
Conditional Encrypted Mapping and Comparing
Encrypted Numbers

Ian F. Blake1 and Vladimir Kolesnikov2

1 Dept. ECE, University of Toronto, Canada, ifblake@comm.utoronto.ca
2 Dept. Comp. Sci., University of Toronto, Canada, vlad@cs.utoronto.ca

Abstract. We consider the problem of comparing two encrypted num-
bers and its extension – transferring one of the two secrets, depending on
the result of comparison. We show how to efficiently apply our solutions
to practical settings, such as auctions with the semi-honest auctioneer,
proxy selling, etc. We propose a new primitive, Conditional Encrypted
Mapping, which captures common security properties of one round pro-
tocols in a variety of settings, which may be of independent interest.

Keywords: Two Millionaires with encrypted inputs, auctions, private selective
payments, conditional encrypted mapping.

1 Introduction

In this paper we study secure evaluation of the Greater Than (GT) predicate.
It is one of the most basic and widely used functionalities. It plays an especially
important role in secure financial transactions and database mining applications.

Auctions and Bargaining. With the expansion of the Internet, electronic
commerce and especially online auctions continue to grow at an impressive pace.
Many sellers also discover the appeal of flexible pricing. For example, sites such
as priceline.com ask a buyer for a price he is willing to pay for a product, and
the deal is committed to if that price is greater than a certain (secret) threshold.

In many such situations, it is vital to maintain the privacy of bids of the
players. Indeed, revealing an item’s worth can result in artificially high prices or
low bids, specifically targeted for a particular buyer or seller. While a winning
bid or a committed deal may necessarily reveal the cost of the transaction, it is
highly desirable to keep all other information (e.g. unsuccessful bids) secret.

There has been a large stream of work dedicated to ensuring privacy and
security of online auctions and haggling (e.g.,[3, 5, 6, 14]). Our work complements,
extends, and builds on it. We discuss the Private Selective Payments protocols
of Di Crescenzo [5] and show how our improvements benefit this application.

The need for comparing encrypted numbers. It is often beneficial to
both sellers and buyers to employ a mutually semi-trusted server S to assist them
in their transaction. The use of such a server simplifies secure protocol design,
allowing for more efficient protocols. It allows the seller to be offline most of the
time, allowing S to act on behalf of the seller in handling bid requests. Further,
a reputable S (such as eBay) may provide additional assurance of security to the

2 Ian F. Blake and Vladimir Kolesnikov

potential buyer. However, since sellers and buyers wish to hide their inputs from
S, the latter must work with, e.g. compare, encrypted numbers. We propose a
formalization of this setting, as well as new, more efficient GT protocols for it.

Other applications. We mention other interesting applications that benefit
from efficient secure evaluation of GT. These applications might need to employ
a proxy server S, as above; if so, our work improves their performance as well.

In Distributed Database Mining, several parties, each having a private data-
base, wish to determine some properties of, or perform computations on, their
joint database. Many interesting properties and computations, such as trans-
action classification or rule mining, involve evaluating a very large number of
instances of GT [10, 13]. Our improvements also apply to solving interval mem-
bership problems (reduced to GT in [2]). The immediate uses lie in appointment
scheduling, flexible timestamp verification, biometrics, etc. Certain kinds of set
intersection problems, as studied in [7, 9], can be represented succinctly as GT
instances, resulting in more efficient solutions using our constructions.

1.1 Our Contributions, Setting and Outline of the Work

We approach several practical problems (auctions, proxy selling, GT) in a variety
of settings, concentrating on a setting with a semi-honest helping server.

We are interested in one-round protocols, where clients send their encrypted
inputs to a “cypto computer” S, who produces an output that can be decoded by
the clients. Such scenarios arise in a variety of practical settings. To enable formal
discussion of crucial parts of our protocols in a number of settings simultaneously,
we extract what these settings have in common – the following requirements on
the output of S: it allows the reconstruction of the value of the function, and does
not contain any other information. This allows to postpone the (easy but tedious)
discussion of setting-specific clients’ privacy requirements. We formalize (Def.
1) a special case of this notion, which we call Conditional Encrypted Mapping
(CEM). Here, S has two secrets s0, s1, is given encryptions of two values x, y,
and outputs something that allows (only) reconstruction of sQ(x,y), where Q is
a fixed public predicate. We note that our statistical privacy requirement on the
output of S is very strong, e.g., precluding Yao’s garbled circuit-based solutions.

We propose two new, more efficient CEM protocols for the GT predicate
(Sect. 4). We use ideas of the recent protocol of Blake and Kolesnikov [2]. Their
protocol requires S to know one of the compared numbers, and thus cannot be
naturally cast as a CEM. We overcome this with a new tool – a randomized way
to represent secrets to be transferred by S (presented in Sect. 4.3). The cost of
our solution is comparable to that of [2]. We believe this method may be used to
improve efficiency of other constructions relying on homomorphic encryptions.

In Sect. 5, we show how our constructions result in new, more efficient, proto-
cols for the examples of private selective payments of Di Crescenzo [5] and proxy
selling. We discuss methods of protection against malicious behavior of parties.
We mention that efficient CEM schemes exist for any NC1 predicate (Sect. 4.7).

In Sect. 6 we summarize and compare resource requirements of schemes based
on the work of Di Crescenzo [5], Fischlin [6], Laur and Lipmaa [12] and ours.

Conditional Encrypted Mapping and Comparing Encrypted Numbers 3

2 Related Work

We discuss related work in both directions of our contributions – definition of
CEM and concrete protocols for auction-like functionalities.
Variants of CEM. Several notions similar to CEM were previously proposed.

