
How Efficient can Memory Checking be?

Cynthia Dwork1, Moni Naor2,?,
Guy N. Rothblum3,??, and Vinod Vaikuntanathan4,? ? ?

1 Microsoft Research
2 The Weizmann Institute of Science

3 MIT
4 IBM Research

Abstract. We consider the problem of memory checking, where a user
wants to maintain a large database on a remote server but has only
limited local storage. The user wants to use the small (but trusted and
secret) local storage to detect faults in the large (but public and un-
trusted) remote storage. A memory checker receives from the user store
and retrieve operations to the large database. The checker makes its own
requests to the (untrusted) remote storage and receives answers to these
requests. It then uses these responses, together with its small private
and reliable local memory, to ascertain that all requests were answered
correctly, or to report faults in the remote storage (the public memory).
A fruitful line of research investigates the complexity of memory check-
ing in terms of the number of queries the checker issues per user request
(query complexity) and the size of the reliable local memory (space com-
plexity). Blum et al., who first formalized the question, distinguished
between online checkers (that report faults as soon as they occur) and
offline checkers (that report faults only at the end of a long sequence
of operations). In this work we revisit the question of memory checking,
asking how efficient can memory checking be?
For online checkers, Blum et al. provided a checker with logarithmic
query complexity in n, the database size. Our main result is a lower
bound: we show that for checkers that access the remote storage in a de-
terministic and non-adaptive manner (as do all known memory checkers),
their query complexity must be at least Ω(log n/ log log n). To cope with
this negative result, we show how to trade off the read and write com-
plexity of online memory checkers: for any desired logarithm base d, we
construct an online checker where either reading or writing is inexpensive
and has query complexity O(logd n). The price for this is that the other
operation (write or read respectively) has query complexity O(d · logd n).
Finally, if even this performance is unacceptable, offline memory check-
ing may be an inexpensive alternative. We provide a scheme with O(1)
amortized query complexity, improving Blum et al.’s construction, which
only had such performance for long sequences of at least n operations.

? Incumbent of the Judith Kleeman Professorial Chair; Research supported in part
by a grant from the Israel Science Foundation.

?? Research supported by NSF Grants CCF-0635297, NSF-0729011, CNS-0430336, Is-
rael Science Foundation Grant 700/08 and by a Symantec Graduate Fellowship.

? ? ? Supported in part by NSF CCF-0635297 and Israel Science Foundation 700/08.

1 Introduction

Consider a user who wants to maintain a large database but has only
limited local storage. A natural approach is for the user to store the
database on a remote storage server. This solution, however, requires
that the user trust the remote storage server to store the information re-
liably. It is natural to ask whether the user can use his or her small (but
trusted and secret) local storage to detect faults in the large (but public
and untrusted) remote storage. This is the problem of memory checking,
as introduced by Blum, Evans, Gemmel, Kannan and Naor [6] in 1991.
Since then, this problem has gained even more importance for real-world
applications, see for example the more recent works of Clarke et al. [8],
Ateniese et al. [4], Juels and Kaliski [13], Oprea and Reiter [16] and
Shacham and Waters [17]. Large databases are increasingly being out-
sourced to untrusted storage providers, and this is happening even with
medical or other databases where reliability is crucial. Another wide-
spread and growing phenomenon are services that offer individual users
huge and growing remote storage capacities (e.g. webmail providers, so-
cial networks, repositories of digital photographs, etc.). In all of these
applications it is important to guarantee the integrity of the remotely
stored data.
Blum et al. formalized the above problem as the problem of memory
checking. A memory checker can be thought of as a layer between the
user and the remote storage. The checker receives from its user a sequence
of “store” and “retrieve” operations to a large unreliable memory. Based
on these “store” and “retrieve” requests, it makes its own requests to
the (untrusted) remote storage and receives answers to these requests.
The checker then uses these responses, together with a small private and
reliable “local” memory, to ascertain that all requests were answered
correctly, or to report that the remote storage (the public memory) was
faulty. The checker’s assertion should be correct with high probability
(a small two-sided error is permitted). Blum et al. made the distinction
between online and offline memory checking. An online checker verifies
the correctness of each answer it gives to the user. An offline checker
gives only the relaxed guarantee that after a (long) sequence of oper-
ations a user can verify whether or not there was an error somewhere
in the sequence of operations. Two important complexity measures of a
memory checker are its space complexity, the size of the secret reliable
“local” memory, and its query complexity, the number of queries made
to the unreliable memory per user request. One may consider additional
complexity measures such as the alphabet size (the size of words in the
public memory), and more measures such the checker’s and public mem-
ory’s running times, the amount of public storage, etc. See Section 2 for
formal definitions and a fuller discussion.
In this work we revisit the question of designing efficient memory check-
ers. Our main result is a lower bound on the query complexity of deter-
ministic and non-adaptive online memory checkers. We also present new
upper bounds for both online and off-line memory checking.

Online Memory Checkers. The strong verification guarantee given
by online memory checkers makes them particularly appealing for a wide

variety of applications. Blum et al. construct efficient online memory
checkers with space complexity that is proportional to the size of a cryp-
tographic key, and logarithmic query complexity. Their construction(s)
assume that a one-way function exists and that the adversary who con-
trols the public memory is efficient and cannot invert the function. In
fact, this assumption was shown to be essential by Naor and Rothblum
[15], who showed that any online memory checker with a non-trivial
query-space tradeoff can only be computationally secure and must be
based on the existence of a one-way function. Even in the computational
setting, the space complexity of Blum et al.’s online memory checkers is
intuitively optimal, since if the secret memory is s bits long, an (efficient)
adversary can guess it (and fool the memory checker) with probability
at least 2−s. What is less clear, however, is whether the logarithmic
query complexity is essential (in a computational setting). This is an im-
portant question, since while this logarithmic overhead is reasonable, in
many applications it remains a significant price to have to pay for data
verification.
Where then does this overhead come from? The logarithmic query com-
plexity is needed to avoid replay attacks, in which the correct public
memory is swapped for some older version of it. In most applications
replay attacks are a serious threat, and Blum et al. (and all other solu-
tions we know of) use a tree structure to overcome this devastating class
of attacks. This tree structure incurs a logarithmic overhead which is
basically the depth of the tree. We begin by asking whether it is possible
to avoid the logarithmic overhead and construct memory checkers with
lower query complexity. We show that the answer is negative (even in
the cryptographic setting!) for all known and/or practical methods of
designing memory checkers.

