uit for the 
hara
teristi
 fun
tion of the language LA.Lemma 1 ([7℄). A language L is in mNP if and only if the monotone nonde-terministi
 Boolean 
ir
uit 
omputing L has polynomial size.De�nition 5 (Oblivious transfer). An oblivious transfer (or OT) proto
ol isa proto
ol between a sender S and a re
eiver R in whi
h{ S's input is (s1; s2) whi
h are elements of the se
ret domain S.{ R's input is an index � 2 f0; 1g.{ At the end of the proto
ol R must obtain s� but should not get any informa-tion about s1��.{ S should not obtain any information about �.The de�nition above refers to \1-out-of-2 OT", or OT21. There are moregeneral notions of oblivious transfer, but we will not require them.3 Our Computational Se
ret Sharing S
hemeWe assume that the players are provided a monotone Boolean 
ir
uit C thata

epts the a

ess stru
ture A (the 
ir
uit 
an be individually given to all theplayers or published on a bulletin board). We 
onsider the 
ir
uit as 
omposed ofAND, OR and FANOUT gates. Ea
h wire of the 
ir
uit will be asso
iated witha value during the sharing and re
onstru
tion phases. In the sharing phase, theproblem is to 
ompute the values 
orresponding to the input wires (the sharesof the 
orresponding players) from the value of the output wire (the se
ret).We perform the reverse of this during re
onstru
tion. Our 
omputational se
retsharing s
heme is as follows.Let ENCK : F ! F be a family of trapdoor one-way fun
tions3 on F withthe index K varying over F , and DECK : F ! F the 
orresponding inverses.Algorithm Share1. Let W be the output wire. Assign V (W ) = s, where s is the se
ret.2 In other words, there is a dire
ted path from a standard input to that gate.3 We have used trapdoor fun
tions for 
larity of presentation, but the proto
ol willwork with minor modi�
ations even when ENC is a one-way fun
tion.



2. Choose a gate G whose output wire has been assigned a value.4{ G is an AND gate : Let W be the output wire of G and W1 andW2 be the input wires. Pi
k a random x in F . Assign: V (W1) = x �V (W ) and V (W2) = x.{ G is an OR gate : Let W be the output wire of G and W1 and W2 bethe input wires. Assign: V (W1) = V (W ) and V (W2) = V (W ).{ G is a FANOUT gate : Let W1;W2 be the outputs of G and W be theinput. Pi
k a random key K from F . Publish: ENCK(V (Wi)) for i =1; 2: Assign: V (W ) = K.3. Repeat step 2 until all gates are 
onsidered. The values at ea
h input wireform the shares of the 
orresponding players.Algorithm Re
onstru
t1. Let WP be the input wire 
orresponding to player P . Assign V (WP ) to theshare of player P . Choose a gate G whose input wires have been assignedvalues.{ G is an AND gate : Let W be the output wire of G and W1 and W2 bethe input wires. Assign V (W ) = V (W1)� V (W2).{ G is an OR gate : LetW be the output wire of G andW1 and W2 be theinput wires. Choose the input wireWi(i = 1; 2) su
h that Eval(Wi) = 1.Assign V (W ) = V (Wi).{ G is a FANOUT gate : Let W be the input wire of G and W1;W2be the outputs. By applying DEC, 
ompute V (Wi) from V (W ) andENCV (W )(V (Wi)).2. Repeat step 1 until V (WO) for the output wire WO is 
onstru
ted. V (WO)is the se
ret.3.1 Corre
tness and se
urityCorre
tness. It is easy to show that any a

ess set A 
an re
over the se
retwith probability 1. We prove the stronger statement that A 
an re
over V (W )for any wireW with Eval(W;A) = 1. We show this by indu
tion on the depth oftheW : it is 
learly true for the input wires. IfW is any other wire, it must be theoutput of an AND, OR or FANOUT gate G. In ea
h of these 
ases algorithmre
onstru
t shows how to obtain V (W ) from the V -values at those input wiresof G for whi
h Eval is 1 (the V -values at the input wires, whi
h have a smallerdepth than W , are assumed to be known by the indu
tion hypothesis). utTheorem 1. The above 
omputational se
ret sharing s
heme is se
ure, i.e, forany A =2 A, A 
annot re
over the se
ret.Proof. We have shown that the a

ess set A 
an re
over V (W ) for any wireW with Eval(W;A) = 1. The 
onverse of this assertion is not true: A maybe obtain V (W ) even when Eval(W;A) = 0. To see this 
onsider an OR gate4 If G is a FANOUT gate, both its outputs should have been assigned a value.