The notion of Conditional Oblivious Transfer (COT) was introduced by Di
Crescenzo, Ostrovsky and Rajagopalan [4] in the context of timed-release en-
cryption. It is a variant of Oblivious Transfer (OT) [16]. Intuitively, in COT,
the two participants, a receiver R and a sender S, have private inputs x and
y respectively, and share a public predicate Q(·, ·). S has a secret s he wishes
(obliviously to himself) to transfer to R iff Q(x, y) = 1. If Q(x, y) = 0, no in-
formation about s is transferred to R. R’s private input and the value of the
predicate remain computationally hidden from S.

A similar notion to COT, Conditional Disclosure of Secrets (CDS), was intro-
duced by Gertner, Ishai, Kushilevitz and Malkin [8] in the context of multi-server
Symmetrically Private Information Retrieval (SPIR). In their work, the receiver
of the secret apriori knows the inputs of the (many) senders. The secret is un-
known to the receiver and sent to him only if a predicate holds on the inputs.

Aiello, Ishai and Reingold [1] adapt CDS into the single server setting, where
the (single) sender holds encryptions of parts (i.e. bits) of input. The receiver
knows both the input and the decryption key. Again, the receiver does not know
the secret; it is sent to him only if a predicate holds on the input.

Laur and Lipmaa [12] extend the study of CDS for the case of additive ho-
momorphic encryptions, give generic constructions and specific protocols (GT).

The lack of requirement of privacy of the value of Q(x, y) and the sender’s in-
put often prevents the use of COT or CDS as a building block of other protocols.
Di Crescenzo [5] described a stronger concept, Symmetrically-private COT, by
additionally requiring that both parties’ inputs x, y remain private. Later, Blake
and Kolesnikov [2], independently proposed and formalized essentially the same
notion, which they call Strong COT. Of the above, CEM is most similar to this
notion. We note that CEM is a stronger notion, explicitly allowing reuse of gen-
erated encryption keys in multiple executions. We also have the feature of not
specifying the precise security properties of the used encryptions, allowing for
more flexibility and applicability (see Sect. 1.1 and 3 for more discussion).

Auctions and Private Selective Payments Protocols (PSPP). PSPP,
introduced by Di Crescenzo [5], solve the following practical problem. A server
has a private message representing, say, a signed authorization, and wants to
give it to one among several clients, according to some public criteria, evaluated
on the server’s and clients’ private inputs. Client’s inputs may represent their
auction bids, and a server’s input may be a lowest acceptable price or a required
signature. Di Crescenzo considers a natural instance of PSPP, where the highest
bidding client obtains the authorization. He considers a setting with a helping
semi-honest server and malicious clients.

Di Crescenzo designs his protocols in several phases. During registration,
executed between each client and the server, the client’s public/private key pair
is established, and the server obtains the public key. Then the selection protocol

4 Ian F. Blake and Vladimir Kolesnikov

is executed between all registered clients and the server, during which the selected
client obtains the server’s secret. Finally, in the verification phase, the selected
client presents his claim – the obtained secret – and convinces the server that
he indeed is the selected client. The registration and verification phases are
designed using standard cryptographic tools; it is the selection phase that is the
challenging computationally expensive area. The main contribution of [5] is the
novel maximum bidder selection protocols.

Our main contribution, GT-CEM constructions, can be used to replace the
core – the selection protocols – of the PSPP of [5] (with corresponding natural
modifications of the other two phases). Appropriately modified protocols of Fis-
chlin [6] and Laur and Lipmaa [12] can be similarly used. We discuss more details
and the resulting efficiency improvements of our protocols in Sect. 5 and 6.

We mention, but do not discuss in detail the auction protocols for use in the
settings, significantly different from ours. Naor, Pinkas and Sumner [14] use Yao’s
garbled circuit approach in the setting with a semi-honest mostly offline server,
whose role is to ensure that the auctioneer does not cheat. Cachin [3] suggested
a protocol for private bidding with the semi-honest server in the setting where
the bidders additionally exchange messages between each other.

2.1 Notation, Definitions and Preliminaries

A function µ : N 7→ R is negligible if for every positive polynomial p(·) there ex-
ists an N , such that for all n > N, µ(n) < 1/p(n). A probability is overwhelming
if it is negligibly different from 1. Statistical distance between distributions X
and Y is defined as Dist(X, Y) = 1/2

∑
α |Pr(X = α)− Pr(Y = α)|.

Informally, an encryption scheme E = (Gen,Enc, Dec) is additively homo-
morphic, if it is possible to compute an encryption of x + y from encryptions of
x and y. E is probabilistic if its encryption function randomly encrypts plaintext
as one of many possible ciphertexts. Many such schemes (e.g. Paillier [15]) exist.

We denote a uniform sampling of an element r of domain D by r ∈R D.

3 Conditional Encrypted Mapping

We consider the setting where one of the players is a facilitator of the compu-
tation of the multiparty functionality f . This player – the Server S – is given
the encrypted inputs to f ; he produces some representation of the value of f .
The value of f can later be decoded from this representation using the private
key of the employed encryption scheme. This scenario is appealing for its round
efficiency and is widely applicable in practice. For example, it applies to auctions
with semi-honest servers. There, the server S is given encryptions of parties’ bids,
and he wants to commit to a deal (e.g. by sending a secret) with the winner.

The first step in designing secure protocols is making explicit the setting in
which they are run and the necessary security requirements. This is a difficult
task, especially since we would like our constructions to be applicable to a variety
of settings. For example, the server S may obtain encrypted inputs from parties

Conditional Encrypted Mapping and Comparing Encrypted Numbers 5

A and B and let either A or B or a third party C decode the output. Protocols
can use encryption schemes, which may or may not be re-initialized for each
execution of the protocol. Players A,B or C may have different levels of trust.