A Query Complexity Lower Bound. Consider online memory check-
ers, where for each store or retrieve request made by the user, the loca-
tions that the checker accesses in the public memory are fixed and known.
We call such a checker a deterministic and non-adaptive checker. Known
checker constructions are all deterministic and non-adaptive, indeed tree
authentication structures all have this property. Our main result is a
new lower bound, showing that any deterministic non-adaptive memory
checker must have query complexity Ω(log n/ log log n). Thus the log-
arithmic query complexity overhead is (almost) unavoidable for online
memory checking. This is stated more fully (but still informally) below,
see Section 3 for the full details.

Theorem 1 Let C be a non-adaptive and deterministic memory checker
for an n-index boolean database, with space complexity s ≤ n1−ε for
some ε > 0, query complexity q and a polylog-length alphabet (public
memory word size). It must be that q = Ω(log n

log log n
).

Let us examine the above theorem more closely. Considering only check-
ers that are deterministic and non-adaptive may seem at first glance to
be quite restrictive. We argue, however, that practical checkers will likely
have to conform to this restriction:

An adaptive checker is one that chooses sequentially which locations in
the remote storage it reads and writes, and chooses these locations based
on the contents of earlier read locations. This means that the checker
needs to conduct, for every user request, several rounds of communica-
tion with the remote storage (the checker needs to know the contents
of a location before deciding which location it accesses next). Since this
communication happens over a network, it may very well lead to latency
which results in more of an overhead than the logarithmic query com-
plexity of non-adaptive checkers. In addition, in cases where the memory
contents are encrypted non-adaptive memory access may be especially
desirable, as the set of locations accessed reveals nothing about the (de-
crypted) contents of the memory.
Another problem with adaptive checkers is that they make caching the
results much more difficult, since the actual locations needed to be stored
in the faster memory change between accesses.
A non-deterministic checker may also result in worse performance. Such
a checker strategy, with queries that are either significantly randomized
or hard to predict (depending on the secret memory), destroys locality
in the user’s queries and makes it hard to utilize caching mechanisms.
In particular, user accesses to neighboring database indices would not
necessarily be mapped to checker accesses to neighboring locations in
the remote storage, and repeated user accesses to the same database
index would not necessarily be mapped to the same locations in the
remote storage. For many of the applications of memory checking, this
will result in an unacceptable overhead for the remote storage server. We
note that Blum et al.’s constructions, as well as all of the constructions we
present in this work, have the important property that they do preserve
(to a large extent) the locality of a user’s data accesses.
Finally, we note that the restriction on sub-linear space is essential, as the
problem of memory checking makes very little sense with linear secret
memory; the checker can simply store the entire database in reliable
memory! Finally, it is interesting to ask whether the lower bound can
be extended to larger alphabets (we focus on polylog word lengths or
quasi-polynomial alphabet size). We do note that the best parameters
attained both in our work and in [6] can be attained with words of poly-
logarithmic length.

Trading Off Reads and Writes. Is all hope of improving the perfor-
mance of online memory checkers lost in light of Theorem 1? We argue
that this is not the case. While we cannot improve the query complexity
of online checkers beyond logarithmic, we observe that in many applica-
tions read operations are far more numerous than write, and vice versa.
One example for frequent read operation is a database that is read fre-
quently but updated only periodically. An example for frequent write is
a repository of observed data (say climate measurements) that is con-
stantly updated but polled much less frequently.
For these settings we show how to trade off the query complexity of read
and write operations. For any desired logarithm base d, we show how
to build an online checker where the frequent operation (read or write)
is inexpensive and has query complexity O(logd n), and the infrequent

operation (write or read respectively) has query complexity O(d · logd n).
The space complexity is proportional to a security parameter (it can be
poly-logarithmic under an exponential hardness assumption), and the
alphabet size is the logarithm of the desired soundness. The construction
uses a pseudo-random function (see [12]), and can thus be based on
the existence of any one-way function. This means, for example, that
if one is willing to have a polynomial (nε) write complexity, then we
can get a constant (O(1/ε)) read complexity (and vice versa). This may
be very useful for a database that is read frequently but only updated
infrequently.
To achieve this tradeoff, we provide two constructions: one for efficient
write and one for efficient read. Both of these use a tree-based authen-
tication structure, where the tree’s depth is logd n. The efficient-write
construction can viewed as a generalization of Blum et al.’s tree-based
online memory checker. The efficient-read construction is different in the
way it stores authentication information. Intriguingly, we do not know
how to get a good read-write trade-off based on UOWHFs where the
checker’s memory only needs to be reliable (and not necessarily private).
Blum et al. were able to present such a construction (albeit with a nearly
exponential-size alphabet) with logarithmic query complexity, but their
construction does not easily yield itself to a read-write tradeoff. See Sec-
tion 4 for the full details.
While we believe that these trade-offs are very useful for many applica-
tions, we still cannot beat the lower bound of Theorem 1: the sum of read
and write complexities is still at least logarithmic in n (not surprisingly,
since the above checkers are deterministic and non-adaptive). For many
other applications this may still be prohibitively expensive. This leads
us then to revisit Blum et al.’s notion of offline memory checking, where
the verification guarantee of the checker is weaker, but it is possible to
achieve better performance.

