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Abstract. Secret sharing is a very important primitive in cryptography
and distributed computing. In this work, we consider computational se-
cret sharing (CSS) which provably allows a smaller share size (and hence
greater efficiency) than its information-theoretic counterparts. Extant
CSS schemes result in succinct share-size and are in a few cases, like
threshold access structures, optimal. However, in general, they are not
efficient (share-size not polynomial in the number of players n), since
they either assume efficient perfect schemes for the given access structure
(as in [10]) or make use of exponential (in n) amount of public informa-
tion (like in [5]). In this paper, our goal is to explore other classes of
access structures that admit of efficient CSS, without making any other
assumptions. We construct efficient CSS schemes for every access struc-
ture in monotone P. As of now, most of the efficient information-theoretic
schemes known are for access structures in algebraic NC?. Monotone P
and algebraic NC? are not comparable in the sense one does not include
other. Thus our work leads to secret sharing schemes for a new class of
access structures. In the second part of the paper, we introduce the no-
tion of secret sharing with a semi-trusted third party, and prove that in
this relaxed model efficient CSS schemes exist for a wider class of access
structures, namely monotone N P.

Keywords: Secret sharing, computationally bounded players, access
structures, monotone P.

1 Introduction

Secret sharing schemes protect the secrecy and integrity of information by dis-
tributing the information over different locations (not necessarily geographical).
This forces the adversary to attack multiple locations in order to learn or destroy
the information. In a secret sharing protocol, the dealer shares his secret among
n players. In the so called threshold model, the sharing is done so that subsets of
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t + 1 (or more) players can later correctly reconstruct the secret, while subsets
of ¢ (or fewer) players cannot reconstruct it. This notion can be generalized by
specifying a family of authorized subsets of the n players, called access struc-
tures. The dealer shares the secret in such a way that only authorized subsets
of players can reconstruct the secret while the players in non-authorized subsets
cannot.

1.1 Why Computational Secret Sharing ?

CSS schemes allow us to achieve a better information rate than is possible with
information theoretic schemes. The information rate of a secret sharing scheme
is the maximum length of a (player’s) share per unit size of the secret. This
measure is of interest when the size of the message to be shared is large. For
instance, it is possible ([10]) to ¢-share a secret, in the threshold model, with
the share of each player being only % as long as the secret (which is clearly
optimal). Indeed, Beguin and Cresti [1] have shown that it is possible to achieve
the optimal information rate for any access structure provided that a fixed length
secret can be shared on the same access structure. The above schemes build on
the idea of information dispersal algorithms [13]. CSS schemes which make use
of a bulletin board on which an arbitrary amount of information can be published
have also been proposed ([5]).

Clearly, a secret sharing scheme can be called efficient only if the information
rate is polynomially bounded as a function of the number of players n. Further-
more, we posit that the amount of information published on the bulletin board
be polynomial in n. Note that the CSS of [1] is not applicable when there is
no known efficient secret sharing scheme for the corresponding access structure.
Similarly, the CSS scheme of [5] becomes inefficient when the size of the access
structure is not polynomial in n. Our interest in studying CSS is due to the fact
that there may exist access structures that have efficient CSS schemes but do
not permit any other (information theoretic) efficient secret sharing scheme.

Most of the results in extant literature on secret sharing schemes deal with
information-theoretic secret sharing. We know that efficient information-theoretic
perfect linear secret sharing schemes exist only if the access structure is in alge-
braic NC? N'mono, the class of monotone languages which can be computed by
algebraic circuits of logarithmic size and log-squared depth. Non-linear schemes
appear to be more powerful [2]. However, there remains a large gap between
the known upper bounds and lower bounds in the case of information theoretic
secret sharing.

1.2 Boolean formulas and Boolean circuits

The contribution of the first part of this paper is the construction of efficient CSS
schemes for all access structures which can be computed by monotone Boolean
circuits of polynomial size. This complexity class is known as m P, for monotone
P. Monotone Boolean circuits differ from monotone Boolean formulas in that in
the former, the output of a node can serve as the input of more than one node.