Encompassing all these situations in one definition is difficult. We propose to
extract and formalize what these definitions would have in common – require-
ments of correctness and privacy of the output of the semi-honest Server S. This
modularity is very convenient, since we can now model S as a non-interactive
algorithm. A variety of setting-specific requirements for hiding the input from
the server can be later defined and satisfied with appropriate use of encryption.

Encrypted Mapping. We model the Server S as a polytime randomized
mapping algorithm Rmap. Rmap takes as input the public key of the encryption
scheme E, the (encrypted with E) input(s), and outputs some representation of
the value of f . Of course, this output should be interpreted. We require existence
of the polytime recovery procedure Rec, which takes the representation of the
value of f and the private key of E and computes the intended output (this is the
correctness condition). Further, we require that the randomized representation
statistically hides all other information, ensuring privacy of arbitrary composi-
tions of outputs of Rmap even against computationally unlimited attackers. We
call the pair (Rmap,Rec) an Encrypted Mapping (EM). We formalize a variant
of this notion in Def. 1 below.

We choose not to specify the requirements of security of encryption in the def-
inition. This allows a protocol designer to concentrate on the high-level combina-
torial properties of EM and defer discussion of detailed setting-specific concerns.
Such low-level concerns include considering whether some inputs to S contain
decryption keys (which would allow S to learn more than he should) and con-
sidering malicious behaviour, such as providing invalid or substituted inputs. A
protocol designer can now first describe the combinatorial Rmap and Rec, which
would imply solutions to a variety of settings in the semi-honest model, assuming
the semantic security of the employed encryption scheme. Afterwards, the pro-
tocols can be adapted to a variety of specific settings and modified to withstand
certain malicious behaviours (e.g. using the conditional disclosure techniques of
[1, 12]. See more in Sect. 5.1).

We wish to give a very strong definition, so that the constructions can be used
in a variety of settings. In particular, we want our construction to work with all
instantiations of used encryption schemes. In many popular encryption schemes
(e.g. Paillier [15]) the plaintext domain DP varies with different instantiations.
Many interesting functions f are defined on fixed domains, independent of DP .
We handle this detail by ensuring that DP includes the domain of inputs to f by
appropriately modifying the family of encryptions to only include members with
sufficiently large DP . We note that a sufficiently large DP is usually implied by
the semantic security requirement of the scheme.

We remark that we achieve a very strong definition by quantifying over all
valid inputs and randomness used by encryptions – i.e. over everything but the
randomness used by Rmap. This, for example, ensures that adversary does not
benefit from knowing the randomness used for encrypting inputs to Rmap.

6 Ian F. Blake and Vladimir Kolesnikov

Conditional Encrypted Mapping. In this work, we are mainly interested
in constructing the protocols for transferring a secret (e.g. a sale commitment or a
rejection) depending on whether a certain predicate on two inputs (e.g. the bid is
greater than the asking price) holds. We call the corresponding EM a Conditional
Encrypted Mapping (CEM). We give a formal definition for this special case and
note that a more general EM definition can be naturally constructed.

We define CEM with respect to an encryption scheme E = (Gen,Enc, Dec).
Denote by (sk, pk) a public/private key pair for E, and by Epk denote the ini-
tialized encryption scheme E. Let DPpk

denote the plaintext domain of Epk and
DRpk

denote the domain of randomness used by Encpk. Denote by Encpk,α(x)
the encryption of x under pk using randomness α. Let Q : DQ × DQ 7→ {0, 1}
be a deterministic predicate defined on a fixed domain. Recall, we only consider
families of Epk where DQ ⊂ DPpk

. Let ν be the security parameter3. Let DS be
the (fixed) domain of secrets4.

Definition 1. (Q-Conditional Encrypted Mapping) A Q - Conditional Encrypted
Mapping (Q-CEM) is a pair of polytime algorithms (Rmap,Rec) (with implicitly
defined domain of mappings DMpk

), such that the following holds.
The probabilistic randomized mapping algorithm Rmap takes as input

(s0, s1, e0, e1, pk), where e0, e1 are encryptions under Epk, and s0, s1 ∈ DS.
Rmap outputs an element from DMpk

. The deterministic recovery algorithm Rec
takes as input secret key sk and an element from DMpk

and outputs an element
from the domain of secrets DS or a failure symbol ⊥.

Rmap and Rec satisfy the following conditions:

– (correctness) ∀(sk, pk) ← Gen(ν),∀s0, s1 ∈ DS ,∀α, β ∈ DRpk
,∀x, y ∈ DQ :

with overwhelming probability in ν, taken over random inputs of Rmap:
Rec(Rmap(s0, s1, Encpk,α(x), Encpk,β(y), pk), sk) = sQ(x,y).

– (statistical privacy) ∃ Sim, s.t. ∀(sk, pk) ← Gen(ν),∀s0, s1 ∈ DS ,∀x, y ∈
DQ,∀α, β ∈ DRpk

: the statistical distance Dist[Sim(sQ(x,y), pk),
Rmap(s0, s1, Encpk,α(x), Encpk,β(y), pk)] is negligible in ν.

Formally, the inputs e0, e1 to Rmap are encodings of elements in DQ and
need not have any privacy guarantees. Jumping ahead, we note that in our GT
constructions 4.4, the inputs e0, e1 to Rmap are bitwise encryptions of the clients’
bids. Note that Def. 1 allows this interpretation, since encrypting x bit-by-bit
can be viewed as an encryption scheme itself.

Further, we do not guarantee either correctness or privacy if e0 or e1 are
not proper encryptions of elements of DQ. This is sufficient in the semi-honest
model; we discuss methods of handling malicious behaviour in Sect. 5.1.

3 In practice, we are also interested in the correctness parameter λ. Security and
correctness properties of Def. 1 are formulated with the notion of statistical closeness.
Since ν and λ are polynomially related, we, for simplicity, use only the parameter ν.