An Off-Line Alternative. Blum et al. suggested the notion of an
offline memory checker. Such a memory checker gives the relaxed guar-
antee that after a (long) sequence of operations it can be used to check
whether there was an error. In other words, whether any value retrieved
from public memory was different from the last value stored at that loca-
tion. The advantage of offline memory checkers is that they allow much
better parameters. Specifically, Blum et al. gave a construction where for
any long sequence of user operations (at least n operations) the amor-
tized query complexity is O(1) and the space complexity is logarithmic
in n and in the soundness parameter. Remarkably, the security of their
checker is information theoretic, and does not rely on any cryptographic
assumptions.
We conclude that for applications in which the offline guarantee suffices,
say when the user does not mind that some of the data may be retrieved
incorrectly as long as this is eventually detected, the query complexity
of both read and write can be reduced to O(1). It is natural to ask what
can possibly be improved in the above construction, as the (amortized)
query and space complexity seem optimal. One place for improvement
is that Blum et al.’s construction is highly invasive: the checker stores

a significant amount of additional information in the public memory on
top of the database. Ajtai [2] showed that this invasiveness cannot be
avoided (see the full version for an overview of Ajtai’s results).
We focus on a different parameter. The above off-line checker only guar-
antees good amortized performance for long sequences of at least n op-
erations. We observe that for shorter operation sequences, the amortized
performance will be quite bad, as their checker needs to always scan
the entire public memory before deciding whether there were any errors.
So for a k operation sequence, the amortized query complexity will be
O(n/k). In Section 5 we overcome this obstacle. We present a simple and
inexpensive offline memory checker where the amortized query complex-
ity for any sequence of operations (even a short one) is O(1). Moreover,
we show that similar ideas can be used to decrease the invasiveness of
the checker, and that the invasiveness (the amount of extra information
stored in public memory on top of the database) only needs to be pro-
portional to the number of database locations that the checker actually
accesses (instead of always being proportional to the entire database size
as in Blum at al.). We note that we can overcome Ajtai’s invasiveness
lower bound in this setting because the proof of that lower bound con-
siders sequences of operations that access every location in the database
(again, see the full version for the details).

Organization. We begin in Section 2 with definitions of memory
checkers (we refer the reader to Goldreich [10, 11] for standard crypto-
graphic definitions). In Section 3 we state and prove our lower bound
for the query complexity of online memory checkers. Constructions of
read-write tradeoffs are presented in Section 4. Finally, in Section 5
we present a new and improved construction of offline checkers.

2 Memory Checkers: Definitions

A memory checker is a probabilistic Turing machine C with five tapes:
a read-only input tape for receiving read/write requests from the user U
to the RAM or database, a write-only output tape for sending responses
back to the user, a read-write work tape (the secret reliable memory), a
write-only tape for sending read/write requests to the memory M and
a read only input tape for receiving M’s responses.
Let n be the size of the database (the RAM) U is interested in using. A
checker is presented with “store” (write) and “retrieve” (read) requests
made by U to M. After each “retrieve” request C returns an answer or
outputs that M’s operation is BUGGY. C’s operation should be both
correct and complete for all polynomial (in n) length request sequences.
Formally, we say that a checker has completeness c (2/3 by default) and
soundness s (1/3 by default) if:

– Completeness. For any polynomial-length sequence of U-requests, as
long as M answers all of C’s “retrieve” requests correctly (with the
last value that C stored at that location), C also answers all of U ’s
“retrieve” requests correctly with probability at least c.5

5 In fact in all our constructions we get perfect completeness; the checker answers all
requests correctly with probability 1.

– Soundness. For any polynomial-length sequence of U-requests, for
any (even incorrect or malicious) answers returned by M, the prob-
ability that C answers a user request incorrectly is at most s. C may
either recover the correct answer independently or answer that M
is “BUGGY”, but it may not answer a request incorrectly (beyond
probability s).

Note that the completeness and soundness requirements are for any re-
quest sequence and for any behavior of the unreliable memory. Thus
we think of U and M as being controlled by a malicious adversary. A
memory checker is secure in the computational setting if the soundness
property holds versus any PPTM adversary. In this setting, if one-way
functions exist, then they can be used to construct very good online
memory checkers (see [6]).
As previously noted, [6] make the distinction between memory checkers
that are online and offline. An offline checker is notified before it receives
the last “retrieve” request in a sequence of requests. It is only required
that if at some point in the sequence a user retrieve request was answered
incorrectly, then the checker outputs BUGGY (except with probability
s). The task of an online checker is more difficult: if M’s response to
some request was incorrect, C must immediately detect the error or re-
cover from it (with high probability). C is not allowed (beyond a small
probability) to ever return an erroneous answer to U . Note that after
the memory checker informs the user that M’s operation was BUGGY,
there are no guarantees about the checker’s answers to future queries.
Recall that the two important measures of the complexity of a memory
checker are the size of its secret memory (space complexity) and the num-
ber of requests it makes per request made by the user (query complexity).
The query complexity bounds the number of locations in public memory
accessed (read or written) per user request. We would prefer memory
checkers to have small space complexity and small query complexity. A
memory checker is polynomial time if C is a PPTM (in n).
A deterministic and non-adaptive memory checker is a checker C
where the locations it queries in public memory are set and depend (de-
terministically) only on the database index being stored or retrieved.
We call such a checker non-adaptive because it chooses the entire list
of locations to access in public memory without knowing the value of
the public (or secret) memory at any location. We note, though, that
even a non-adaptive checker can decide which values to write into those
(non-adaptively chosen) locations in an adaptive manner, based on val-
ues it reads and the secret memory. One way to think of a deterministic
non-adaptive checker is by associating with each index in the database a
static set of locations that the checker accesses when storing or retrieving
that index.
Similarly, for a deterministic and non-adaptive checker, each location in
the public memory can be associated with the set of database indices
that “access” it. We say that a location in public memory is t-heavy if
there are at least t database indices that access it (for store or retrieve
requests).
We say that C is a (Σ,n,q, s)-checker if it can be used to store a (binary)
database of n indices with query complexity q and space complexity s,

where the secret and public memory are over the alphabet Σ (we allow
this alphabet to be non-binary).