We say that gates in a monotone Boolean circuit can have a fanout of more than
one. Another way of understanding the difference is that a monotone Boolean
circuit is a directed acyclic graph where each node represents an AN D gate or an
OR gate whereas a monotone Boolean formula is a tree with the same property.

This makes monotone Boolean circuits much more powerful than formulas. In
fact, it was believed that monotone Boolean circuits could simulate any (deter-
ministic) Turing machine accepting a monotone set (thus making m P equivalent
to P Nmono, the class of monotone languages in P), but Razborov ([14]) proved
that this is not the case.!

Benaloh and Leichter [3], in their landmark result on the existence of linear
perfect secret sharing schemes for any monotone access structure (as first defined
in [8]), showed how to combine secret sharing schemes across AND and OR
gates (in other words, how to realize secret sharing schemes for the union and
intersection of two access structures) and recursively applied this result to the
Boolean formula computing the access structure. Our construction is similar in
spirit. We represent the Boolean circuit computing the access structure as a
graph whose nodes are AND, OR, or FANOUT gates. (The FANOUT gate
takes a single input and produces multiple copies of the input. We do this in
order that the FANOUT is the only gate with more than one output.) With
each edge of this graph, we associate a (virtual) secret, which we call the share
of that edge. The shares of the input wires of the circuit form the shares of the
players. The sharing scheme has the property that a subset S of players can
compute the share of some edge FE if the wire corresponding to E evaluates to 1
when the circuit is given (the encoding of) S as input. We show how to associate
shares with edges in such a way that the above property is carried across AN D,
OR and FANOUT gates.

Our techniques are similar in spirit to Yao’s landmark garbled circuit con-
struction ([15]), but very different in application since in the case of secret shar-
ing, non-interactivity is essential. Thus our result does not follow from Yao’s
since secret sharing protocols cannot be expressed as special case(s) of interac-
tive secure function evaluation protocols.

1.3 Semi-trusted third party

Our second result deals with secret sharing using a semi-trusted third party.
The use of this construct is to introduce a limited amount of interactivity into
the protocol, and thus increase its power. Just as the relaxation of the security
requirement from information theoretic to computational security allows us to
give protocols for a broader class of access structures, the relaxation of the non-
interactivity requirement results in a further broadening. We prove that, using
a semi-trusted third party, efficient CSS schemes exist for any class of access
structures in monotone NP (denoted mNP). This is the class of languages
accepted by monotone non-deterministic Turing machines in polynomial time,

! Razborov showed superpolynomial lower bounds for the monotone circuit complexity
of the matching function.



which also turns out to be the class of monotone languages in N P. Clearly, this
includes all access structures that could possibly be interesting in practice.

The notion of a semi-trusted third party has been made use of in protocols
for fair exchange ([6]). It allows two parties to exchange a secret in such a way
that neither party can gain an unfair advantage by aborting the protocol at any
point. To the best of our knowledge, however, secret sharing with a semi-trusted
third party has not been considered.

A semi-trusted third party may try to deviate from the protocol, but it
cannot collude with any of the players. It cannot be trusted with any of the
private information of the other players. Therefore, in the case of secret sharing,
we have the restriction that the semi-trusted third party should neither gain
knowledge of the secret nor be able to identify the access set of players that tries
to determine the secret. We make these notions formal in the next section.

Semi-trusted third parties are worthy of study because, unlike trusted third
parties, they are readily realizable in practice. Indeed, [6] have suggested that
in networks such as the internet, a random player can be chosen as a semi-
trusted third party. In such a scenario, the third party is both geographically
and logically separated from the players, and thus the possibility of both the
third party and some of the other players coming under the control of a common
adversary is remote. Another practical possibility is for a bank to play the role
of a semi-trusted third party.

2 Preliminaries and Definitions

To begin with, we formally define the concept of Computational Secret Sharing
for general access structures. A Secret Sharing scheme is a protocol between the
set of players P = {Py, P», ..., P,} and a dealer D, where we assume D ¢ P. An
access structure A C 27 consists of sets of players qualified to recover the secret.
It is natural to consider only monotone access structures A, that is, if A € A
and A C A" C P, then A" € A. The set A = 2P — A is called the adversary
structure. A set of players A € A is called an access set or a qualified subset.
A set of players A ¢ A is called an adversary set or a non-qualified subset. We
associate a class of access structures {4, } with a language

Li={z=mzs...2p 2, € {0,1},{P)]z; =1} € A, }

We make statements such as “the access structure 4 is in monotone P”,
when we actually mean to say that L 4 € monotone P.