4 Even though for simplicity of presentation the domains DQ and DS are fixed, their
elements representation is polynomially related to all other parameters. Further, in
practice (and in our constructions), DQ and DS can grow with ν at no extra cost.

Conditional Encrypted Mapping and Comparing Encrypted Numbers 7

4 The GT-CEM Construction and Protocols

Our construction builds on the ideas of the GT protocol of Blake and Kolesnikov
[2]. Their protocol can be cast as a variant of GT-CEM, where one of the inputs
is given in plaintext. We present their main idea and observe that a part of their
protocol – the randomization procedure – requires S to know his input. In Sect.
4.2, we discuss the necessary properties of our new randomization, which works
with encryptions only. In Sect. 4.3, we present such a randomization procedure
and in Sect. 4.4 we give a GT-CEM construction. We give an alternative ran-
domization procedure in Sect. 4.5, which can be incorporated into our GT-CEM.

4.1 The GT Protocol of [2]

We give a brief overview of the protocol and direct the reader to [2] for more
details. Recall, there are two players, a receiver R with input x and a sender S
with input y, s0, s1. S needs to send R the secret sGT (x,y).

The protocol operates on (homomorphically encrypted) bits of the inputs.
The idea is to isolate the “important” position – the one where input bit strings
first differ – by mapping it to a predetermined value and simultaneously random-
izing values in all other positions. The rest is easily accomplished by applications
of linear functions. In this work, we pay special attention to and improve the
isolating randomization procedure.

In [2], the Receiver R sends bitwise additively homomorphic encryption of
his input x = 〈x1, ..., xn〉 to the Sender S. For each bit position i, S computes
(an encryption of) fi = xi⊕yi, i.e. whether xi = yi (this requires the knowledge
of yi; knowing Enc(yi) is not sufficient). It is easy to see that GT (x, y) = xj ,
where j = minfi 6=0i. S’s randomization procedure crucially relies on the fact that
fj = 1. Our randomization relies on the (encrypted) difference vector di = xi−yi,
the “important element” of which may be (an encryption of) one of {−1, 1}.

4.2 The Intuition of GT-CEM and the Formalization of the
Randomization Requirements

Recall, we are given secrets s0, s1 and bitwise encryptions of inputs x and y. We
can compute an encryption of the bit difference vector d, where di = xi − yi.
Elements of the difference vector d assume one of {−1, 0, 1}. Let j = mindi 6=0i
be the index of the “important” position. Our goal is to isolate the value dj by
computing an encryption of vector µ, such that ∀i 6= j, µi ∈R DPpk

and µj = dj .
As in [2], we can obtain such µi for i ≥ j by computing for i = 1..n: µ0 = 0;µi =
riµi−1 + di, where ri ∈R DPpk

. Now vector µ is a vector of encryptions of (in
order): one or more 0, either a 1 or a −1, one or more random elements of DPpk

.
We need to map the zeros of µ to random elements in DPpk

, while preserving
the properties of µi, i ≥ j. Our randomization maps −1 → s0, 1 → s1 (under
encryption). At the same time, it maps 0 and random elements from DPpk

to
random elements from DPpk

. It is not hard to see (and we explicitly show it in
Sect. 4.4) that such randomization naturally leads to a GT-CEM.

8 Ian F. Blake and Vladimir Kolesnikov

We believe that such randomization may be useful in other applications as
well. Therefore, we formalize its requirements. We present the definition in a
slightly more general way, by allowing arbitrary constants instead of −1, 1. Fur-
ther natural extensions of this definition are possible.

Let v0, v1 ∈ Z\{0} be fixed, and v0 6= v1. Let E, ν, sk, pk, Epk, DPpk
, DRpk

, DS

be as in Def. 1. Let i ∈ {0, 1}. We view vi as an element of DPpk
in the natural

manner (i.e. as vi mod |DPpk
|). We note that even though this representation

may vary with the choice of pk, vi is a constant. Further, we require vi 6= 0
mod |DPpk

| and v0 6= v1 mod |DPpk
|.

Definition 2. ((v0, v1)-Randomizing Mapping) A (v0, v1) - Randomizing Map-
ping (RM) is a pair of polytime algorithms (Rmap,Rec) (with implicitly defined
domain of mappings DMpk

), such that the following holds.
The probabilistic randomized mapping algorithm Rmap takes as input

(s0, s1, e, pk), where e is an encryption under Epk, and s0, s1 ∈ DS. Rmap out-
puts an element from DMpk

. The deterministic recovery algorithm Rec takes as
input secret key sk and an element from DMpk

and outputs an element from the
domain of secrets DS or a failure symbol ⊥.

Rmap and Rec satisfy the following conditions:

– (correctness) ∀(sk, pk)← Gen(ν),∀i ∈ {0, 1},∀s0, s1 ∈ DS ,∀α ∈ DRpk
,

for x ∈R DPpk
, with overwhelming probability in ν:

Rec(Rmap(s0, s1, Encpk,α(vi), pk), sk) = si

Rec(Rmap(s0, s1, Encpk,α(x), pk), sk) =⊥,
where the probability is taken over choices of x and random inputs of Rmap.

– (statistical privacy at v0, v1) ∃Sim, s.t. ∀(sk, pk)← Gen(ν),∀s0, s1 ∈ DS ,
∀i ∈ {0, 1},∀α ∈ DRpk

: the statistical distance
Dist[Sim(si, pk), Rmap(s0, s1, Encpk,α(vi), pk)] is negligible in ν.

– (statistical privacy at 0 and at random elements of DPpk
) ∃Sim0, such that

∀(sk, pk) ← Gen(ν),∀s0, s1 ∈ DS ,∀α ∈ DRpk
: the statistical distances

Dist[Sim0(pk), Rmap(s0, s1, Encpk,α(0), pk)] and Dist[Sim0(pk), Rmap(s0,
s1, Encpk,α(R), pk)] are negligible in ν, where R is uniform on DPpk

.