whose inputs W1 and W2 evaluate to 1 and 0 respe
tively. Then A 
an obtainV (W2) = V (W1). To get around this diÆ
ulty, we introdu
e the 
on
ept of afanout-free region. It will turn out that the 
onverse statement indeed holds onthose wires that 
onne
t fanout-free regions.A sub
ir
uit C 0 of a 
ir
uit C is a 
onne
ted subgraph of C indu
ed by someof the nodes (gates). A fanout free region (FFR) of C is a maximal sub
ir
uit ofC having no FANOUT gates. Note that C 
an be 
onsidered to be a dire
teda
y
li
 graph of fanout free regions 
onne
ted by FANOUT gates. We 
all thisthe fanout graph of C. Also note that any FFR is a tree of AND and OR gates.With every FFR F , we asso
iate a virtual adversary AF . AF is given asinput the 
ir
uit F , the share values of those input wires W of F for whi
hEval(W ) = 1, and nothing else. Our goal is to prove that the players' view ofthe FFR F is indistinguishable from the view of AF on F .Let �(W ) be the property that if Eval(W ) is 0 then V (W ) is 
omputationallyindistinguishable from the uniform distribution on F .We begin with a restatement of Benaloh and Lei
hter's result [3℄:Lemma 2. For the adversary AF , � holds on the output wire of F .The next lemma states that if the input share value of a FANOUT gate is notknown, then the publi
 value asso
iated with that gate gives no new informationabout any of its output share values. In parti
ular this means that the property� is 
arried a
ross a FANOUT gate.Lemma 3. Let W be the input wire and W 0 an output wire of a FANOUT gate.If V (W ) is 
omputationally indistinguishable from the uniform distribution onF , then so is V (W 0).Proof: Sin
e DECK(:) is a family of pseudo-random permutations (from F toF , indexed by the key K), uniform distribution on the key spa
e, given the
iphertext, implies that the distribution on the plaintext spa
e is 
omputation-ally indistinguishable from uniform distribution. If the distribution of V (W 0)is 
omputationally distinguishable from the uniform distribution, it means thatV (W ) is 
omputationally distinguishable from uniform distribution, whi
h is byassumption, false. utThe next lemma formalizes the notion that a FANOUT gate does not \leakany information" in the reverse dire
tion.Lemma 4. Let W be the input wire and W 0 be an output wire of a FANOUTgate. Then the distributions V (W ) and V (W )jV (W 0) are 
omputationally indis-tinguishable.We observe that the sharing algorithm �xes V (W ) randomly and independentlyof V (W 0). Therefore, if the lemma is false it would mean that the knowledge ofan arbitrary (plaintext; 
iphertext) pair gives information about the key, whi
h
ontradi
ts the assumption that ENC is se
ure. utA simple generalization of the above lemma to any pair of wires with theproperty that any path 
onne
ting them must pass through a FANOUT gate is:



Lemma 5. In the fanout graph of C, let F be an FFR of depth d and F 0 anFFR of depth d0, d0 > d. Let W and W 0 be wires in F and F 0 respe
tively. ThenV (W ) and V (W )jV (W 0) are 
omputationally indistinguishable. utThe above lemma allows us to apply indu
tion on the depth on the fanoutgraph, at every step ignoring all FFRs at a greater depth than the 
urrent FFR.Lemma 6. Let F be an FFR at depth d. Assume that � holds on the outputs ofall FFRs of depth < d. Then � holds on the output of F .Proof. By lemma 5, we 
an ignore the e�e
t of all FFRs of depth > d. Byassumption, � holds on all wires that feed any of the inputs of F . Applyinglemma 3 to ea
h FANOUT gate feeding F , we �nd that the players' view ofthe inputs of F is identi
al to that of AF . Therefore by lemma 2, � holds on theoutput of F . utThe rest of the proof is straightforward. By applying indu
tion on the depthd of the FFRs, we �nd that � holds on the output of every FFR. In parti
ular,� holds on the output wire of the 
ir
uit. ut3.2 EÆ
ien
yTheorem 2. The above s
heme is eÆ
ient for all a

ess stru
tures A 2 mP .Proof. The total number of shares given to the players is O(n) sin
e ea
h playergets exa
tly one share, 
orresponding to one of the input wires in the 
ir
uit.The number of published share values is twi
e the number of FANOUT gates,whi
h is polynomial in n when the 
ir
uit is poly-size. Therefore, for all a

essstru
tures A having a polynomial-size 
ir
uit (i.e, A 2 mP ), this s
heme iseÆ
ient. utThe s
heme is also 
omputationally eÆ
ient for all A 2 mP sin
e the 
om-putational e�ort required by D is equivalent to that of evaluating the 
ir
uiton some input assignment and performing a polynomial number of en
ryptions.Re
onstru
tion of the se
ret 
an be naturally parallelized and the parallel time
omplexity of re
onstru
ting the se
ret by an a

ess set A 2 A is proportionalto the depth of the 
ir
uit.4 Se
ret sharing with semi-trusted third partyOur goal is to explore the limits on the a

ess stru
tures for whi
h we 
an givese
ret sharing s
hemes by relaxing the requirements. Thus, even though se
retsharing as su
h is a non-intera
tive proto
ol, we wish to make it more powerfulby allowing a limited amount of intera
tion. We do this by introdu
ing a thirdparty T who is allowed to intera
t with the players. However, at the end of theproto
ol T should be no wiser about the inputs of the dealer and the playersthan before the beginning of the proto
ol.The algorithms for sharing and re
onstru
tion are similar to the �rst proto
ol.The main di�eren
e is that the 
ir
uit 
onsists of NOT gates also. Therefore,



we need to asso
iate two share values with ea
h wire: one 
orresponding to theevaluation of the wire being 1 and the other 
orresponding to the evaluation ofthe wire being 0. (We denote these by V (W; 1) and V (W; 0) respe
tively, and
all them the 1-share and the 0-share respe
tively ofW .) Propagating the valuesa
ross AND, OR and FANOUT gates is done as in the previous proto
ol. Inthe 
ase of NOT gates, the share value of the input wire with evaluation 0 isrelated to the share value of the output wire with evaluation 1, and vi
e versa.Role of the third party. In monotone 
ir
uits, Eval(W;A) � Eval(W;B)whenever A � B. Therefore, the dealer need not worry about a set of playersobtaining some share values by evaluating the 
ir
uit (i.e, invoking the re
on-stru
tion algorithm) with some input xi set to 0 even though is possible toevaluate the 
ir
uit with xi = 1. In the 
ase of a general 
ir
uit (whi
h in
ludesNOT gates), however, this is not true, and therefore it is possible that the play-ers might obtain both the 0-share and the 1-share of some wire. The role of thethird party is to ensure that this 
annot happen. It is enough to ensure that theplayers 
annot get both the 0-share and the 1-share of any auxiliary input wireof the 
ir
uit. This is done by exe
uting an Oblivious Transfer proto
ol [12℄ forea
h auxiliary input wire of the 
ir
uit.Let A be an a