The set of all possible secrets is called the secret domain (denoted by S) and
the set of all possible shares is called the share domain (denoted by S’). Now,
we formally define a computational secret sharing scheme.

Definition 1 (Computational Secret Sharing). A computational secret shar-
ing scheme is a protocol m between D and P to share a secret S € S, respective
to an access structure A such that



— The dealer D transmits a share S; € S' to the player P;, fori=1,2,... n.
D retires from the protocol immediately afterwards.

— There is a polynomial-time algorithm wrEpc such that trEc(Siy, Siys - -5 5i,)
= S with probability 1 if {P;,, Pi,,..., P} € A.

— For any set of players {P;,, P;,, ..., P;, } ¢ A and any (possibly randomized)
polynomial-time algorithm wapy, Problwapy (Si,, Siyy---,5i,) = S| < @
for all constants ¢ and suitably chosen |S].

In our secret-sharing schemes, the domains of the secret and of the shares
are the same, and this common domain is a finite field, which we denote by F.

Definition 2 (Secret sharing using a semi-trusted third party). A com-
putational secret sharing scheme using a semi-trusted third party is a pair of
protocols o and p between a dealer D, the set of players P and a third party T,
to share a secret S € S, respective to an access structure A such that

— In the sharing protocol o, the dealer D transmits a share S; € S' to the
player P;, fori=1,2,...,n, and a share Sy to T. D retires from the protocol
immediately afterwards.

— The reconstruction protocol p is an interactive protocol between T and some
subset A C P, represented by the virtual player P, at the end of which:

e T should not obtain any information about S or about A.

o If A € A then P should be able to compute the secret S with certainty in
polynomial time.

o If A ¢ A, then the probability that P can compute S in polynomial time
should be negligible.

Monotone Boolean circuit. A monotone Boolean circuit is a Boolean circuit
consisting of AND, OR and FANOUT gates connected by wires. Both AND
and OR gates have two inputs and one output; FANOUT gates have one input
and two outputs. AND and OR gates perform Boolean multiplication and ad-
dition respectively on their inputs, while the FANOUT gates propagate their
input to both outputs. The circuit has n input wires (which are not the output
of any gate) and one output wire (which is not the input of any gate).

There are two values associated with each wire W of the circuit - the Boolean
value of W obtained by the evaluation of the circuit on some input assign-
ment and the share value associated with W during the sharing and reconstruc-
tion process. The Boolean value of W corresponding to an input assignment
x1,%2,...,%, is denoted by Fval(W, A) where (z1, 2, ...2,) is the encoding of
A. We abuse notation and denote Eval(W, A) by Eval(WW) when it is clear which
set of players A we are referring to. Given a wire W in the circuit, we denote by
V(W) the share-value associated with W.

Definition 3 (Nondeterministic Boolean circuit). A nondeterministic cir-
cuit for a Boolean function f(x1,x2,...xy,) is a circuit C with standard inputs
x1,Ta,... Ty and auziliary inputs yi,ysa, ... Ym, where m = poly(n), such that
if f(x1,29,...2y,) = 1, then there is a assignment for the inputs y such that
C(x1,%2, . Tn,Y1,Y2,---Ym) = 1 and if f(x1,29,...2,) = 0, then there is no
such assignment.



We model such a circuit as a directed acyclic graph whose nodes are AN D,
OR, NOT, or FANOUT gates.

Definition 4 (Monotone nondeterministic Boolean circuit). A mono-
tone nondeterministic Boolean circuit is a nondeterministic Boolean circuit in
which a gate that (transitively) depends on a standard input® cannot be a NOT
gate.

Given an access structure A in mN P, we associate with it the monotone non-
deterministic Boolean circuit for the characteristic function of the language £ 4.