4.3 A space-efficient (−1, 1)-RM

We present a construction for (−1, 1)-RM, based on the Paillier encryption
scheme [15], which we use to construct GT-CEM. Let E be the Paillier scheme
initialized as described in Def. 2. Let Rmap be given an encryption under Epk.
Our (−1, 1)-RM is space optimal – Rmap outputs a single encryption under Epk.

At first glance, the requirements on Rmap are conflicting: we must satisfy
three data points ((v0, s0), (v1, s1), (0, random)) with a linear function (only lin-
ear functions can be applied under the homomorphic encryption). Our idea is for
Rmap to produce not encryptions of secrets si, but of their randomized encodings
Si. We carefully randomize the encodings Si, such that their linear combination
of interest (i.e. the value that 0 is mapped to) is a random element in DPpk

.
Let f = ax + b be a linear mapping, such that f(−1) = −a + b = S0 and

f(1) = a+b = S1. Then b = (S0 +S1)/2 and a = S1−(S0 +S1)/2 = (S1−S0)/2.

Conditional Encrypted Mapping and Comparing Encrypted Numbers 9

We want to ensure that f(0) = b = (S0 + S1)/2 is random, while, for i ∈ {0, 1},
Si encodes si and contains no other information.

Construction 1 ((−1, 1)-RM)
Let λ and ν be the correctness and security parameters. Let the plaintext group

of Epk be DPpk
= ZN , where N = pq is of bit size n > ν. Let k = b(n − 1)/2c.

Define the domain of secrets to be DS = DSpk
= {0, 1}k−λ, and the domain of

mappings DMpk
to be the domain of encryptions under Epk.

Rmap on input (s0, s1, e, pk) proceeds as follows. Set s′i = si0λ (to help dis-
tinguish secrets from random strings). View s′0, s

′
1 as elements of ZN . Choose

R ∈R ZN and a bit c ∈R {0, 1}. Let r1 (resp. r0) be the integer represented by k
lower (resp. remaining) bits of R, i.e. R = r02k + r1.

Set S0, S1 as follows. If c = 0, then set S0 = r02k + s′0 and S1 = s′12
k + r1.

If c = 1, then set S0 = s′02
k + r1 and S1 = r02k + s′1.

Compute a = (S1 − S0)/2 mod N and b = (S0 + S1)/2 mod N .
Finally, apply f = ax + b to e under the encryption and re-randomize the

result, that is, choose r′ ∈R Z∗
N and output eagbr′N mod N2.

Rec on input (e′, sk) proceeds as follows. Rec computes d = Decsk(e′). Let
dn, ..., d1 be the bit representation of d. Let D1 = d2k, ..., dk and D0 = dk, ..., d1.
For i ∈ {0, 1}, if Di = s0λ, output s and halt. Otherwise output ⊥.

Theorem 1. (Rmap,Rec) described in Constr. 1 is a (−1, 1)-RM.

Proof. (Sketch): We first show that the two correctness properties hold. It is easy
to follow the construction of Si and observe that either its lower k bits or the
remaining bits contain the intended secret si. Further, the part of Si that does
not represent the secret is random. Therefore the secret is easily distinguishable
thanks to the added trailing zeros. Thus, the first correctness condition holds
with overwhelming probability in λ. Further, f applied by Rmap is a linear func-
tion, which is a permutation on ZN with overwhelming probability in ν. (Indeed
f = ax+ b is not a permutation only if a = (S1−S0)/2 is not invertible.) There-
fore, Rmap, evaluated on an encryption of a random element of ZN , produces a
random encryption of a random element of ZN . It is easy to see that Rec outputs
⊥ on an encryption of a random element with overwhelming probability in λ.

The privacy at v0, v1 condition also holds. Indeed, given a secret s ∈ DS , and
pk, the required Sim(s, pk) simulates the output of Rmap(s0, s1, Encpk,α(vi), pk)
as follows. Choose a random bit c′ ∈R {0, 1} and a random S′ ∈ ZN . If c′ = 0
set the lower k bits of S′ to be s0λ. If c′ = 1 set the the higher n−k bits of S′ to
be s0λ. Return a random encryption of S′ under pk. It is easy to see that Sim
satisfies the necessary conditions.

The privacy at 0 and at random elements of ZN holds for the following
reasons. Firstly, as shown in the proof of correctness, Rmap, evaluated on en-
cryptions of random elements of ZN , produces random encryptions of random
elements of ZN . This is easy to simulate with only knowing pk. It remains to

10 Ian F. Blake and Vladimir Kolesnikov

show that Rmap evaluated on an encryption of 0 does the same. Recall, Rmap
applies f to the input encryption. There are two cases.

If c = 0 then f(0) = 1/2(S0 + S1) = 1/2(r02k + s0 + s12k + r1) = 1/2(r02k +
r1 + s0 + s12k) = 1/2(R + s0 + s12k).

If c = 1 then f(0) = 1/2(S0 + S1) = 1/2(s02k + r1 + r02k + s1) = 1/2(r02k +
r1 + s1 + s02k) = 1/2(R + s1 + s02k).

In any case, f(0) is random on ZN due to the additive random term R/2. ut

4.4 GT-CEM Based on Bitwise Paillier Encryption of Inputs

Let n be the length of the compared numbers. We will use the Paillier en-
cryption scheme E to encrypt inputs to Rmap in the bitwise manner. That is,
Gen(ν) is run, fixing (sk, pk) and the instance Epk. The inputs to Rmap are
(s0, s1, e0, e1, pk), where e0 = 〈Encpk(x1), ..., Encpk(xn)〉, e1 = 〈Encpk(y1), ...,
Encpk(yn)〉, where x1 and y1 are the most significant bits. The sender addition-
ally has the secrets s0, s1 ∈ DS as inputs. Let (Rmap1, Rec1) be a (−1, 1)-RM
based on the Paillier encryption scheme (e.g. Constr. 1), instantiated with Epk.
Let DMpk1 , DS1 be the domains of mappings and secrets of (Rmap1, Rec1).