ess stru
ture in mNP . By lemma 1, there exists a monotonenondeterministi
 Boolean 
ir
uit C of polynomial size that 
omputes A. Usingthis 
ir
uit we will 
onstru
t a CSS s
heme for A.4.1 Proto
olSharing The sharing algorithm is essentially the sharing algorithm of the pre-vious se
tion invoked twi
e, on
e for the 0-shares and on
e for the 1-shares.1. Let W be the output wire of C. Assign V (W; 1) = s, where s is the se
ret.2. Choose a gate G whose output wire has been assigned a 1-share.{ G is an AND gate : Let W be the output wire of G and W1 and W2be the input wires. Pi
k a random x in F . Assign: V (W1; 1) = x �V (W; 1) and V (W2; 1) = x.{ G is an OR gate : Let W be the output wire of G and W1 and W2 bethe input wires. Assign: V (W1; 1) = V (W; 1) and V (W2; 1) = V (W; 1).{ G is a NOT gate: Assign V (W 0; 0) = V (W; 1) where W is the outputwire and W 0 is the input wire of G.{ G is a FANOUT gate : Choose a random key K from F . Let W1;W2 bethe outputs of G andW be the input. Publish: ENCK(V (Wi; 1)) for i =1; 2: Assign: V (W; 1) = K.Choose a gate G whose output wire has been assigned a 0-share.{ G is an AND gate : Let W be the output wire of G and W1 and W2 bethe input wires. Assign: V (W1; 0) = V (W; 0) and V (W2; 0) = V (W; 0).{ G is an OR gate : Let W be the output wire of G and W1 and W2be the input wires. Pi
k a random x in F . Assign: V (W0; 0) = x �V (W; 0) and V (W2; 0) = x.



{ G is a NOT gate: Assign V (W 0; 1) = V (W; 0) where W is the outputwire and W 0 is the input wire of G.{ G is a FANOUT gate : Choose a random key K from F . Let W1;W2 bethe outputs of G andW be the input. Publish: ENCK(V (Wi; 0)) for i =1; 2: Assign: V (W; 0) = K.3. Repeat steps 2 and 3 until all gates are 
onsidered.4. For every (W; b) that has not been assigned a share, assign a random valueto V (W; b).5. The 1-shares of the input wires form the shares of the 
orresponding players.The 0-shares of the input wires are published.6. For every auxiliary input wire W , f(V (W; 0); V (W; 1)g is sent to the thirdparty.Re
onstru
tion The re
onstru
tion 
onsists of two stages: in the �rst stagethe players intera
t with the third party; in the se
ond the players perform somelo
al 
omputations to re
over the se
ret (if they form an a

ess set).Stage 1. The players 
annot intera
t individually with the third partythrough separate 
hannels, be
ause of the requirement that the third partyshould not gain any information about the set of players involved in the re-
onstru
tion pro
edure. Therefore we 
onsider all the players as 
onstitutingone virtual player P .Let A be the a

ess set of players parti
ipating in the re
onstru
tion algo-rithm. For ea
h auxiliary input wire W :{ T and P exe
ute a OT 21 proto
ol with V (W; 0) and V (W; 1) as T 's se
rets.Sin
e A is a quali�ed subset, there exists an assignment of values to theauxiliary inputs y su
h that the 
ir
uit evaluates to 1. For ea
h wire W , P
hooses the 
orresponding value of y as its index.Stage 2. The stage 2 is similar to the re
onstru
tion phase of the �rst pro-to
ol. The goal is to 
ompute V (W;Eval(W;A)) for ea
h wire W . For the inputwires these values are already known from the share values and the publi
 infor-mation.1. Choose a gate G whose input wires have been assigned shares.{ G is an AND gate with output 1: Let W be the output wire of G andW1 and W2 be the input wires. Assign V (W; 1) = V (W1; 1)� V (W2; 1).{ G is an OR gate with output 1: Let W be the output wire of G and W1and W2 be the input wires. Choose the input wireWi(i = 1; 2) su
h thatEval(Wi) = 1. Assign V (W; 1) = V (Wi; 1).{ G is an AND gate with output 0: Let W be the output wire of G andW1 and W2 be the input wires. Choose the input wire Wi(i = 1; 2) su
hthat Eval(Wi) = 0. Assign V (W; 0) = V (Wi; 0).{ G is an OR gate with output 0: Let W be the output wire of G and W1and W2 be the input wires. Assign V (W; 0) = V (W1; 0)� V (W2; 0).{ G is a NOT gate: Let Let W be the output wire of G and W 0 the inputwire. Assign V (W; b) = V (W 0; 1� b) where b = Eval(W ).



