
Password Mistyping in
Two-Factor-Authenticated Key Exchange?

Vladimir Kolesnikov1 and Charles Rackoff2

1 Bell Labs, Murray Hill, NJ 07974,USA kolesnikov@research.bell-labs.com
2 Dept. Computer Science, University of Toronto, Canada rackoff@cs.utoronto.ca

Abstract. We study the problem of Key Exchange (KE), where authen-
tication is two-factor and based on both electronically stored long keys
and human-supplied credentials (passwords or biometrics). The latter
credential has low entropy and may be adversarily mistyped. Our main
contribution is the first formal treatment of mistyping in this setting.
Ensuring security in presence of mistyping is subtle. We show mistyping-
related limitations of previous KE definitions and constructions (of Boyen
et al. [7, 6, 10] and Kolesnikov and Rackoff [16]).
We concentrate on the practical two-factor authenticated KE setting
where servers exchange keys with clients, who use short passwords (mem-
orized) and long cryptographic keys (stored on a card). Our work is thus
a natural generalization of Halevi-Krawczyk [15] and Kolesnikov-Rackoff
[16]. We discuss the challenges that arise due to mistyping. We propose
the first KE definitions in this setting, and formally discuss their guar-
antees. We present efficient KE protocols and prove their security.

1 Introduction

The problem of securing communication over an insecure network is generally
solved using key exchange (KE). KE provides partners with matching randomly
chosen keys, which are used for securing their conversation. Of course, no adver-
sary Adv should be able to mismatch players. Therefore, players must possess
secrets with which they can authenticate themselves. The kind of secrets that
are available to players determines the setting of KE. In the simplest KE setting
players have a long shared random string. KE is more complicated if parties
establish key pairs with the public keys securely published. Using weak and/or
fuzzy credentials, such as passwords or biometrics, further complicates the de-
sign of KE. Finally, using a combination of credentials may make certain aspects
of KE easier (such as incorporating password authentication), but increases the
overall complexity of the solution, as discussed in [16].

Our setting. Two-factor authentication is critical and is used extensively in
secure applications such as banking, VPN, etc. Stored long keys protect against
online adversaries, but are vulnerable against theft. The extra layer of security is
achieved with additional use of a theft-resistant credential, e.g. a short password
or a biometric. Unfortunately, neither password nor biometric can be expected
to be read reliably into the computer.
? A shorter version of this paper appears in ICALP 2008 [17]

2 Vladimir Kolesnikov and Charles Rackoff

We give foundation to this setting by generalizing the work of Halevi-Krawczyk
(HK) [15] and Kolesnikov-Rackoff (KR) [16]. Recall, they address the client-
server setting where both long key and a short password are used for KE. The
servers are incorruptible, but client’s card or password can be compromised.

Motivated by real scenarios, we study the effects of password mistyping. Mis-
typing need not be random, but may be skewed by the adversary, e.g. by technical
means or social engineering manipulation. We thus consider security against
adversaries who can arbitrarily affect user’s mistyping. This consideration is
especially relevant in case biometric credentials are used for authentication, since,
due to technology limitations, biometric readings are expected to be misread.

Mistyping opens subtle vulnerabilities and raises complex definitional issues.
In the sequel, we use terms “password” and “mistype”, although our work applies
to passwords, biometrics, and other short noisy credentials, as noted in Sect. 5.

1.1 Our contributions and outline of work

Our main contribution is the first formal treatment of mistyping of passwords
in KE that uses a combination of credentials.

We discuss recent definitions that consider mistyping-related settings and
issues – robust fuzzy extractors of [7, 6, 10]. We point out a limitation of the
definitions of [7, 6, 10] with respect to robust handling of biometric misread-
ing/mistyping and discuss possible remedies. We demonstrate and correct a vul-
nerability of the definition and protocol of [16], which can only be exploited when
users mistype. These observations further emphasize the subtleties of mistyping
and the need for its formal treatment and deeper understanding.

In Sect. 3, we introduce our setting and the framework of [16] which we build
upon. Then, with simple protocols we illustrate mistyping-related issues, discuss
natural definitional approaches to handling mistyping and their shortcomings.
Most of the mistyping-related subtleties we uncover arise due to the simultaneous
use of both long keys and passwords. In Sect. 4, we formalize our discussion in
a definition, and prove that it prevents attacks that exploit mistyping.

In Sect. 5 we discuss applications of our work in biometric authentication.
In Sect. 6, we give efficient protocols and prove their security.

1.2 Related work

The problem of key exchange has deservedly received a vast amount of attention.
Password KE was first considered by Bellovin and Merritt [4]. Foundations –
formal definitions and protocols – were laid in [3, 8, 13, 9], and other works.

The use of combined keys in authentication, where the client has a password
and the public key of the server, was introduced by Gong et al. [14] and first
formalized by Halevi and Krawczyk [15]. Kolesnikov and Rackoff [16] extended
this setting by allowing the client to also share a long key with the server, and
gave first definitions of KE in their (and thus in the Gong et al. and HK) setting.

Password mistyping in KE. Despite the large research effort, the defi-
nitional issues of KE password mistyping are formally approached only in the

Password Mistyping in Two-Factor-Authenticated Key Exchange 3

UC definition of Canetti et al. [9]. In their password-only setting, mistyping is
modelled by Environment Z providing players’ inputs. Additional use of long
key makes our setting significantly different (and more subtle with respect to
mistyping) from that of [9]. Mistyping was also considered in different settings:
related-key attacks on blockciphers [2] and signing authority delegation [18].