Construction 2 (GT-CEM)
Let λ and ν be the correctness and security parameters. Let the plaintext

group of Epk be DPpk
= ZN , where N = pq is of bit size n > ν. Define the

domain of secrets DS = DS1 and the domain of mappings DMpk
= Dn

Mpk1
.

Rmap on input (s0, s1, e0, e1, pk) computes, for each i = 1..n :

1. an encryption of the difference vector d, where di = xi − yi.
2. an encryption of vector γ, s.t. γ0 = 0 and γi = riγi−1 + di, where ri ∈R ZN .
3. a randomized mapping vector µ, where µi = Rmap1(s0, s1, Encpk(γi)).

Rmap outputs a random permutation π(µ).

Rec on input (µ′1..µ
′
n, sk) proceeds as follows. For i = 1..n, let zi = Rec1(µ′i, sk).

If zi 6= ⊥, output zi and halt. Otherwise, if ∀i = 1..n, zi = ⊥, output ⊥.

Theorem 2. Construction 2 is a GT-CEM.

Proof. (Sketch) We will first show that Construction 2 satisfies the correctness
requirement. It is easy to see that the homomorphic properties of the encryption
scheme allow Rmap and Rec to perform all necessary operations.

Let j be the position where x and y first differ; thus dj determines GT(x, y).
With overwhelming probability, γ is a vector with the following structure: it
starts with zero or more zeros, then, in position j, a one or a minus one, then a
sequence of random elements in ZN . It is not hard to see that, by the correctness
and privacy properties of (−1, 1)-RM, Rec, using Rec1, will recover sGT (x,y).

We now show that the privacy condition holds as well. We construct simulator
SimGT (s, pk), where pk is the public key established in the setup phase and

Conditional Encrypted Mapping and Comparing Encrypted Numbers 11

s = sQ(x,y). SimGT (s, pk) has to generate a distribution statistically close to the
output of Rmap. SimGT (pk, s) proceeds as follows, using the simulators Sim0 and
Sim, required by (−1, 1)-RM. It runs Sim0(pk) n− 1 times and Sim(s, pk) once,
obtaining a vector z′ of n simulated mappings. SimR(s, pk) outputs a random
permutation π′(z′). It is easy to see that SimGT (pk, s) statistically simulates the
output of Rmap, due to properties of Sim0 and Sim. ut

4.5 A General (v0, v1)-RM Construction

We informally present the construction for any two constants v0, v1. We note
that it can be naturally generalized for any number of constants v1, ..., vn.

Rmap proceeds as follows. First, as in Construction 1, add trailing zeros to
s0, s1 to distinguish them from random elements in DPpk

. For i = 1..2 do the
following. Choose random linear functions fi = aix+ bi on the plaintext domain
DPpk

of the underlying (Paillier) encryption, such that fi(vi) = si. Apply fi

to the encrypted input, obtaining Encpk(si) if x = vi, or an encryption of a
random value otherwise. Re-randomize and randomly permute the two obtained
encryptions. It is easy to see that this sequence encodes at most a single secret
si and contains no other information. Rec decrypts the vector, recognizes the
secret and outputs it with overwhelming probability.

This (v0, v1)-RM can be used with Construction 2, producing GT-CEM with
slightly different performance properties. Because this (v0, v1)-RM uses larger
domains of mappings DMpk

than Construction 1, the resulting GT-CEM is less
efficient for transferring smaller secrets. When the transferred secrets are large,
this (v0, v1)-RM performs better due to slightly smaller loss in bandwidth due
to redundancy in secrets. See Table in Sect. 6 for detailed comparisons.

4.6 Resource Analysis

We evaluate the message and modular multiplication efficiency of Construction
2, used with (−1, 1)-RM of Sect. 4.3 (which we refer to as CEM1) and of Sect. 4.5
(CEM2). The generated encryption key is reused for a polynomial number of exe-
cutions of our protocols, thus we do not count the relatively small computational
cost of key generation. Let n be the length of inputs x and y in base 2, and N be
the size of the plaintext domain of the Paillier scheme. Then the message com-
plexity (the size of the output of Rmap) of CEM1 is l1 = n log(N2) = 2n log N
bits, and that of CEM2 is l2 = 2n log(N2) = 4n log N . We do not count the
encrypted inputs x, y for message complexity, since their length is usually small,
and, in many settings, they are not sent to S, but computed by S.

To encrypt the 2n input bits, 2n log N multiplications are required. Step 1 of
Construction 2 requires n multiplications, and step 2 requires (log N + 1)n mul-
tiplications. Step 3 of CEM1 requires (3 log N + 2)n multiplications (2 log N + 1
multiplications for application of the linear function f , and log N to re-randomize
the encryption). Similarly, step 3 of CEM2 requires (6 log N+4)n multiplications.

Rec of CEM1 (resp. CEM2) costs 2n log N (resp. 4n log N) multiplications
(We expect to perform half of them before Rec recovers the secret and halts).

12 Ian F. Blake and Vladimir Kolesnikov

In total, CEM1 (resp. CEM2) requires no more than ≈ 8n log N (resp.
≈ 13n log N) modular multiplications. Of those, 4n log N (resp. 7n log N) are
performed by Rmap, and 4n log N (resp. 6n log N) are spent for encrypting in-
puts and reconstructing the output. Note that the encryption and re-encryption
multiplications can be precomputed once the encryption scheme is initialized.