{ G is a FANOUT gate : Let W be the input wire of G and W1;W2be the outputs. Apply DEC to 
ompute V (Wi; b) from V (W; b) andENCV (W;b)(V (Wi; b)), where b = Eval(W ).2. Repeat step 1 until V (WO ; 1) for the output wireWO is 
onstru
ted. V (WO ; 1)is the se
ret.4.2 Corre
tness and se
urityTo prove the 
orre
tness we �rst note if A is a quali�ed subset then the 
ir
uitevaluates to 1 on the input (x1; x2; : : : xn; y1; y2; : : : yn) as 
hosen in the stage 1of the re
onstru
tion proto
ol. Next, we prove by indu
tion that if the wire Wevaluates to b then the players 
an 
ompute V (W; b). Clearly this is true of theinput wires. If W is any other wire, it must be the output of an AND, OR,NOT , or FANOUT gate G. In ea
h of these 
ases, stage 2 of the re
onstru
tionalgorithm shows how the players 
an obtain the V (W; b) from the relevant V -values of the input wires of G.Se
urity. Suppose A =2 A. Then for every Pi =2 A, P has no way of knowingthe 1-share of Pi's input wire. Therefore when P evaluates the 
ir
uit in stage2, the input xi must be 0. Hen
e from the de�nition of C there is no assignment(y1; y2; : : : yn) whi
h will make C evaluate to 1. Further, sin
e C 
omputes amonotone fun
tion, C will evaluate to zero even if some of the inputs xi withPi 2 A are set to zero.It remains to prove the 
orre
tness of stage 2, i.e, that P 
annot �nd the se
retif C evaluates to 0. The proof of this is very similar to the proof of se
urity ofthe re
onstru
tion algorithm of the �rst proto
ol, and is hen
e omitted.Se
urity against the third party. In the sharing proto
ol, the T gets noinformation about the 1-shares of the input wires. Further, from the de�nitionof OT, T gets no new information in stage 2 of the re
onstru
tion proto
ol.Therefore, T 
an only evaluate the 
ir
uit with all inputs 0, whi
h means thatT 
annot get the 1-share of the output wire.Again, sin
e T learns nothing at all during intera
tion with the virtual player,T 
annot identify the a

ess set A.4.3 EÆ
ien
yAs with the previous proto
ol, this one is also eÆ
ient when the 
ir
uit is ofpolynomial size (i.e, A 2 mNP ) sin
e the total size of the shares is linear inn and the amount of published information is proportional to the number ofFANOUT gates. The question of 
omputational 
omplexity is somewhat tri
ky.Stri
tly speaking, the proto
ol is 
omputationally eÆ
ient sin
e the sharing andre
onstru
tion algorithms involve only a 
onstant amount of 
omputation forea
h gate of the 
ir
uit. However, the players need to determine if the set Ais a quali�ed subset before they 
an start the re
onstru
tion algorithm. This
omputation is, by de�nition, a general problem in mNP . The impli
ations ofthis are dis
ussed in the next se
tion.



The round 
omplexity of the intera
tive proto
ol between T and P is the sameas the round 
omplexity of the OT proto
ol used, sin
e all the m + n OTs 
anbe invoked in parallel. If we use a s
heme like the ones in [11℄, this 
omplexity is2. It might appear at �rst glan
e that if we use non-intera
tive OT s
hemes like[4℄, then the need for a third party would disappear. However, non-intera
tiveOT s
hemes are not appli
able in this 
ontext sin
e the re
eiver needs to 
hoosethe index after the start of the proto
ol. Using non-intera
tive OT would requirethe a