Biometric authentication and fuzzy extractors. A growing body of
work, e.g. [12, 5, 10, 11], addresses the use of biometrics in cryptography. Boyen
et al. [7, 6, 10] consider its application to KE. They introduce the notion of ro-
bust fuzzy extractor (RFE), and give generic constructions of biometric-based
KE from RFE. While their setting is similar to ours, the problems solved by [7,
6, 10] are different. They give KE protocols that accept “close enough” secrets,
thus enabling security and privacy of biometric authentication. They do not
aim to give a formal KE definition that handles biometric/password misread-
ing. Moreover, as shown in Sect. 2, their notion of RFE is insufficiently strong
to guarantee security of their generic KE protocol in many practical settings.
(However, instantiating their KE protocol with their RFE construction is secure,
since the latter satisfies stronger requirements than required by the definition.)

2 Mistyping-related limitations in previous work

On robust fuzzy extractor (RFE) definition and KE protocol [7, 6, 10].
We first clarify underlying biometric technology limitations and assumptions.

Biometrics are “fuzzy”, i.e. each scan is likely to be different from, but “close”
to the “true” scan. Error-correction [12] is then used to extract non-fuzzy keys
usable in cryptography. However, error-correction cannot correct many misread-
ing errors (up to 10%), since this would imply high false acceptance rate3. Thus
misreading beyond error-correction ball occurs often, and must be considered.

We note a limitation of RFE definition [7, 6, 10], prohibiting its use with the
generic KE construction (Sect. 3.3 of [7]) in many scenarios. Roughly, definition’s
domains of correctness and security guarantees coincide. That is, extracted ran-
domness is only guaranteed to be good if the scan is within the error-correction
distance t from the original. There are no guarantees on the randomness if this
condition does not hold. This is, perhaps, due to the papers’ implicit assumption
that “natural” misreadings are almost always “close” and are corrected (i.e. FRR
is negligible). However, as discussed above, this assumption often does not hold.
Strengthening the randomness guarantees of RFE would increase its usability.

More specifically, a RFE (Gen,Rep) may exhibit the following vulnerability.
Given the public helper string P , if the biometric w0 is misread in a special way
w′ outside the error-correction ball, the extracted randomness Rep(w′, P) is
predictable. Even more subtly, Rep(w′, P) and Rep(w0, P) could be related, but
unequal. Clearly, KE protocols, including one of Sect. 3.3 of [7, 6], constructed
from such RFE would not be secure. One solution is to require, for w′ outside the
3 In balanced optimized real-life systems, which compare scans directly, False Reject

Rate (FRR) is usually 1..10%. Notably, NIST reports FRR of fingerprints 0.1..2%,
iris 0.2..1% and face 10%. See [1] for comprehensive overview and references.

4 Vladimir Kolesnikov and Charles Rackoff

error-correction ball, that either Rep(w′, P) = ⊥ (property of RFE construction
of [7, 6]) or that Rep(w′, P) is either equal to or independent from Rep(w0, P).

Finally, although [7, 6, 10] consider adversarial substitution of P with P ′,
they guarantee Rep(w′, P ′) = ⊥ only for w′ in the error-correction ball. This
vulnerability also can be resolved by separating the error-correction and security
domains. We defer detailed definition, analysis and constructions as future work.

On the definition and construction of [16]. We present the following
practical outside-of-the-model mistyping attack on the protocol (and thus also on
the definition) of Kolesnikov and Rackoff [16]. Specifically, resistance to Denial of
Access (DoA) attacks of the protocol of [16] is compromised if the honest client
ever mistypes. Indeed, since their protocol is not challenge-response, client C’s
message can be replayed. This is not a problem if C always types the correct
password (session keys of C and server S will be independent). However, if the
password was mistyped, both the original and replayed message will cause S to
register password failure, violating the intent of the DoA resistance. We stress
that the KR protocol is otherwise secure against mistyping (and we prove it in
Sect. 6). Our definitions and protocols address and correct the above insecurity.

Above limitations show subtleties of mistyping and the need to address them.

3 Pre-definition discussion

Our main contribution is a formal treatment of mistyping in the combined keys
KE setting of Kolesnikov and Rackoff [16]. The KR setting is a generalization
of the Halevi-Krawczyk setting [15], in which clients have a password and the
public key of S. In KR setting, clients carry stealable cards capable of storing
cryptographic keys – public key of S and long key ` shared by C and S. Addi-
tion of the cards allows better functionality and security than that of HK. KR
definitions and protocol guarantee and achieve strong security when C’s card is
secure, and weaker, password-grade, security, when the card is compromised.

We stress that the definition of KR does not handle mistyping. That is,
it is possible to construct KR-secure protocols that “break” if the client ever
mistypes his password. Sect. 3.3 of [16] provides an example and a short informal
discussion on mistyping, and leaves the problem open. In Sect. 3.2, we expand
this discussion, present more subtle mistyping threats, and discuss approaches
to handling them. This leads to the presentation of our definitions in Sect. 4.

Notation. We concentrate on the two-factor authentication setting, where
a client (denoted C) exchanges keys with a server (S). Both long and short keys
are used for KE. Let P be a player. We denote by Pi the i-th instance of P .
We write PQ

i to emphasize that Pi intends to do KE with (some instance of)
player Q. Denote the adversary by Adv. Sometimes we distinguish the game and
real-life adversary, and denote the latter AdvReal. Denote C’s password by pwd
and long key by `. S’s public/ private keys are pkS and skS . Password failure
and the associated control symbol output by S is denoted by P⊥.