Our modular multiplications are four times slower than those of [5, 6], since
they are performed mod N2, while the Goldwasser-Micali (GM) multiplications
(used in [5, 6]) are mod N .

One execution of CEM1 (resp. CEM2) allows transfers of secrets of size up
to (log N)/2− λ (resp. log N − λ) for the same cost.

Care must be taken in choosing appropriate parameters for comparisons of
our results with the performance of other schemes, in particular those based
on the potentially weaker quadratic residuosity assumption ([5, 6]). Note that
in practice no known attack on the Paillier system is better than factoring the
modulus N . Clearly, factoring based attacks would also be effective against the
GM scheme with the same modulus size. Thus we assume that the security of
Paillier and GM schemes with the same size moduli is approximately the same.

The performance comparisons are summarized in the Table in Sect. 6.

4.7 CEM for any NC1 Predicate From Homomorphic Encryption

We note that it is possible to construct CEM for any NC1 predicate Q, using, for
example, an information-theoretic abstraction of Yao’s garbled circuit [11]. The
idea is to assign two specially constructed secrets to each input wire of the (poly-
size) formula representation of the NC1 circuit. Here each secret corresponds to
one of the two possible wire values. The secrets satisfy the following property: a
set of secrets, one for each wire of the circuit, allows us to compute the value of
the circuit on the corresponding input, and carries no other information.

It is easy to use the homomorphic encryption properties to allow Rec to
reconstruct only one appropriate secret for each wire. Combined with the tools
discussed in the previous paragraph, this implies CEM for any NC1 predicate.

5 Protocol Constructions from GT-CEM

As mentioned in the discussion of CEM in Sect. 3, natural protocol constructions
immediately arise from CEM in the semi-honest model. We demonstrate this
on a special case of PSPP of [5], where the server S runs the auction with two
bidders C0, C1. (Our solution can naturally accomodate more bidders, using, e.g.,
technique of Sect. 5.2 of [5].) As discussed in Sect. 2 and [5], in the initialization
phase, each of the clients generates and publishes his public key pki with S.

The main selection phase proceeds as follows. Each client Ci sends to S two
encryptions of his input, with his own and with the other client’s public keys (i.e.
S obtains Encpki

(xi), Encpk1−i
(xi)) from Ci). S applies GT-CEM twice (once

under each key) and sends the outputs of Rmap to the corresponding Ci for re-
construction. That is, S sends mi = Rmap(s0, s1, Encpki(xi), Encpki(x1−i), pki)

Conditional Encrypted Mapping and Comparing Encrypted Numbers 13

to each Ci, who then applies Rec(ski,mi) and obtains s1 if his bid is greater and
s0 otherwise. (We note that the receipt of the non-winning s0 is crucial to hide
the rank of the bid of Ci in auctions with more than two parties [5].)

It is easy to see that this protocol is secure in the semi-honest model. Indeed,
by the definition of CEM, each mi contains only the intended secret and no other
information. Further, it is not hard to see that computationally-bounded S does
not learn anything from seeing semantically secure encryptions of clients’ bids
(under a natural assumption that the secrets s0, s1 are a polytime computable
function of the transcript of S’s view of execution of the auction and arbitrary
information available prior to the key generation phase).

5.1 Handling Malicious Behaviours

One of the main reasons for the introduction of the semi-honest facilitator is
the simplification and efficiency improvement of protocols. In this discussion, we
assume the presence of such semi-honest S running Rmap and discuss methods
of protection against malicious behaviour of other participants. We note that
the CEM model is well suited for this task, since the malicious actions of parties
are limited to improper input submission and reporting of the decoded output.

First, we observe that the free choice of secrets is a powerful tool. For example,
when secrets are randomly chosen, they may serve as a proof of the value of
Q in the evaluated Q-CEM. Indeed, the recipient of si is not able to claim
Q(x, y) = 1 − i, since he cannot obtain s1−i. Further, for example, secrets can
contain S’s signatures, proving the correctness of reconstruction to anyone.

A harder task is ensuring that malicious players do not gain from submitting
contrived inputs to S. Firstly, zero-knowledge (ZK) techniques could be used to
ensure players’ compliance with the prescribed protocol. This is often compu-
tationally expensive and requires either a common random string or an extra
round of interaction. There exist light-weight alternatives to ZK, such as con-
ditional disclosures of Aiello, Ishai and Reingold [1] and Laur and Lipmaa [12].
Their idea, well suited for our setting, is to ensure that an improperly formed
input will render useless the obtained output of Rmap. For example, suppose
Rmap requires input encryption e to be a Paillier encryption of a bit (i.e. that
Dec(e) ∈ {0, 1}). We ensure that non-compliant inputs result in garbled output
as follows. Let s0, s1 ∈ DS be inputs to Rmap. We choose a random r ∈R DS

and run Rmap with secrets s0 ⊕ r, s1 ⊕ r. We now only need a CEM procedure
that would transfer r iff Dec(e) ∈ {0, 1}, which can be easily constructed.

5.2 Proxy Selling with a Secret Reserve Price

We sketch how to apply GT-CEM to an interesting variant of a proxy selling task,
mentioned in the Introduction. Here, the seller wishes to be offline and delegate
selling to the semi-trusted S. The seller initializes Epk, publishes pk and sends an
encryption Encpk(x) of his lowest acceptable price (i.e. reserve) to S, who later
interacts with buyers as follows. On an encrypted offer Encpk(y), S replies with
Rmap(s0, s1, Encpk(y), Encpk(x), pk), where s1 serves as S’s certification of the

14 Ian F. Blake and Vladimir Kolesnikov

successful buyer (e.g. in a form of a signature), and s0 is a non-winning (e.g.
empty) secret. Thus, successful buyers obtain (an encryption of) the contract,
which they later present to the seller.