3 Lower Bounds

Throughout this section we obtain a lower bound for memory checking
by using restrictions of memory checkers. When we talk about re-
stricting a memory checker to a subset of database indices, we start with
a checker C say for databases with n indices, and obtain from it a checker
C′ for databases with n′ < n indices. This is done simply by selecting a
subset I of the indices that C works on (|I| = n′) and ignoring all of the
rest. Naturally, the completeness and soundness of C carry over to C′.
Intuitively, this may also mean that we can ignore some of the locations
in public memory or some of the secret memory, but we make no such
assumptions in this work. It may seem that this is a bad bargain: the
number of indices is decreased without gaining anything. However, when
performing the restrictions below we gain (reduce) something in other
complexity measures such as the query complexity. Sometimes this will
require making additional changes to the checker, such as moving some
locations from public to secret memory.
We will assume without loss of generality that the read and the write
operations access the same locations. This involves at most doubling the
number of accesses per operation.
We now present our lower bound for non-adaptive and deterministic
checkers.

Theorem 1. Let C be a (Σ, n, q, s) deterministic and non-adaptive on-
line memory checker, with s ≤ n1−ε for some ε > 0 and |Σ| ≤ npoly log n.
It must be that q = Ω(log n

log log n
).

Proof (of Theorem 1). Let q0 = q be the query complexity of the checker
C. The proof proceeds by iteratively restricting the checker, gradually
lowering its query complexity until a lower bound can be obtained. This is
done by examining the memory checker and determining whether there is
a relatively large set of “heavily queried” locations in the public memory.
I.e. whether there is a polynomial size set of locations in the public
memory, each of which is queried when reading or writing many database
indices. Recall that we call such heavily-queried locations in the public
memory “heavy locations”.6 If there is such a set of heavy locations, then
those public memory locations are moved into the secret memory and
the query complexity of the checker is reduced significantly. In this case
we advance towards our goal of lower bounding the query complexity.
This intuition is formalized by Lemma 1 (the proof appears below):

Lemma 1. Let C be a (Σ, n, q, s) deterministic and non-adaptive online
memory checker. For every threshold t ∈ N such that n > t the following
holds: If there exists m ∈ N such that there are m or more t/m-heavy
locations in public memory, then for some i ∈ [q] the memory checker C
can be restricted to a (Σ, t/2i+2, q − i, s + m)-checker.

6 I.e. locations accessed by many indices - more formally a location is t-heavy if there
are t different queries i ∈ [n] that access it.

Lemma 1 is used iteratively as long as there are heavy public memory
locations, restricting the memory checker to only a (large) subset of its
indices while lowering its query complexity (q). This comes at the cost
of only a modest drop in the number of indices (n) and a moderate
increase in the space complexity (s). We repeat this iteratively, reducing
the query complexity until there is no set of “heavy” locations in the
public memory. If we can apply the lemma many times, then we get a
lower bound on the checker’s query complexity: each application of the
lemma reduces the query complexity, so if we applied the lemma many
times the initial query complexity had to have been high.
The reason that we can apply Lemma 1 many times is that otherwise we
are left with a checker on many indices with no set of “heavy” locations.
If there is no set of “heavy” public memory locations, then the (possibly
reduced) public memory can be partitioned into relatively many parts
that are disjoint in the sense that each part is queried only by a single
index of the database. We can restrict the checker again, but this time
to obtain a checker with many indices, relatively small secret memory
and query complexity 1. This is formalized in Lemma 2 (proof below):

Lemma 2. Let C be a (Σ, n, q, s) deterministic and non-adaptive online
memory checker. Then, for every α ∈ N such that α < n, and for every
threshold t ∈ N such that n > 4t · q · log n, the following holds:
If for every integer m ∈ {1, . . . , α}, there are fewer than m locations in
public memory that are t/m-heavy, then the memory checker C can be
restricted to a (Σq, n · α/(2q · t), 1, s/q)-checker.

Finally, we show that such a “disjoint” checker implies a contradiction.
In particular, it must have space complexity that is more or less pro-
portional to the number of disjoint parts. Unless the memory checker
has already been restricted to very few indices (in which case we have
a query complexity lower bound), this results in a contradiction, since
the checker’s space complexity is bounded (by a small polynomial in n).
The intuition that a disjoint checker must have large space complexity
is formalized in Lemma 3 (proof below):

Lemma 3. Let C be a (Σ, n, q = 1, s) deterministic and non-adaptive
online memory checker, i.e. a checker that makes only a single query,
where the location that each index queries in public memory is different.
Then, s ≥ n

log |Σ| − 1.

We postpone proving the lemmas and proceed with a formal analysis. We
take α = nd, for a constant 0 < d < 1 to be specified later. We iteratively
examine and restrict the memory checker. Let Ci be the checker obtained
after the i-th iteration (C0 = C is the original checker), let ni be the
number of indices in its database and si its space complexity. Taking a
threshold ti = ni

logc n
, where c > 1 is a constant specified below, we check

whether or not the “new” checker Ci has a set of heavy indices in its
public memory. We only iterate as long as ni > α. Formally, there are
two possible cases:

1. If Ci has a set of m ≤ α public memory locations that are at least
ti/m-heavy, then by Lemma 1:

For some j ∈ {1, . . . , q}, we can build from Ci a (Σ, ti/2j+2, q−j, si+
α) deterministic and non-adaptive online memory checker Ci+1.