On the Style of Definition. We chose the game (Bellare-Pointcheval-Roga-
way [3]) style, since this allowed using the intuitive definition of KR (only existing
two-factor-authentication KE definition). Extending KR allowed reduction of

Password Mistyping in Two-Factor-Authenticated Key Exchange 5

security claims of our definition/setting to those of KR. Further, the stronger
and arguably more intuitive UC model unfortunately is sometimes too strict,
ruling out some efficient protocols which appear to be good enough in practice.

Proposing a simulation-based (especially, UC) definition, and exploring the
relationship between it and our definition would add confidence in both our and
the UC treatment of the problem. We thus leave as an important next step the
design, detailed analysis and comparison of a corresponding UC definition. We
expect that our discussions of ideas and obstacles would aid in this future work.

3.1 Review of the framework of [16]

Our definition is an extension of the KE definition of KR (Def. 2 of [16]).
Recall, KR (and thus our) definition follows the common game-based paradigm.

The real world and real adversary AdvReal are abstracted as a game, played by
the game adversary Adv. Game includes clients and servers – Interactive Turing
Machines (ITM) running the KE protocol Π, communicating via channels con-
trolled by Adv. Game rules mimic reality, and are designed so that Adv’s wins
correspond to real-life breaks. Π is defined secure if no polytime Adv is able to
win above certain “allowed” probability. Definition is thus reduced to the design
of the game. KR break down the real world into five intuitive games (KE1, KE2,
KE3, DOA and SID), which mimic possible real-life attack scenarios.

Game KE1 is the core of the definition; it addresses password security when
the long key is compromised. The difficulty of KE1 design is in balancing the
power given to Adv, since AdvReal’s non-negligible advantage must be accounted
exactly. It is achieved by “charging” Adv for each active attack (i.e. P⊥ output
by S). The allowed Adv win probability is a function of the number of charges.

KE2 models AdvReal posing as S to C. KE3 models KE with uncompromised
card. In both cases, Adv is allowed only negligible success, which is easy to model.
DOA models a “denial of access” attack formalized by KR, which requires that
Adv is not able to cut C’s access to S by exhausting allowed password failures.
Finally, SID is a game preventing technicality-based insecure protocols.

We stress that a good model need not mimic the world exactly. E.g., Adv’s
ability to mistype or to know whether S failed may be different from AdvReal’s,
as long as Adv can win in some way (only) against bad protocols.

Mistyping in KR definitions. In KR games, client ITMs are always instan-
tiated with correct password, which limits Adv’s ability to emulate mistyping.
Many real-life attacks that exploit mistyping cannot be carried in the game, al-
lowing vulnerable protocol to withstand Adv’s attacks and be defined secure. In
Sect. 3.2, we discuss vulnerabilities, some natural “fixes” and their limitations.

3.2 Natural definitional approaches to mistyping (that don’t work)

To better expose subtle definitional issues and the limitations of some natural
approaches, we build presentation incrementally. We propose several mistyping-
vulnerable protocols, each progressively more “tricky”, and show that they are
KR-secure. We then discuss corresponding natural “fixes” of the KR definition
– ways of allowing Adv to modify or substitute client’s password, so as to mimic

6 Vladimir Kolesnikov and Charles Rackoff

real-life mistyping and allow Adv to carry the real-world attacks. We show that
ultimately they are insufficient and conclude that, for technical reasons, direct
mimicking of mistyping in the games does not result in a good model. For read-
ability, we keep discussion brief and informal (but readily formalizeable).

Mistyping vulnerabilities by example. Let Π be a KR-secure KE proto-
col. Π1, Π2, Π3 below are KR-secure, but fail in progressively more subtle ways.

Π1 (S leaks long key upon mistyping). Let Π1 be a protocol as Π, except that
in Π1 S reveals the long key ` in a message, once password failure P⊥ occurred.

Clearly, Π1 is “bad”. But, it is easy to see that Π1 is secure by KR definition.
Since instances of C never mistype in the game, KRAdv cannot cause P⊥ without
possession of `. Thus, Adv cannot gain from S revealing `, and Π1 is KR-secure.

Π2 (S leaks password upon repeated mistyping). Let pwd be C’s password.Let
Π2 be a protocol as Π, except that in Π2, S reveals pwd once pwd+ 1 was tried
twice. (Limited global state can be communicated among instances of S with
the help of Adv, thus allowing Π2 [16]; see Appendix A for detailed discussion.)

At the first glance, it may appear that Π2 is “good”. Indeed, the advantage
Adv gets from causing the leak is canceled by the effort to obtain it – a redun-
dant password attempt for each attempt of causing the leak (this is the reason
why Π2 is KR-secure). However, this leak can be caused by real-life honest C
mistakenly entering pwd + 1 twice. This is not an unusual situation, and the
resulting password compromise is clearly unacceptable.

Π3 (S leaks a small hint about a password upon repeated mistyping).Let pwd
be C’s password. Let Π3 be a protocol as Π, except that in Π3, S reveals whether
pwd = 0 once pwd+ 1 was tried 4 times. Π3 is bad for the same reason as Π2.

Definitional approaches. We consider strengthening Adv of KR by mim-
icking powers of real-life adversary. Our goal is to disallow above “bad” protocols.