Lemma 1 ([7]). A language L is in mNP if and only if the monotone nonde-
terministic Boolean circuit computing L has polynomial size.

Definition 5 (Oblivious transfer). An oblivious transfer (or OT) protocol is
a protocol between a sender S and a receiver R in which

— S’s input is (s1, s2) which are elements of the secret domain S.

— R’s input is an index a € {0,1}.

— At the end of the protocol R must obtain s, but should not get any informa-
tion about s1_,.

— S should not obtain any information about c.

The definition above refers to “l-out-of-2 OT”, or OT?. There are more
general notions of oblivious transfer, but we will not require them.

3 Our Computational Secret Sharing Scheme

We assume that the players are provided a monotone Boolean circuit C that
accepts the access structure A (the circuit can be individually given to all the
players or published on a bulletin board). We consider the circuit as composed of
AND, OR and FANOUT gates. Each wire of the circuit will be associated with
a value during the sharing and reconstruction phases. In the sharing phase, the
problem is to compute the values corresponding to the input wires (the shares
of the corresponding players) from the value of the output wire (the secret).
We perform the reverse of this during reconstruction. Our computational secret
sharing scheme is as follows.

Let ENCg : F — F be a family of trapdoor one-way functions® on F with
the index K varying over F, and DECk : F — F the corresponding inverses.

Algorithm Share

1. Let W be the output wire. Assign V(W) = s, where s is the secret.

2 In other words, there is a directed path from a standard input to that gate.
3 We have used trapdoor functions for clarity of presentation, but the protocol will
work with minor modifications even when ENC is a one-way function.



2. Choose a gate G whose output wire has been assigned a value.?
— G is an AND gate : Let W be the output wire of G and W; and
Wy be the input wires. Pick a random z in F. Assign: V(W;) = z &
V(W) and V(W) = x.
— (G is an OR gate : Let W be the output wire of G and W; and W, be
the input wires. Assign: V(W;) = V(W) and V(Wy) = V(W).
— Gisa FANOUT gate : Let W1, W5 be the outputs of G and W be the
input. Pick a random key K from F. Publish: ENCk (V(W;)) for i =
1,2. Assign: V(W) = K.
3. Repeat step 2 until all gates are considered. The values at each input wire
form the shares of the corresponding players.

Algorithm Reconstruct

1. Let Wp be the input wire corresponding to player P. Assign V(Wp) to the
share of player P. Choose a gate G whose input wires have been assigned
values.

— G is an AN D gate : Let W be the output wire of G and W; and W5 be
the input wires. Assign V(W) =V (W1) @ V(W»).

— (Gis an OR gate : Let W be the output wire of G and W; and W, be the
input wires. Choose the input wire W;(i = 1, 2) such that Eval(W;) = 1.
Assign V(W) = V(W;).

— G is a FANOUT gate : Let W be the input wire of G and Wy, Wy
be the outputs. By applying DEC, compute V(W;) from V(W) and
ENCy w)(V(W3)).

2. Repeat step 1 until V(Wy) for the output wire Wy is constructed. V(Wp)
is the secret.

3.1 Correctness and security

Correctness. It is easy to show that any access set A can recover the secret
with probability 1. We prove the stronger statement that A can recover V(W)
for any wire W with Eval(W, A) = 1. We show this by induction on the depth of
the W: it is clearly true for the input wires. If W is any other wire, it must be the
output of an AND, OR or FANOUT gate G. In each of these cases algorithm
reconstruct shows how to obtain V(W) from the V-values at those input wires
of G for which Ewal is 1 (the V-values at the input wires, which have a smaller
depth than W, are assumed to be known by the induction hypothesis). O

Theorem 1. The above computational secret sharing scheme is secure, i.e, for
any A ¢ A, A cannot recover the secret.

Proof. We have shown that the access set A can recover V(W) for any wire
W with Eval(W,A) = 1. The converse of this assertion is not true: A may
be obtain V(W) even when Eval(W, A) = 0. To see this consider an OR gate

Y If G is a FANOUT gate, both its outputs should have been assigned a value.



whose inputs W; and W evaluate to 1 and 0 respectively. Then A can obtain
V(W) = V(W7). To get around this difficulty, we introduce the concept of a
fanout-free region. It will turn out that the converse statement indeed holds on
those wires that connect fanout-free regions.