2. If for every integer m ≤ α the checker Ci does not have a set of m
public memory locations that are ti/m-heavy, and choosing c, d such
that ni > 4ti · q · log α, by Lemma 2:
We can build from Ci a (Σq, ni ·α/(2q · ti), 1, si/q) deterministic and
non-adaptive online memory checker. If ni is reasonably large, i.e.
has not been reduced by repeated iterations of Case 1, then this will
imply a contradiction.

Recall that q0 denotes the query complexity of the initial checker C,
before any application of Lemmas 1 and 2. Assume for a contradiction
that q0 ≤ log n/(3c · log log n). Let j ∈ [q + 1] be the total number of
queries reduced by the iterative applications of Lemma 1, i.e., the number
of queries reduced by the iterations in which Case 1 occurred. Since we
assumed q ≤ log n/(3c · log log n), we know that j < log n/(3c · log log n).
Thus, in the first iteration in which Case 2 applies (say the i-th iteration
in total), it must be the case that

ni ≥ n/(logc·j n·23 log n/3c·log log n) = n/(logc·j n·2log n/c log log n) > n1−ε/2.

Recall that we only iterate so long as ni > α, so we can choose any
α < n1−ε/2. The space si used by this restricted checker is at most
s + i · α ≤ s + log n · α. As usual, ti = ni/ logc n, and choosing c > 2 we
get that

4ti · q · log α ≤ ni/(logc n · log n · d log n) < ni

Applying Lemma 2, we obtain a (Σq, ni ·α/(2q ·ti), 1, si/q)-checker. Now,
by Lemma 3, which bounds the space complexity of one-query checkers,
we get that it must be the case that:

si ≥ ni · α/(2q · ti · log |Σ|) ≥ logc−1 n · α/(2 log |Σ|)

But on the other hand we know that

si ≤ s + log n · α.

We know |Σ| ≤ 2poly log n, and choose c such that logc−1 n/(2 log |Σ|) >
2 log n. We also set α > 2s = 2n1−ε. Recall that we also needed α < ni,
but this is fine since ni > n1−ε/2. In conclusion, we set α by choosing d
such that 1− ε < d < 1− ε/2, i.e. such that

2s = 2n1−ε < α = nd < ni = n1−ε/2

We get that

s > logc−1 n · α/(2 · log |Σ|)− log n · α > log n · α > 2s

This is a contradiction!

Proof (of Lemma 1). If there is a set M of m locations in public memory
that are all t/m-heavy (i.e. each accessed by at least t/m indices), then
we “restrict” the memory checker to only work for some of the indices
that access one or more of the heavy locations. Let I ⊆ [n] be the set

of database indices that access at least one of the locations in M (the
“heavy” locations).
We claim that for some i ∈ {1, . . . , q}, there are at least t/2i+2 indices
in I that each access at least i locations in M . To see this, assume for
a contradiction that this is not the case. Then the sum of the number
of locations in M that are accessed by each database index (and in
particular by the indices in I) is less than:

q∑
i=1

i · t/2i+2 = t ·
q∑

i=1

i/2i+2 < t

On the other hand, since there are m locations in M that are at least
t/m-heavy, the sum of locations in M read by database indices must be
at least t and we get a contradiction.
We restrict the checker to the indices in I that read at least i locations
in M , and move these locations to the secret memory. This increases
the space complexity (size of the secret memory) from s to s + m. By
the above, there are at least t/2i+2 such indices. For each of them, we
have reduced their query complexity from q to q − i. The alphabet size
remains unchanged.

Proof (of Lemma 2). If there are only a few relatively heavy locations
in the public memory, then we eliminate indices and split the public
memory in “disjoint chunks”: subsets of the public memory that are
disjoint in the sense that no location in any chunk is accessed by two
different indices. This is done in a greedy iterative manner. We go over
the locations in public memory one by one; for each of them we choose
one index (say j) that accesses them and eliminate any other index that
accesses a location in public memory also accessed by j. This is repeated
iteratively (for the analysis, we think of this as being done from the heavy
public memory locations to the lighter ones). After the checker cannot
be restricted any more we are left with a checker for which no two indices
access the same location in public memory, and we will show that the
number of remaining indices is reasonably high.
More concretely, for any value i ∈ [1 . . . log α], we know that there are
at most 2i − 1 locations that are between t/2i-heavy and 2t/2i-heavy.
In fact, in the iterative restriction process, when we consider i we have
already restricted the memory checker so that no location in the public
memory is more than 2t/2i-heavy.
We go over these (at most 2i−1) locations one by one, say in lexicographic
order. For each of them, we examine one index that accesses that location,
say index j. We restrict the checker by eliminating all “intersecting”
indices: indices k such that there is a public memory location queried by
both j and k. Index j queries at most q locations in the public memory,
and these in turn are queried by at most 2t/2i indices each (since we have
already restricted the checker so that there is no 2t/2i-heavy location in
the public memory). Thus, we eliminate at most 2t · q/2i indices per
heavy location in the public memory, or at most 2t · q indices in all.
Repeating this for i ← 1 . . . log α, in the i-th iteration there are at most
2i locations that are at least t/2i-heavy, and none of these locations can

be more than 2t/2i-heavy. We go over these locations one by one, and
if they have an index accessing them that has not been eliminated yet
we restrict the checker as above. This eliminates at most 2t · q/2i indices
per heavy public memory location, or 2t · q indices in all.
In total, in all of these log α iterations, with their restrictions, the number
of indices eliminated is at most:

log α∑
i=1

2t · q = 2t · q · log α

If n > 4t ·q · log α then we have only eliminated at most n/2 indices. Now,
after all the restrictions, there are no locations in the public memory
that are t/α-heavy. We go over the remaining indices in lexicographic
order, and for each of them we restrict the checker by eliminating all
other indices that intersect its public memory accesses. Since there are
no more t/α-heavy locations in the public memory, each such restriction
eliminates at most q · t/α indices.
In the end, we are left with a memory checker on at least n · α/(2q · t)
indices, with the property that no two indices access the same location in
public memory. We can thus re-order the public memory into “chunks”,
of q symbols each, such that each chunk is queried only by a single index
and each index queries only that chunk. If we enlarge the alphabet to
be comprised of these q-symbol chunks, we get a checker with query
complexity 1. The “price” is restricting the checker to only n · α/(2q · t)
indices and increasing the alphabet size to Σq. Since we have increased
the alphabet size, we can represent the secret memory as fewer symbols
of the new larger alphabet, so the secret memory is of size s/q new
alphabet symbols.