Allowing Adv to specify the password of C’s instances disqualifies Π1.Indeed,
Adv wins the game where he is not given `, as follows. He instantiates C with a
wrong password, causing P⊥ and leak of `, which Adv uses to win.

To disqualify Π2, Adv needs more than simple substitution of C’s password.
Adv needs the power to specify a “mistyping function” applied to the password
given to C (idea also considered in [18]). That is, Adv specifies a map F : D 7→ D,
and C is instantiated with password F (p). (Not every map F is allowed [16].)

While Π3 is bad for the same reason as Π2 (real-life C’s mistyping leaks a
password hint), it is harder to disqualify Π3 due to the small size of the leak.
It turns out that Π3 is an important example, showing that allowing Adv to
influence C’s input is insufficient. We continue this discussion below in Sect. 4.

4 Mistyping-secure KE definition

Π3, the last example of Sect. 3.2 is a (otherwise secure) protocol where S leaks a
small password hint after four certain repeated mistypings. A repeated mistyping
does not help Adv (he is checking already checked password). Since in KR defi-
nition, Adv is charged for each (even repeated) mistyping, the cost of mistyping
outweighs the benefit of the leak, and Adv is not able to exploit the vulnerability.

Password Mistyping in Two-Factor-Authenticated Key Exchange 7

This leads to our main idea – to allow Adv to run mistyped KE executions
“for free”. This way, Adv will be able to win whenever a non-negligible amount
of information is leaked due to mistyping. It turns out that this additional power,
applied properly, results in a good (i.e. sufficiently, but not too strong, and easy
to use) definition, presented in this section.

Our extension of KR definition. We would like to give Adv the ability
to observe and actively participate “for free” in mistyped KE sessions. This
is not possible with the approaches we previously discussed, including that of
[16]. This is because there Adv always learns whether S accepted the password,
allowing Adv to verify a password guess, for which Adv must be charged. Our
idea is to withhold failure information from Adv (and not charge him in case of
P⊥) by default, thus allowing “free” mistypings. If Adv wants to obtain failure
information, it is given to him upon special “check” request. Since this gives him
information about the password, he is charged one attempt, if the check reveals
P⊥. Note, this cost structure is a simple generalization of the one used in [16].
This amendment of KR is sufficient to handle mistyping.

Another advantage of this approach is allowing to mimic mistyping without
Adv creating instances with substituted password. Indeed, Adv can make a pass-
word guess, and, based on it, emulate any mistyping sequence of C. As shown in
Sect. 4.1, this guarantees security, since a “free” mistyping-dependent leak would
confirm Adv’s guess, allowing him to win. On the other hand, C’s input substi-
tution, especially using a mistyping map, is technically complex, and makes the
definition less usable, since proofs would have to consider all such maps.

We now present our definition. Let n be a security parameter, and D =
{0, 1}m is the password domain. (In general, m can be a function of n; interesting
cases are when m is constant or logarithmic in n.) All players (Adv, C, S) are
p.p.t. machines. As does [16], we use session IDs (SID) to partner instances of
players, and impose the following correctness requirement. In the absence of
adversary, all sessions terminate and intended parties output same sid and key.

Definition 1. We say that an instance CS
i of a client C and an instance SC

j of
a server S are partners, if they have output the same session id sid.

We start by presenting KE games, which model attacks of a real-life adversary
AdvReal. The first game models the setting where AdvReal obtained C’s long
key, is attacking a server, and is allowed a limited number of password tries.

Game KE1. Adv deterministically chooses active attack threshold q ∈ 1..|D|
(based on security parameter n) and creates an (honest) server S. Adv chooses
S’s name; then S’s public/private keys are set up, and the public key revealed to
Adv. Adv then runs players by executing steps 1-7 multiple times, in any order:

1. Adv creates an honest client C. Adv is allowed to pick any unused name for
the client; the client C is registered with S, and long key ` and password pwd
are set up and associated with C. Only one honest client can be created. Adv
is given the long key `, but not pwd.

2. Adv creates a corrupt client Bi. Adv is allowed to initialize him in any way,
choosing any unused name, long key and password for him.

8 Vladimir Kolesnikov and Charles Rackoff

3. Adv creates an instance Ci of the honest client C. Ci is given (secretly from
Adv) as input: his name C, the partner server’s name S, the public key of
S, the long key and the password of C.

4. Adv creates an instance Sj of the honest server S. Sj is given (secretly from
Adv) as input: his name S, the private key of S, his partner’s name (C or
Bi) and that client’s long key and password.

5. Adv delivers a message m to an honest party instance. The instance imme-
diately responds with a reply (by giving it to Adv) and/or, terminates and
outputs the result (a sid and either the session key, the failure symbol ⊥, or,
in case of the server instance, the password failure symbol P⊥) according to
the protocol. Adv learns only the sid part of the output.

6. Adv “checks” any completed honest instance – then he is notified whether
the instance output P⊥, ⊥, or a session key. Adv gets charged one attempt,
if he checked SC and it output P⊥.
When Adv accumulates q charges, he becomes restricted – he can neither
deliver messages to any instances SC

j nor check any instances.
7. Adv “opens” any successfully completed and checked honest instance – then

he is given the session key output of that instance.

Then Adv asks for a challenge on an instance SC
j of the server S. SC

j , who
has been instantiated to talk to the honest client C, must have completed, been
checked by Adv, and output a session key. The challenge is, equiprobably, either
the key output by SC

j or a random string of the same length. Adv must not have
opened SC

j or a partner of SC
j , and is not allowed to do it in the future.