A subcircuit C' of a circuit C is a connected subgraph of C' induced by some
of the nodes (gates). A fanout free region (FFR) of C' is a maximal subcircuit of
C having no FANOUT gates. Note that C' can be considered to be a directed
acyclic graph of fanout free regions connected by FANOUT gates. We call this
the fanout graph of C. Also note that any FFR is a tree of AND and OR gates.

With every FFR F, we associate a virtual adversary Ap. Ap is given as
input the circuit F, the share values of those input wires W of F for which
Eval(W) = 1, and nothing else. Our goal is to prove that the players’ view of
the FFR F' is indistinguishable from the view of Ap on F.

Let (W) be the property that if Eval(W) is 0 then V(W) is computationally
indistinguishable from the uniform distribution on F.

We begin with a restatement of Benaloh and Leichter’s result [3]:

Lemma 2. For the adversary Ap, m holds on the output wire of F.

The next lemma states that if the input share value of a FANOUT gate is not
known, then the public value associated with that gate gives no new information
about any of its output share values. In particular this means that the property
7 is carried across a FANOUT gate.

Lemma 3. Let W be the input wire and W' an output wire of a FANOUT gate.
If V(W) is computationally indistinguishable from the uniform distribution on
F, then so is V(W').

Proof: Since DECKk(.) is a family of pseudo-random permutations (from F to
F, indexed by the key K), uniform distribution on the key space, given the
ciphertext, implies that the distribution on the plaintext space is computation-
ally indistinguishable from uniform distribution. If the distribution of V(W")
is computationally distinguishable from the uniform distribution, it means that
V(W) is computationally distinguishable from uniform distribution, which is by
assumption, false. O

The next lemma formalizes the notion that a FANQOUT gate does not “leak
any information” in the reverse direction.

Lemma 4. Let W be the input wire and W' be an output wire of a FANOUT
gate. Then the distributions V(W) and V(W)|V(W') are computationally indis-
tinguishable.

We observe that the sharing algorithm fixes V(W) randomly and independently
of V(W'). Therefore, if the lemma is false it would mean that the knowledge of
an arbitrary (plaintext, ciphertext) pair gives information about the key, which
contradicts the assumption that ENC' is secure. O

A simple generalization of the above lemma to any pair of wires with the
property that any path connecting them must pass through a FANOUT gate is:



Lemma 5. In the fanout graph of C, let F' be an FFR of depth d and F' an
FFR of depth d', d' > d. Let W and W' be wires in F and F' respectively. Then
V(W) and V(W)|V(W') are computationally indistinguishable. O

The above lemma allows us to apply induction on the depth on the fanout
graph, at every step ignoring all FFRs at a greater depth than the current FFR.

Lemma 6. Let F' be an FFR at depth d. Assume that © holds on the outputs of
all FFRs of depth < d. Then w holds on the output of F'.

Proof. By lemma 5, we can ignore the effect of all FFRs of depth > d. By
assumption, 7 holds on all wires that feed any of the inputs of F. Applying
lemma 3 to each FANOUT gate feeding F', we find that the players’ view of
the inputs of F' is identical to that of Ap. Therefore by lemma 2, 7 holds on the
output of F. O

The rest of the proof is straightforward. By applying induction on the depth
d of the FFRs, we find that = holds on the output of every FFR. In particular,
7 holds on the output wire of the circuit. O

3.2 Efficiency
Theorem 2. The above scheme is efficient for all access structures A € mP.

Proof. The total number of shares given to the players is O(n) since each player
gets exactly one share, corresponding to one of the input wires in the circuit.
The number of published share values is twice the number of FANOUT gates,
which is polynomial in n when the circuit is poly-size. Therefore, for all access
structures A having a polynomial-size circuit (i.e, A € mP), this scheme is
efficient. |

The scheme is also computationally efficient for all A € mP since the com-
putational effort required by D is equivalent to that of evaluating the circuit
on some input assignment and performing a polynomial number of encryptions.
Reconstruction of the secret can be naturally parallelized and the parallel time
complexity of reconstructing the secret by an access set A € A is proportional
to the depth of the circuit.