Proof (of Lemma 3). The intuition is that the public memory has a
single location for storing information about each database index. When
reading or writing the value of the database at that index, the only infor-
mation read from public memory is the information held in that index’s
location. Further, for two different database indices, their locations in
public memory are different. To achieve soundness the checker must (in-
tuitively) store, for every index in the database, separate “authentication
information” in the secret memory about the value at that index’s lo-
cation. There are n indices (say holding boolean data base values), and
only s · log |Σ| bits of secret memory, and thus s should be at least on
the order of n

log |Σ| .
To prove this we examine an adversary A, who begins by storing the all
0 database into the memory checker. This yields some public memory
p1. A then picks a random database r ∈ {0, 1}n and stores it into the
checker: for every index in r which has value 1,A uses the checker to store
the value 1 into that index. Say now that at the end of this operation
sequence, the public memory is p2 and the secret memory is s2. The
important thing to note is that for indices of r whose values are 0, the
value of their locations in the public memory has not changed between
p1 and p2 (since each index has a unique location in public memory that
it accesses).

The adversary A now replaces the public memory p2 with the “older”
information p1.7 Now the adversary tries to retrieve some index of the
database, say the i-th (i ∈ [n]). The checker runs with secret memory s2

and public memory p1 to retrieve the i-th bit of r. Note that if r[i] = 0,
then the value of the i-th index’s location in public memory is unchanged
between p1 and p2. By completeness, the checker should w.h.p. output
0 (the correct value of r[i]). On the other hand, if r[i] = 1, then by its
soundness guarantee the memory checker should w.h.p. output either 1
or ⊥ - we take either of these answers as an indication that r[i] = 1.
We conclude that for each index i ∈ [n], the checker can be used to
retrieve the i-th bit of r w.h.p. The checker achieves this using only the
public memory p1, which is completely independent of r, and the secret
memory s2. Intuitively, s2 holds nearly all the information about the
(randomly chosen) vector r, and thus s2 cannot be much smaller than
r, an n-bit vector.

More formally, suppose that s < n
log |Σ| − 1. We can view the above

procedure as allowing us to transmit a random n-bit string using only
s log |Σ| bits and succeeding with high probability: the sender and the
receiver share the initial assignment to the secret memory s1 and the
public memory p1 resulting from writing the all 0 vector (all this is
independent of r). Given the string r ∈ {0, 1}n the sender simulates
writing r to the memory as above and the resulting secret memory at
the end is s2. This is the only message it sends to the receiver. The
receiver runs the above reconstructing procedure for each 1 ≤ i ≤ n,
i.e. using secret memory s2 and public memory p1 tries to read location
i and decides that r[i] = 0 iff it gets as an answer a 0 (1 or ⊥ are
interpreted that r[i] = 1). Since for each i the procedure the receiver
is running is just what the memory checker will run with the above
adversary, the probability of error in any of the i’s is small. Therefore we
get that the receiver reconstructs all of r correctly with high probability.
But by simple counting this should happen with probability at most
2s log |Σ|

2n < 1/2.

4 Read-Write Tradeoffs for Online Checking

In this section we present two read-write tradeoffs for the query complex-
ity of online memory checking. These can be viewed as counterparts to
the lower bound of Theorem 1 (all of the memory checkers in this section
are deterministic and non-adaptive). While Theorem 1 states that the
sum of the query complexities of read and write operations cannot be
low, in this section we show that the query complexity of either read or
write can be made significantly lower, at the cost of increasing the query
complexity of the other operation (write or read respectively).

We present two trade-offs. The first gives an memory checker with ef-
ficient write operations but expensive read operations. The second is a

7 Note that this is a “replay attack”. As noted above, the Lemma and this section’s
query complexity lower bounds do not hold for checkers that are not required to
work against replay attacks.

checker with efficient read but expensive write. In particular, in both
these tradeoffs, for any well-behaved function d(n) : N → N, the “ef-
ficient” operation (write or read) has query complexity O(logd(n) n),
and the “inefficient” operation (read or write respectively) has query
complexity O(d(n) · logd(n) n). In both cases the space complexity is
polynomial in the security parameter, and the checker uses a pseudo-
random function. For desired soundness ε the length of alphabet symbols
is O(log(1/ε) + log n).