Then Adv continues to run the game as before (execute steps 2-7). Finally,
Adv outputs a single bit b which denotes Adv’s guess at whether the challenge
string was random. Adv wins if he makes a correct guess, and loses otherwise.
Adv cannot “withdraw” from a challenge, and must produce his guess.

Note that we handle sid differently from [16]. Here we insist that parties
always output sid, while previously sid was only output if a party did not fail.
We need this change, since KE1’s interface needs to be the same for cases when
an instance failed and did not fail. Outputting a sid only if KE succeeded (and
letting it known to Adv for free) helps Adv determine whether P⊥ occurred.

In all other KE games (KE2, KE3, SID and DOA) below, password
mistyping and even the knowledge of pwd should not help Adv. We thus choose
to reveal the password to Adv and remove restrictions on the number of P⊥’s
(thus removing the definition of q). We also allow Adv to specify Ci’s password
at its instantiations. These games are presented by modifying the above KE1.
All of the above four modifications are included in all games below.

KE2 models the setting where Adv stole C’s pwd and `, but is attacking C.

Game KE2 is derived from KE1 as noted above; further, Adv is given ` and
must challenge an honest client instance CS

i .
KE3 models the setting where Adv only stole C’s pwd, and is attacking S.

Game KE3 derived from KE1 as noted above, but Adv is not given `.

Password Mistyping in Two-Factor-Authenticated Key Exchange 9

SID enforces non-triviality, preventing improper partnering (e.g. players un-
necessarily outputting same sid). Recall, Adv is not allowed to challenge parties
whose partner has been opened; SID ensures that Adv is not unfairly restricted.

Game SID is derived from KE1 as noted above; further, Adv does not ask
for (nor answers) the challenge. Adv wins if any two honest partners output
different session keys.

Note, SID allows for one (or both) of the partners to output a failure symbol.
Adv only wins if two successfully completed parties output different session keys.

Finally, game DOA models resistance to the Denial of Access (DoA) attacks.
This game prevents vulnerabilities due to mistyping (see Sect. 4.1).

Game DOA is derived from KE1 as noted above; further, Adv does not ask
for (nor answers) the challenge. Adv wins if the number of P⊥’s is greater than
the number of client instances where he substituted the password.

Definition 2. We say that a key exchange protocol Π is secure in the Com-
bined Keys model with mistyping, if for every polytime adversaries Adv1, Adv2,
Adv3, Advsid and Advdoa playing games KE1, KE2, KE3, SID and DOA, their
probabilities of winning (over the randomness used by the adversaries, all players
and generation algorithms) is at most only negligibly (in n) better than:

– 1/2 + q
2|D| , for KE1,

– 1/2, for KE2 and KE3,
– 0, for SID and DOA.

The definition for the HK setting (where C does not have `) is extracted
from Def. 2 by removing all uses of ` and the games where Adv doesn’t know `.

4.1 Why this is a good definition

First, since Adv is not weaker than Adv of [16], Def. 2 enforces basic security
properties of the protocols. We additionally need to argue that the definition
is not too strict and that it prevents mistyping-caused leaks in protocols. The
former property is intuitive, and we support it by proposing an efficient protocol
and proving its security w.r.t. Def. 2 (Sect. 6). The latter property, on the other
hand, requires significantly more careful consideration, presented in this section.

Note, KE1 is the only game where we need to be careful with not giving Adv
too much power w.r.t. mistyping. In other games, unlimited ability of Adv to
substitute C’s input should not help him win against a secure protocol. At the
same time, such Adv directly models real-life adversary. Therefore, this simple
allowance resolves mistyping problems w.r.t. other games we consider.

KE1 is the core of the definition, and most of the definitional subtleties appear
in KE1. We start with the discussion of the details and ideas about this game.

Why KE1 is a good model. Often, when a definition is proposed, a proof
is provided, demonstrating the relationship between the new and previous defi-
nitions. This adds confidence in the proposed definition. We introduce the first
definition in our setting; thus there is no previous definition to relate it to.

10 Vladimir Kolesnikov and Charles Rackoff

Our approach. Instead, we prove that if a protocol Π is secure by Def. 2, Adv
of the game KE1 cannot tell the difference between the following two executions,
if he is not allowed to see the outputs of S. In one execution, selected (by Adv)
client instances are instantiated with a mistyping sequence Adv chooses, and in
the other they are instantiated with the password pwd of C. We stress that Adv
is active during these executions; he can perform (almost) all the actions Adv of
KE1 can. This provides an informal “reduction” to the definition of [16], in the
following sense. Assume the definition of [16] is “good”, i.e. accurately identifies
insecure protocols in its “no-mistyping” model. Then Def. 2 is “good” in the
general setting, where clients are allowed to mistype.

Indeed, suppose Π is “bad”. Due to the indistinguishability of the above ex-
ecutions, anything that Π leaks due to mistyping can also be seen and exploited
without mistyping by Adv of KE1 of [16]. Then Π will be insecure by definition
of [16], since, by assumption, it is a good definition. Since KE1 Adv of Def. 2
is at least as strong as that of [16], Π will also be insecure by Def. 2. From
another angle, if active Adv cannot distinguish the above executions, then he
is not learning anything from the mistypings, other than what may be inferred
from the corresponding sequence of P⊥’s, but the latter is unavoidable anyway.