4 Secret sharing with semi-trusted third party

Our goal is to explore the limits on the access structures for which we can give
secret sharing schemes by relaxing the requirements. Thus, even though secret
sharing as such is a non-interactive protocol, we wish to make it more powerful
by allowing a limited amount of interaction. We do this by introducing a third
party T who is allowed to interact with the players. However, at the end of the
protocol T should be no wiser about the inputs of the dealer and the players
than before the beginning of the protocol.

The algorithms for sharing and reconstruction are similar to the first protocol.
The main difference is that the circuit consists of NOT gates also. Therefore,



we need to associate two share values with each wire: one corresponding to the
evaluation of the wire being 1 and the other corresponding to the evaluation of
the wire being 0. (We denote these by V(W,1) and V(W,0) respectively, and
call them the 1-share and the 0-share respectively of W.) Propagating the values
across AND, OR and FANOUT gates is done as in the previous protocol. In
the case of NOT gates, the share value of the input wire with evaluation 0 is
related to the share value of the output wire with evaluation 1, and vice versa.

Role of the third party. In monotone circuits, Fval(W, A) > Eval(W, B)
whenever A D B. Therefore, the dealer need not worry about a set of players
obtaining some share values by evaluating the circuit (i.e, invoking the recon-
struction algorithm) with some input z; set to 0 even though is possible to
evaluate the circuit with z; = 1. In the case of a general circuit (which includes
NOT gates), however, this is not true, and therefore it is possible that the play-
ers might obtain both the 0-share and the 1-share of some wire. The role of the
third party is to ensure that this cannot happen. It is enough to ensure that the
players cannot get both the 0-share and the 1-share of any auxiliary input wire
of the circuit. This is done by executing an Oblivious Transfer protocol [12] for
each auxiliary input wire of the circuit.

Let A be an access structure in m/N P. By lemma 1, there exists a monotone
nondeterministic Boolean circuit C of polynomial size that computes A. Using
this circuit we will construct a CSS scheme for A.

4.1 Protocol

Sharing The sharing algorithm is essentially the sharing algorithm of the pre-
vious section invoked twice, once for the 0-shares and once for the 1-shares.

1. Let W be the output wire of C. Assign V (W, 1) = s, where s is the secret.
2. Choose a gate G whose output wire has been assigned a 1-share.

— G is an AND gate : Let W be the output wire of G and W; and Wy
be the input wires. Pick a random z in F. Assign: V(W1,1) = = &
V(W,1) and V(Wy,1) = z.

— (G is an OR gate : Let W be the output wire of G and W; and W, be
the input wires. Assign: V(Wy,1) = V(W, 1) and V (W5, 1) = V(I 1).

— G is a NOT gate: Assign V(W',0) = V(W,1) where W is the output
wire and W' is the input wire of G.

— Gisa FANOUT gate : Choose a random key K from F. Let Wy, Wy be
the outputs of G and W be the input. Publish: ENCg (V(W;,1)) for i =
1,2. Assign: V(W,1) = K.

Choose a gate G whose output wire has been assigned a 0-share.

— G is an AN D gate : Let W be the output wire of G and W; and W5 be
the input wires. Assign: V(Wy,0) = V(W,0) and V (W5, 0) = V (W, 0).

— G is an OR gate : Let W be the output wire of G and W; and W,
be the input wires. Pick a random z in F. Assign: V(W;,0) = =z &
V(W,0) and V(W,0) = x.



— G is a NOT gate: Assign V(W' 1) = V(W,0) where W is the output
wire and W' is the input wire of G.

— Gis a FANOUT gate : Choose a random key K from F. Let Wy, W, be
the outputs of G and W be the input. Publish: ENCk (V(W};,0)) for i =
1,2. Assign: V(W,0) = K.

Repeat steps 2 and 3 until all gates are considered.

4. For every (W, b) that has not been assigned a share, assign a random value
to V(W,b).

5. The 1-shares of the input wires form the shares of the corresponding players.
The 0-shares of the input wires are published.