Overview of the Constructions. We proceed with an overview of the
common elements of both constructions, the details are in the full version.
Following Blum et al. (Section 5.1.2), we construct a tree structure “on
top” of the memory. Where they constructed a binary tree, we construct
instead a d(n)-ary tree. Each internal node has d(n) children, so the
depth of the tree is logd(n) n. The n leaves of the tree correspond to the
n database indices. We assume for convenience w.l.o.g that n is a power
of d(n).
In both constructions we associate a time-stamp with each node in the
tree. The time-stamp of a leaf is the number of times that the user
wrote to the database index that the leaf represents. The time-stamp of
an internal node is the sum of its children’s time-stamps, and thus the
time-stamp of the root is the total number of times that the user has
written to the database. We use tu to denote the current time-stamp of
tree node u. The time-stamps are used to defeat replay attacks (where
the adversary “replays” an old version of the public memory). If the
adversary replays old information, then the replayed time-stamps will
have smaller values than they should.
For each tree node u, we store in public memory its value vu ∈ V and
its time-stamp tu ∈ [T]. For an internal node u, its value is simply
0, for a leaf `, its value represents the value that the user stored in
the database index associated with that leaf. The root’s time-stamp is
stored in the secret reliable memory, together with the seed of a pseudo-
random function (PRF). This simply a generalization of Blum et al.’s
construction (the tree is d(n)-ary and not binary).
Our two construction differ from each other and from [6] in their use
of authentication tags to authenticate different nodes’ values and time-
stamps. In the first construction (efficient write), we store for each
node u an authentication tag which is the PRF evaluated on (u, tu, vu).
When writing a new value to a leaf, we verify the tags of all the nodes on
the path from the root to that leaf and then update the leaf’s value and
the time-stamps of all the nodes on the path to the leaf. Thus the write
complexity is proportional to the tree depth, or O(logd(n) n). To read the
value from some leaf, we read the values, time-stamps and tags of that
leaf, all nodes on the path from the root to the leaf and all their children,
a total of O(d(n) · logd(n) n) public memory locations. We verify the
consistency of all the tags, and that the time-stamp of every internal node
is the sum of its children’s time-stamps. This prevents replay attacks, as
the root’s time-stamp is in the reliable memory and thus always correct.
The second construction (efficient read) is different. For each tree edge
connecting a node u and one of its d(n) children w, we store in public

memory a tag which is the PRF evaluated on (u, tu, vu, w, tw, vw). Now,
to read the value from a leaf we read the values and time-stamps of all
nodes on the path from the root, and the tags of the edges. For each edge
we verify that the tag is consistent. This requires making O(logd(n) n)
queries to public memory. To write a new value to a leaf, read and write
the values and time-stamps at the leaf and all nodes on the path from
the root to the leaf, as well as all their children and edge tags, a total
of O(d(n) · logd(n) n) queries. Verify that all tags are consistent and that
the time-stamp of each internal node is the sum of its children’s time-
stamps. If all checks pass, update the proper time-stamps and the leaf’s
value. See the full version for details.

5 Offline Checking of RAMs

In this section we describe how to check “offline” the operation of a RAM,
that is a sequence of read and write (or store and retrieve) operations.
To check that a RAM operates correctly we must verify that the value
we obtain from reading an address in public memory is equal to the
last value we wrote to that address. Blum et al. [6] showed an (invasive)
scheme, where if one scans the whole memory at the end of the sequence
of operations, then it is possible to detect (with hight probability) any
malfunction. The cost (in query complexity) is O(1) per operation, plus
the final scan. Thus, for sequences of n operations or more, the amortized
query complexity is O(1). As discussed in the introduction, our goal is
to improve upon that, by not running a final scan of all the memory.
Instead, we scan only the locations that were changed. This implies that
at any point, after t operations, we can check that the memory worked
appropriately by investing time O(t), so for any sequence of operations
(not only for long ones) the amortized query complexity is O(1). This
result can be viewed as a generalization of those in Amato and Loui [3].

Our ideas follow closely those of Blum et al. [6]. First, add to each mem-
ory address a slot for the time it was written - a “timestamp”. The
“time” can be any discrete variable that is incremented whenever a write
or read operation is performed. The timestamp of each location is actu-
ally updated after either read or write. So one can view each operation
as read followed by write. The offline checker needs to verify that the
set of (value, address, time) triples which are written equals the set of
(value, address, time) triples which are read. More precisely, consider the
following two sets:

R = {(v, a, t)|location a was read with value v and timestamp t}

W = {(v, a, t)|location a was written with value v and timestamp t}
Suppose that at no point in time did a read operation return a times-
tamp larger than the current time (call this the timestamp condition),
a clear malfunction, and suppose that the memory is scanned (i.e. read
completely) at the end of the sequence of operations. Then Blum et al
[6] showed

Claim. W = R iff the memory functioned properly.

In other words, a procedure that checks online for the timestamp con-
dition plus an offline test for W = R results in an offline checker for
the RAM. It is useful to note that the proof actually implies that if the
timestamp condition was not violated, then actually W * R.
We modify slightly the above and note that if we scan only those locations
that were actually modified, then we can similarly say that W = R iff the
memory functioned properly. This is true, since the locations that were
not written do not affect W and hence whether we access them or not
does not make R = W .
Now the question is, how do we scan only the locations that were mod-
ified? For this we keep a linked list of all locations that were accessed.
When a new location is read it is added to the end of the list. The start-
ing and ending locations of the list are stored in the secure memory. To
scan the locations accessed we trace the list, see below on possible im-
plementations of the list, the important thing is that adding a memory
location to the list and checking whether a memory location is already
in the list can be done with O(1) queries (possibly amortized).
A natural question now is how to authenticate the list to ensure that an
adversary did not tamper with it (i.e. who guards the guard?). The point
here is that the list itself need not be authenticated. To address the issue
of faults in the linked list, observe that as indicated above to make the
checker accept the adversary needs to “cover” W by R. If the adversary
tampers with the list, and a wrong set of locations is accessed in the
final scan, then it will not cover W . Since we do not authenticate the
list, the one remaining concern is that a faulty memory can even lead the
scanning process into loops (by putting loops into the list). To prevent
this, we use a simple counter that bound the number of locations we
traverse in the list.
To check whether W and R are the same or not, we can use the same
methods as described in Blum et al. The problem can be thought of as
one in streaming, since the sets are accessed one value at a time. We
assume there is a secret hash function h mapping sets to some range and
we can compute on the fly h(R) and h(W) and compare the results. That
is, h can be updated incrementally in each operation (read or write).
Specifically, we require that where for every k there exists a family H
where: (i) representing a member h ∈ H of the family takes O(k + logn)
bits (ii) the range of h ∈ H can be represented by O(k) bits (iii) the
probability that two different sets hash to the same value is at most
1/2k (the probability is over the choice of the function in the family)
and (iv) given h ∈ H an element x and the value of H(S), the value of
h(S∪{x}) can be computed in O(1) operations. There are constructions
of such functions (see e.g. Naor and Naor [14] and the analysis in [6]).
The procedures for reading and writing are now as follows:
Write of value v to address a
– read the value v′ and time t′ stored in address a.
– verify that t′ is less than the current time.
– update the hash h(R) of set R with (v′, a, t′).
– write the new value v and current time t to address a.
– update the hash h(W) of set W with (v, a, t).
– if location a is not in the linked list add it to the end and update

the endpoint in the secure memory.