ess set of players to be known beforehand.5 Dis
ussion and Future WorkTheorem 3 (A simple upper bound). EÆ
ient CSS s
hemes 
annot existfor an a

ess stru
ture A not in 
o-RP .Proof. To show this, we 
onstru
t a deterministi
 algorithm to solve the prob-lem \Does A 2 A" using the algorithms share and re
onstru
t as ora
les. Thealgorithm 
hooses a random se
ret, shares it and uses re
onstru
t with the shares
orresponding to A as inputs to see if it gets ba
k the se
ret whi
h it 
hose. Ifit is the same it de
ides that A 2 A. Else, it de
ides that A =2 A. We note thatif indeed A 2 A, it de
ides 
orre
tly with probability 1, while if A =2 A, there isa small probability of error. Sin
e we de
ide LA with a deterministi
 algorithm,if share and re
onstru
t are poly-time then A must be in 
o-RP . utImpli
ations of Our Results{ It was not known whether it is possible to 
onstru
t eÆ
ient se
ret sharings
hemes for a

ess stru
tures outside (algebrai
 NC2\ mono), though [2℄provided eviden
e that it is possible. Our result shows that 
omputationalse
ret sharing is possible over the entire 
lass mP whi
h 
ontains a

essstru
tures not in algebrai
 NC2.{ Combining our result with that of [1℄, it is possible to a
hieve the optimalinformation rate (for large se
ret length) for every a

ess stru
ture in mP .{ As we have remarked earlier, to 
arry out the re
onstru
tion algorithm theplayers need to determine if they form an a

ess set, and this 
omputation
ould lie outside P in the third party 
ase. This does not mean, however, thatthe third party result is purely of theoreti
al signi�
an
e, for two reasons:when the players are probabilisti
 algorithms, the 
lass of a

ess stru
turesthat 
an be de
ided in poly-time is 
o-RP\ mono, as shown above, andthis 
lass is bigger than mP . Further, even for a

ess stru
tures admitting ofdeterministi
 poly-size 
ir
uits, it might be more eÆ
ient to use a randomizedalgorithm, in whi
h 
ase the proto
ol using nondeterministi
 Boolean 
ir
uitsmust be used.Our result must be understood more as an existen
e result for eÆ
ient pro-to
ols, rather than as a method to 
onstru
t su
h proto
ols. For instan
e, it islikely that using threshold gates as building blo
ks in addition to AND and ORwould give more eÆ
ient proto
ols. One dire
tion for future work in this area



is to 
onstru
t parti
ularly eÆ
ient CSS s
hemes for interesting spe
ial 
ases ofa

ess stru
tures in monotone P .The most important open question is to determine the exa
t power of eÆ-
ient CSS s
hemes; in parti
ular, do there exist eÆ
ient CSS s
hemes for a

essstru
tures outside monotone P .Another dire
tion for future work is to investigate models for CSS whi
h donot have the 
o-RP upper bound. One way of doing this would be to allow thedealer to be 
omputationally unbounded. This would have the e�e
t of the lan-guage LA being de
idable in poly-time by a Turing ma
hine with advi
e strings.However it is unreasonable to assume the dealer alone to be 
omputationallyunbounded, sin
e se
ret sharing is usually a part of a larger proto
ol.Another approa
h has been explored by Ca
hin [5℄, who uses a bulletin boardon whi
h an arbitrary amount of information may be published. Our 
onstru
-tion using a semi-trusted third party also, as we have remarked, sidesteps theproblem. We propose yet another approa
h. Sin
e the trouble with a

ess stru
-tures outside 
o-RP is the infeasibility of determining whether or not a givenset is in the a

ess stru
ture, we provide the players with an ora
le whi
h 
ananswer pre
isely that question: the players 
an make queries to the ora
le witha subset of P as input, and the ora
le de
ides whether it is a quali�ed subsetor not. We note that this is a weaker assumption than that of [5℄. It would beinteresting to see if it is possible to 
onstru
t eÆ
ient CSS s
hemes for the 
lassmNP under this model.Referen
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