This reduction is informal, and serves only as evidence that our definition is
good. By the nature of definitional work, it is not possible to “prove” definitions.

Formal theorem statement and proof of indistinguishability of the above
executions is in Appendix B. Proof idea is that some passwords used in the mis-
typed execution must be unequal to C’s pwd. Ability to distinguish executions
gives a free hint of what pwd is not, allowing corresponding KE1 Adv to win.

On DoA protection. As mentioned in Sect. 2, the definition of [16] does
not model (and fails to guarantee) DoA resistance when honest users mistype.
We need that a replayed client’s flow must not cause S output P⊥. Therefore,
C must send at least one message that is dependent on S’s message. Thus, the
one-round, two-independent-flow protocols are not possible if DoA is desired.

We change the DOA game accordingly. Adv knows pwd, and is now allowed
to instantiate clients with passwords of his choice. Adv wins DOA, if the number
of P⊥ is greater than the number of client instances with substituted password.

5 Application to biometric authentication

We note that our definitions and protocols are directly applicable to biometric-
based authentication. For example, fuzzy extractors [11] can be naturally used
in our two-factor authentication setting, as follows. The storage card now ad-
ditionally contains the public data pubC of C’s biometric bC . The (potentially
short) randomness extracted from bC plays the role of the password. To authen-
ticate, C first reconstructs the password using extractor’s recovery procedure
Rec(pubC , b′C), and then uses it as prescribed by a KE protocol. Misreading b′C
of bC can cause variety in the output of Rec and thus effect mistypings in the
protocol. Still, our definitions (in-particular, mistyping-security property) and
properties of fuzzy extractors guarantee security of this construction, even if

Password Mistyping in Two-Factor-Authenticated Key Exchange 11

Adv captured the card with the long key and pubC . (In the HK setting, where
C only has pkS , we also can use our definition and above protocol – but pubC is
now sent by S to C authenticated by S’s signature, as part of the protocol.)

However, we note that our definitions do not handle the general case, where
bC is used directly as input to C. That is, S knows “acceptance set” of C (ASC),
and accepts if C’s submitted password/biometric bC ∈ ASC . We anticipate that
a natural extension of our definition would handle this case. In particular, the
correctness requirement should be amended w.r.t. ASC , and Adv’s allowed suc-
cess rate may be dependent on AS as well. We leave this definition as future work,
to be performed either as extension of our definition, or in the UC framework.

6 Mistyping-Secure KE Protocols

WLOG, assume protocol messages are formed properly (i.e. values drawn from
appropriate domains, etc.). Let n be a security parameter, E = (Gen,Enc,Dec)
be a CCA2 secure public key encryption scheme, F : {0, 1}n×{0, 1}n 7→ {0, 1}n
be a PRFG, and MAC : {0, 1}n×{0, 1}∗ 7→ {0, 1}n be a message authentication
code. Let NC ∈ {0, 1}n be the name of client C. (Shorter names may be used.)

Although KR definitions do not handle mistyping, their protocol resists all
mistyping-related attacks, except for (perhaps, unimportant in some settings)
DoA resistance. We first prove this fact. Constr. 1 is the protocol of [16], only
with updated handling of sid, to satisfy the syntactic requirements of Def. 2.

Construction 1 (KE with mistyping, no DoA resistance [16])

SC CS

choose r ∈R {0, 1}n choose k ∈R {0, 1}n ,
set α=EncpkS

(NC ,pwd,k)
r → · · · ← α,MAC`(α)

set sid = (r, α), set sid = (r, α),
verify MAC`(α) and NC ; output
if fail, output (sid,⊥),halt (sid,K = Fk(r))

verify pwd;
if fail, output (sid,P⊥),halt

else output (sid,K = Fk(r))

Theorem 1. Constr. 1 satisfies Def. 2, except for the success rate in game DoA.
We now present a fully secure protocol in our model, derived from Constr. 1.

Construction 2 is a challenge-response version of Constr. 1, where CS replies
with (α,MAC`(r, α)) to message r.

Theorem 2. Constr. 2 is secure by Def. 2.

We note that Constr. 2 can be modified to allow S to send confirmation to
C whether he accepted, failed or password-failed. See Appendix D for details.

Proofs of security of Theorems 1 and 2 are presented in Appendix C.
Achnowledgements: We thank Shai Halevi, Hugo Krawczyk, and anony-

mous referees for valuable comments.

12 Vladimir Kolesnikov and Charles Rackoff

References

1. http://en.wikipedia.org/wiki/Biometrics#Performance,Retrieved 02/10/08.
2. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks:

Rka-prps, rka-prfs, and applications. In Advances in Cryptology – EUROCRYPT
2003, volume 2656 of LNCS, pages 491–506, 2003.

3. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key ex-
change secure against dictionary attacks. In Advances in Cryptology – EURO-
CRYPT 2000, volume 1807 of LNCS, pages 139–155. Springer, 2000.

4. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based
protocols secureagainst dictionary attacks. In SP ’92: Proceedings of the 1992 IEEE
Symposium on Security and Privacy, page 72, Washington, DC, USA, 1992. IEEE
Computer Society.

5. Xavier Boyen. Reusable cryptographic fuzzy extractors. In CCS, pages 82–91.
ACM Press, 2004.

6. Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam Smith.
Secure remote authentication using biometric data (revised version). Available at
http://www.cs.stanford.edu/~xb/eurocrypt05b/.

7. Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam Smith.
Secure remote authentication using biometric data. In Advances in Cryptology –
EUROCRYPT 2005, volume 3494 of LNCS, pages 147–163, 2005.

8. V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password-Authenticated
Key Exchange Using Diffie-hellman. In B. Preneel, editor, Advances in Cryptology
– EUROCRYPT 2000, volume 1807 of LNCS, pages 156–171. Springer, 2000.

9. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKen-
zie. Universally composable password-based key exchange. In Advances in Cryptol-
ogy – EUROCRYPT 2005, volume 3494 of LNCS, pages 404–421. Springer, 2005.

10. Yevgeniy Dodis, Jonathan Katz, Leonid Reyzin, and Adam Smith. Robust fuzzy
extractors and authenticated key agreement from close secrets. In Advances in
Cryptology – CRYPTO 2006, volume 4117 of LNCS, pages 147–163, 2006.

11. Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data. Cryptology
ePrint Archive, Report 2003/235, 2003. http://eprint.iacr.org/.

12. Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. In Advances in Cryptology
– EUROCRYPT 2004, volume 3027 of LNCS, pages 523–540, 2004.

13. Oded Goldreich and Yehuda Lindell. Session-key generation using human pass-
words only. In Advances in Cryptology – CRYPTO 2001, volume 2139 of LNCS,
pages 408–432, London, UK, 2001. Springer.

14. Li Gong, T. Mark A. Lomas, Roger M. Needham, and Jerome H. Saltzer. Protecting
poorly chosen secrets from guessing attacks. IEEE Journal on Selected Areas in
Communications, 11(5):648–656, 1993.

15. Shai Halevi and Hugo Krawczyk. Public-key cryptography and password protocols.
ACM Trans. Inf. Syst. Secur., 2(3):230–268, 1999.

16. Vladimir Kolesnikov and Charles Rackoff. Key exchange using passwords and long
keys. In Theory of Cryptography, TCC 2006, volume 3876 of LNCS, pages 100–119.
Springer, 2006.

17. Vladimir Kolesnikov and Charles Rackoff. Password mistyping in two-factor-
authenticated key exchange. In ICALP (2), pages 702–714, 2008.

18. Philip MacKenzie and Michael Reiter. Delegation of cryptographic servers for
capture-resilient devices. Distributed Computing, 16(4):307–327, 2003.

Password Mistyping in Two-Factor-Authenticated Key Exchange 13

A On global state communication via Adv

We note that the KR definition does not allow communication between instances
of S (or of C) directly. Such abstraction allows for a significant simplification
in many KE settings. However, as pointed out in [16], in the setting with long
secret keys, such as ours, instances of S can have limited private communication
via the following side channel provided by active Adv. To send a message m, an
instance of S encrypts and signs it with its public key pair and gives to Adv,
who can later pass it to another instance of S in a special protocol field. Thus,
a weak private authenticated channel (with Adv being able to only drop, replay
and re-route messages) can be established.

In particular, such channel can implement a global counter of password fail-
ures P⊥. This can be done by each instance checking the special protocol field for
current encrypted P⊥ counter, and sending out a signed encryption of the new
value upon termination. Similarly, a global history of events, such as a sequence
of passwords that S-instances saw, can be maintained by them.

We stress that this channel is the consequence of the setting, and is not a
desired “feature” of the KR or our definitions. Indeed, Adv can always cut this
channel (or just drop some messages), so it cannot be reliably used. Moreover,
as discussed in Sect. 3.2, it introduces certain subtleties preventing the obvious
ways of definitional handling of mistyping. Jumping ahead, we note that the
subtleties caused by this channel are specific to the combined keys setting, where
both long and short keys are used (long keys are necessary to facilitate semi-
reliable communication between instances of S, and short keys require precise
handling of Adv’s advantage, and his very limited attack powers in the games).
We would like to prohibit this channel to simplify the model, but we don’t see
an elegant way to do it in a definition.

Indeed, while it is relatively easy to verify that a concrete protocol prohibits
such channel, it is not at all clear how to enforce it in a definition. In particular,
we would need to prevent an S instance from processing a message related to one
generated by another S instance. It is unclear how to even define such relations.
Another approach could be to “look inside” the protocol source code, and limit
the uses of the skS . For example, if skS is not used to verify signatures, this may
disrupt certain inter-instance communication. However, such white-box analysis
is complex and may result in unnecessary restrictions on the protocols. We thus
did not take this approach.

B Proof of Indistinguishability of Transcripts with and
without Mistyping

We now formally prove the indistinguishability of the two executions, discussed
in Sect. 4.1. Consider the following game KEM derived from KE1 of Def. 2.
Game KEM . KEM is the same as KE1, with the following differences.

– Adv does not specify or use q. He is not allowed to check, open or challenge
instances of S.

14 Vladimir Kolesnikov and Charles Rackoff

– Adv deterministically (based on the security parameter n) chooses the length
of the distinguishing sequence ld.

– A bit b is chosen uniformly at random by the game.
– Among client instances Ci, throughout the execution, Adv creates ld chal-

lenge instances, as follows. When creating Ci which is a challenge instance,
Adv chooses pi ∈ D and gives it to the game. If b = 1 then Ci is instantiated
with pi, otherwise, it is instantiated with its password pwd.

– Adv outputs a bit b′. He wins if b′ = b and loses otherwise.