Combining GT-CEM with the general CEM techniques based on secret rep-
resentations, described in sect. 4.7, allows us to obtain very efficient CEM de-
pending on several GT evaluations. This allows us to proxy sell not only based
on a reserve price, but on a price range, delivery date ranges, etc.

6 Comparison with Previous Work

We continue the resource analysis of Sect. 4.6. Note that the protocols of [5, 6, 12]
can be appropriately modified to be cast as GT-CEM. We summarize the cost of
comparable modular multiplications and communication of evaluating GT-CEM
based on [5, 6, 12] and our constructions CEM1 and CEM2 (i.e. Construction 4.4
instantiated with (−1, 1)-RM of Sect. 4.3 and 4.5 respectively).

Here c-bit secrets are transferred based on comparison of n-bit numbers. λ
and ν are the correctness and security parameters, and N > 2ν is the modulus
of the employed encryption scheme (GM for [5, 6] and Paillier for [12] and our
work). We do not include the one-time cost of key generation. We measure
communication as the size of the output of Rmap.

Solutions of [5, 6] transfer one-bit secrets per execution, therefore c-bit secrets
can be transferred at a factor c cost increase. Our CEM1 (resp. CEM2) protocols
transfer secrets of size c < ν/2 − λ (resp. c < ν − λ) per execution. Today’s
common parameters ν ≈ 1000, λ ≈ 40..80 imply transfers of approximately 450
(resp. 950)-bit secrets per execution of CEM1 (resp. CEM2). For CEM of longer
secrets, multiple execution is needed. Note the significant advantage of CEM1
for the most frequent case where the transfer of medium-size secrets is required.

Costs and Comparisons. GT-COT of [12] can be modified to obtain GT-
CEM similar in cost to CEM2. Solution of [2] (in a more restricted setting, where
one of the compared numbers is given in plaintext) carries approximately half
of the cost of CEM2. Other costs and comparisons are summarized below. (The
cost of (client-run) GM decryption, used in [6, 5], is not less than log N modular
multplications. For simplicity, we assume that it is log N .)

Protocol Comparable Modular Multiplications Communication Comment
client server total

of [6] 4ncλ log N 24ncλ 32ncλ + 4ncλ log N 4ncλ log N
of [5] 8n2c log N 12n2c 12n2c + 8n2c log N 8n2c log N
CEM1 16n log N 16n log N 32n log N 2n log N c < ν/2− λ
CEM2 24n log N 28n log N 52n log N 4n log N c < ν − λ

Acknowledgements. The authors are very grateful to Charles Rackoff for
many technical comments and suggestions on this paper. We also thank Sven
Laur and Helger Lipmaa for discussions of CDS and their related work [12],
Marc Fischlin for clarifications of the costs associated with his scheme [6], and
the anonymous reviewers of FC 2006 for helpful comments and suggestions.

Conditional Encrypted Mapping and Comparing Encrypted Numbers 15

References

1. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How
to sell digital goods. In Proc. EUROCRYPT 2001, pages 119–135, 2001.

2. Ian F. Blake and Vladimir Kolesnikov. Strong conditional oblivious transfer and
computing on intervals. In Advances in Cryptology - ASIACRYPT 2004, volume
3329 of Lecture Notes in Computer Science, pages 515–529. Springer, 2004.

3. Christian Cachin. Efficient private bidding and auctions with an oblivious third
party. In Proceedings of the 6th ACM Conference on Computer and Communica-
tions Security, pages 120–127. ACM Press, 1999.

4. G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious transfer
and time-released encryption. In Proc. CRYPTO 99, pages 74–89. Springer-Verlag,
1999. Lecture Notes in Computer Science, vol. 1592.

5. Giovanni Di Crescenzo. Private selective payment protocols. In Financial Cryp-
tography, pages 72–89, 2000.

6. Marc Fischlin. A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In RSA Security 2001 Cryptographer’s Track, pages 457–471. Springer-
Verlag, 2001. Lecture Notes in Computer Science, vol. 2020.

7. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Proc. EUROCRYPT 2004, pages 1–19. Springer-Verlag,
2004. Lecture Notes in Computer Science, vol. 3027.

8. Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data
privacy in private information retrieval schemes. In STOC ’98: Proceedings of the
thirtieth annual ACM symposium on Theory of computing, pages 151–160, New
York, NY, USA, 1998. ACM Press.

9. Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. On Secure
Scalar Product Computation for Privacy-Preserving Data Mining. In Choonsik
Park and Seongtaek Chee, editors, The 7th Annual International Conference in
Information Security and Cryptology (ICISC 2004), volume 3506, pages 104–120,
December 2–3, 2004.

10. M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of asso-
ciation rules on horizontally partitioned data. In ACM SIGMOD Workshop on
Research Issues on Data Mining and Knowledge Discovery (DMKD’02), 2002.

11. Vladimir Kolesnikov. Gate evaluation secret sharing and secure one-round two-
party computation. In Advances in Cryptology - ASIACRYPT 2005, volume 3788
of Lecture Notes in Computer Science, pages 136–155. Springer, 2005.

12. Sven Laur and Helger Lipmaa. Additive conditional disclosure of secrets and ap-
plications. Cryptology ePrint Archive, Report 2005/378, 2005. http://eprint.

iacr.org/.
13. Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Proc.

CRYPTO 00, pages 20–24. Springer-Verlag, 2000. Lecture Notes in Computer
Science, vol. 1880.

14. Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy preserving auctions and
mechanism design. In 1st ACM Conf. on Electronic Commerce, pages 129–139,
1999.

15. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proc. EUROCRYPT 99, pages 223–238. Springer-Verlag, 1999. Lecture
Notes in Computer Science, vol. 1592.

16. M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard Aiken Computation Laboratory, 1981.