Read of address a

– read the value v′ and time t′ from address a.
– verify that t′ is less than the current time t.
– update the hash h(R) of set R with (v′, a, t′).
– write v′ and t to address a.
– update the hash h(W) of set W with (v′, a, t).
– if location a is not in the linked list add it to the end and update

the endpoint in the secure memory.

To check the functioning of the RAM at the end of any sequence of
operations, the checker reads all the memory locations in the linked list,
starting from the first location in the list, which is stored in the secure
memory. As the scan proceeds h(R) is updated accordingly. Assuming
initially W = R = 0 and the RAM is empty, h(W) should equal h(R)
if the memory functioned correctly, and should be different from h(R)
with high probability if the memory was faulty. To maintain the list of
modified locations, we can use a simple linked list (see below for a more
efficient alternative). It is enough to add a pointer to each address in
public memory (together with the value and timestamp of that address).
The pointer is initially NULL (or 0), and whenever we access a public
memory location for the first time we modify the pointer of the current
list tail to point to the new list end and update the list end (there is no
need to update R and W for list maintenance operations, faults in the
list will be detected).
Note that we do not have to assume that the memory is initialized to
be all 0 before the beginning of the operations, since it is possible to use
the “uninitialized memory trick”, where one keeps a list of pointers to
the modified locations and all other locations are 0. See [1], exercise 2.12
or [5, 9, 7].
Since the scheme is invasive (has to change the memory), it makes the
most sense when the basic unit we read is relatively large. Suppose the
length of a database word is µ, then the additional timestamp takes
log n bits and the pointer to the linked list takes another log n bits. We
summarize the results in the following theorem.

Theorem 2. For a RAM with n words of size µ there exists an invasive,
offline memory checker using n memory locations storing µ + 2 log n-bit
words, which uses O(log n+log 1/ε) private memory. Each read or write
operation takes O(1) queries, and a procedure for detecting error can be
executed after any sequence of t steps at the cost of O(m) where m is
the actual number of locations that were used. An error is detected with
probability at least 1− ε.

Finally, we re-examine the issue of invasiveness. We note that in fact we
do not need to store time-stamps and list-pointers for all of the database
indices, just for those that are accessed. This leads to a method for re-
ducing the invasiveness of the checker (the total number of non-database
bits that it stores in public memory). We can maintain the timestamps
and the list itself as a separate data structure, whose size is proportional
(say linear) to the number of database indices which have been accessed.
Any data structure that supports insertion and membership queries in

amortized O(1) time work. We note once more that Ajtai [2] proved a
lower bound on the invasiveness of offline memory checkers, but his proof
uses long sequences of operations that access every database index, and
thus it does not apply to our setting of short sequences of operations
that access only a few locations in the database.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of
Computer Algorithms (Addison-Wesley Series in Computer Science
and Information Processing). Addison Wesley (January 1974)

2. Ajtai, M.: The invasiveness of off-line memory checking. In: STOC.
(2002) 504–513

3. Amato, N.M., Loui, M.C.: Checking linked data structures. In:
Proceedings of the 24th Annual International Symposium on Fault-
Tolerant Computing (FTCS). (1994) 164–173

4. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Pe-
terson, Z., Song, D.: Provable data possession at untrusted stores.
Cryptology ePrint Archive, Report 2007/202 (2007)

5. Bentley, J.: Programming Pearls. ACM, New York, NY, USA (1986)
6. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Check-

ing the correctness of memories. Algorithmica 12(2/3) (1994) 225–
244

7. Briggs, P., Torczon, L.: An efficient representation for sparse sets.
ACM Letters on Programming Languages and Systems 2 (1993) 59–
69

8. Clarke, D.E., Suh, G.E., Gassend, B., Sudan, A., van Dijk, M., De-
vadas, S.: Towards constant bandwidth overhead integrity checking
of untrusted data. In: IEEE Symposium on Security and Privacy.
(2005) 139–153

9. Cox, R.: http://research.swtch.com/2008/03/using-uninitialized-
memory-for-fun-and.html.

10. Goldreich, O.: The Foundations of Cryptography - Volume 1. Cam-
bridge University Press (2001)

11. Goldreich, O.: The Foundations of Cryptography - Volume 2. Cam-
bridge University Press (2004)

12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct pseudo-
random functions. Journal of the ACM 33(2) (1986) 792–807

13. Juels, A., Kaliski, B.: Pors: proofs of retrievability for large files.
In: CCS ’07: Proceedings of the 14th ACM conference on Computer
and communications security, New York, NY, USA, ACM (2007)
584–597

14. Naor, J., Naor, M.: Small-bias probability spaces: Efficient construc-
tions and applications. SIAM J. Comput. 22(4) (1993) 838–856

15. Naor, M., Rothblum, G.N.: The complexity of online memory check-
ing. In: FOCS. (2005) 573–584

16. Oprea, A., Reiter, M.K.: Integrity checking in cryptographic file
systems with constant trusted storage. In: USENIX Security Sym-
posium. (2007)

17. Shacham, H., Waters, B.: Compact proofs of retrievability. In: ASI-
ACRYPT. (2008) 90–107