6. For every auxiliary input wire W, {(V/(W,0), V (W, 1)} is sent to the third

party.

@

Reconstruction The reconstruction consists of two stages: in the first stage
the players interact with the third party; in the second the players perform some
local computations to recover the secret (if they form an access set).

Stage 1. The players cannot interact individually with the third party
through separate channels, because of the requirement that the third party
should not gain any information about the set of players involved in the re-
construction procedure. Therefore we consider all the players as constituting
one virtual player P.

Let A be the access set of players participating in the reconstruction algo-
rithm. For each auxiliary input wire W:

— T and P execute a OT? protocol with V(W,0) and V (W, 1) as T’s secrets.
Since A is a qualified subset, there exists an assignment of values to the
auxiliary inputs y such that the circuit evaluates to 1. For each wire W, P
chooses the corresponding value of y as its index.

Stage 2. The stage 2 is similar to the reconstruction phase of the first pro-
tocol. The goal is to compute V (W, FEval(W, A)) for each wire W. For the input
wires these values are already known from the share values and the public infor-
mation.

1. Choose a gate G whose input wires have been assigned shares.

— G is an AND gate with output 1: Let W be the output wire of G and
Wy and Wy be the input wires. Assign V(W, 1) = V(Wy,1) & V(Wy, 1).

— G is an OR gate with output 1: Let W be the output wire of G and W;
and W5 be the input wires. Choose the input wire W;(i = 1, 2) such that
Eval(W;) = 1. Assign V(W,1) = V(W;, 1).

— G is an AND gate with output 0: Let W be the output wire of G and
Wi and W5 be the input wires. Choose the input wire W;(i = 1,2) such
that Eval(W;) = 0. Assign V(W,0) = V(W;,0).

— (G is an OR gate with output 0: Let W be the output wire of G and W;
and W, be the input wires. Assign V(W,0) = V(IW;,0) ¢ V(Ws,0).

— G is a NOT gate: Let Let W be the output wire of G and W' the input
wire. Assign V(W,b) = V(W' 1 —b) where b = Eval(W).



— G is a FANOUT gate : Let W be the input wire of G and Wy, Wy
be the outputs. Apply DEC to compute V(W;,b) from V(W,b) and
ENCy (wp) (V(Wi,b)), where b = Eval(W).

2. Repeat step 1 until V(Wp, 1) for the output wire Wy, is constructed. V(Wo, 1)
is the secret.

4.2 Correctness and security

To prove the correctness we first note if A is a qualified subset then the circuit
evaluates to 1 on the input (x1,xa,...2Tn,y1,Y2,---Yn) as chosen in the stage 1
of the reconstruction protocol. Next, we prove by induction that if the wire W
evaluates to b then the players can compute V (W, b). Clearly this is true of the
input wires. If W is any other wire, it must be the output of an AND, OR,
NOT,or FANOUT gate GG. In each of these cases, stage 2 of the reconstruction
algorithm shows how the players can obtain the V(WW,b) from the relevant V-
values of the input wires of G.

Security. Suppose A ¢ A. Then for every P; ¢ A, P has no way of knowing
the 1-share of P;’s input wire. Therefore when P evaluates the circuit in stage
2, the input z; must be 0. Hence from the definition of C there is no assignment
(y1,%2, - .-Yn) which will make C' evaluate to 1. Further, since C computes a
monotone function, C' will evaluate to zero even if some of the inputs x; with
P; € A are set to zero.

It remains to prove the correctness of stage 2, i.e, that P cannot find the secret
if C' evaluates to 0. The proof of this is very similar to the proof of security of
the reconstruction algorithm of the first protocol, and is hence omitted.

Security against the third party. In the sharing protocol, the T' gets no
information about the 1-shares of the input wires. Further, from the definition
of OT, T gets no new information in stage 2 of the reconstruction protocol.
Therefore, T' can only evaluate the circuit with all inputs 0, which means that
T cannot get the 1-share of the output wire.

Again, since T learns nothing at all during interaction with the virtual player,
T cannot identify the access set A.

4.3 Efficiency

As with the previous protocol, this one is also efficient when the circuit is of
polynomial size (i.e, A € mN P) since the total size of the shares is linear in
n and the amount of published information is proportional to the number of
FANOUT gates. The question of computational complexity is somewhat tricky.
Strictly speaking, the protocol is computationally efficient since the sharing and
reconstruction algorithms involve only a constant amount of computation for
each gate of the circuit. However, the players need to determine if the set A
is a qualified subset before they can start the reconstruction algorithm. This
computation is, by definition, a general problem in mN P. The implications of
this are discussed in the next section.



The round complezity of the interactive protocol between T and P is the same
as the round complexity of the OT protocol used, since all the m + n OTs can
be invoked in parallel. If we use a scheme like the ones in [11], this complexity is
2. It might appear at first glance that if we use non-interactive OT schemes like
[4], then the need for a third party would disappear. However, non-interactive
OT schemes are not applicable in this context since the receiver needs to choose
the index after the start of the protocol. Using non-interactive OT would require
the access set of players to be known beforehand.

5 Discussion and Future Work

Theorem 3 (A simple upper bound). Efficient CSS schemes cannot exist
for an access structure A not in co-RP.

Proof. To show this, we construct a deterministic algorithm to solve the prob-
lem “Does A € A” using the algorithms share and reconstruct as oracles. The
algorithm chooses a random secret, shares it and uses reconstruct with the shares
corresponding to A as inputs to see if it gets back the secret which it chose. If
it is the same it decides that A € A. Else, it decides that A ¢ A. We note that
if indeed A € A, it decides correctly with probability 1, while if A ¢ A, there is
a small probability of error. Since we decide L 4 with a deterministic algorithm,
if share and reconstruct are poly-time then A must be in co-RP. O

Implications of Our Results

— It was not known whether it is possible to construct efficient secret sharing
schemes for access structures outside (algebraic NC?N mono), though [2]
provided evidence that it is possible. Qur result shows that computational
secret sharing is possible over the entire class mP which contains access
structures not in algebraic NC?2.

— Combining our result with that of [1], it is possible to achieve the optimal
information rate (for large secret length) for every access structure in mP.

— As we have remarked earlier, to carry out the reconstruction algorithm the
players need to determine if they form an access set, and this computation
could lie outside P in the third party case. This does not mean, however, that
the third party result is purely of theoretical significance, for two reasons:
when the players are probabilistic algorithms, the class of access structures
that can be decided in poly-time is co-RPN mono, as shown above, and
this class is bigger than m P. Further, even for access structures admitting of
deterministic poly-size circuits, it might be more efficient to use a randomized
algorithm, in which case the protocol using nondeterministic Boolean circuits
must be used.

Our result must be understood more as an existence result for efficient pro-
tocols, rather than as a method to construct such protocols. For instance, it is
likely that using threshold gates as building blocks in addition to AND and OR
would give more efficient protocols. One direction for future work in this area



is to construct particularly efficient CSS schemes for interesting special cases of
access structures in monotone P.

The most important open question is to determine the exact power of effi-
cient CSS schemes; in particular, do there exist efficient CSS schemes for access
structures outside monotone P.

Another direction for future work is to investigate models for CSS which do
not have the co-RP upper bound. One way of doing this would be to allow the
dealer to be computationally unbounded. This would have the effect of the lan-
guage L 4 being decidable in poly-time by a Turing machine with advice strings.
However it is unreasonable to assume the dealer alone to be computationally
unbounded, since secret sharing is usually a part of a larger protocol.

Another approach has been explored by Cachin [5], who uses a bulletin board
on which an arbitrary amount of information may be published. Our construc-
tion using a semi-trusted third party also, as we have remarked, sidesteps the
problem. We propose yet another approach. Since the trouble with access struc-
tures outside co-RP is the infeasibility of determining whether or not a given
set is in the access structure, we provide the players with an oracle which can
answer precisely that question: the players can make queries to the oracle with
a subset of P as input, and the oracle decides whether it is a qualified subset
or not. We note that this is a weaker assumption than that of [5]. It would be
interesting to see if it is possible to construct efficient CSS schemes for the class
mN P under this model.
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