Adversary AdvM of KEM is active and strong – he has access to almost
all the information Adv may see during the execution of KE1. AdvM can even
see session keys output by the client (and thus session keys of partner server
instances). Of course, we must prevent him from verifying if S output P⊥, since
otherwise he would always win. We thus disallow AdvM to check S. We prove
the following.

Theorem 3. Let Π be a protocol secure by Def 2. Then, no polytime adversary
AdvM wins KEM with probability non-negligibly more than 1/2.

Note, Theorem 3 implies that Adv cannot tell the difference between any
two sequences he can pick (otherwise at least one of them would differ from the
sequence of all correct passwords). The theorem does not (and cannot) state
there does not exist a sequence which would cause a distinguishable transcript.
In fact, distinguishable sequences may exist, e.g. those depending on the private
key of the server, but AdvM cannot find them.

B.1 Reduction KE1 to KEM

For the proof, first consider an adversary who is only allowed to provide a single
challenge (i.e. ld = 1). We will later show (via a hybrid argument) that this
restriction is easily removed. Consider the following game KEM1.
Game KEM1. KEM1 is the same as KEM , with the exception that ld = 1.

Theorem 4. Let Π be a protocol secure by Def. 2. Then, no adversary AdvM1

wins KEM1 with probability non-negligibly greater than 1/2.

Proof (sketch):
Suppose there exists an adversary AdvM1 who wins KEM1 with probability

Prw = 1/2 + δ, where δ is non-negligible. Consider success rate of AdvM1 in
two cases – when he chooses pi = pwd and when he chooses pi 6= pwd. Clearly,
since the view of AdvM1 is independent of b in the first case, his success rate is
equal to 1/2. Thus, the success probability Prw1 in case when pi 6= pwd must
satisfy Prw1 = Pr(AdvM1 succeeds|pi 6= pwd) ≥ Prw, and Pr(pi 6= pwd) is
non-negligible.

We show how to use AdvM1 to construct Adv who wins KE1 with proba-
bility non-negligibly greater than allowed. Adv proceeds as follows. He choses
q = |D|−1. Note that a secure protocol would allow probability of Adv’s success

Password Mistyping in Two-Factor-Authenticated Key Exchange 15

of 1
2 + q

2|D| = 1
2

2|D|−1
|D| = 1 − 1

2|D| . Adv then runs AdvM1, satisfying all his re-
quests in a natural manner, except when AdvM1 requests to create the challenge
instance and provides a password pi. In this case, Adv flips a uniform bit bA
and instantiates Ci with the password according to bA. That is, if bA = 0, Ci

is instantiated, and if bA = 1, Adv simulates execution of Ci with a password
pi. Note that Adv will never check S while running AdvM1, so this execution is
“free” for Adv. Note that what AdvM1 sees is distributed identically to what he
would have seen in the game KEM1. Eventually AdvM1 outputs a value, which
indicates its guess at bA. Recall, AdvM1 has an advantage by our assumption.
Adv will use this advantage in a natural way, as follows.

Adv now makes q − 1 = |D| − 2 random attempts of the password pwd
of the honest client C, created during running AdvM1. If Adv succeeds in the
guess, he wins KE1. Let Eng be the event that Adv does not succeed in guessing
pwd, occurring with probability 2

|D| . Conditioned on occurrence of Eng, allowed
probability Prng of success of Adv is 3

4 . (This is obtained by solving 1− 1
2|D| =

(1− 2
|D|)·1+ 2

|D| ·Prng.) For the rest of the proof, we consider the case where Eng

occurred. We show how Adv wins with probability greater than 3
4 , thus proving

the theorem.
If pi has been tried by Adv, Adv proceeds with his last allowed password

guess, and wins with the allowed expected probability 3
4 . However, if pi has

not been tried (call this event Enp), Adv makes a guess at whether pi = pwd,
based on the output of AdvM1, as follows. If AdvM1 succeeded in guessing bA,
Adv guesses that pi 6= pwd, otherwise he guesses that pi = pwd. Compute the
probability of Adv’s guess being correct, conditioned on events Eng, Enp having
occurred.

Pr(Adv correct|Eng, Enp) = Pr(Adv correct|pi = pwd,Eng, Enp) · Pr(pi = pwd|Eng, Enp)
(1)

+ Pr(Adv correct|pi 6= pwd,Eng, Enp) · (1− Pr(pi = pwd|Eng, Enp))

In the case pi = pwd, AdvM1’s view is independent of bA, and his probability
of winning is 1/2. Therefore, Pr(Adv correct|pi = pwd,Eng, Enp) = 1

2 . It is easy
to verify that in the case pi 6= pwd, Adv guesses correctly whenever AdvM1

guesses correctly. Further, it is not hard to see that in case pi 6= pwd, AdvM1’s
success does not depend on events Eng or Enp. Therefore,

Pr(Adv correct|pi 6= pwd,Eng, Enp) = Pr(AdvM1 wins|pi 6= pwd,Eng, Enp)
= Pr(AdvM1 wins|pi 6= pwd) = Prw1

Substituting into 1 and denoting preq = Pr(pi = pwd|Eng, Enp), obtain

Pr(Adv correct|Eng, Enp) =
1
2
preq + Prw1(1− preq)

16 Vladimir Kolesnikov and Charles Rackoff

Since Pr(pi 6= pwd) must be non-negligible forAdvM1 to have a non-negligible
advantage, Pr(pi 6= pwd|Eng, Enp) = 1− preq is also non-negligible. Since Prw1

is non-negligibly greater than 1
2 by assumption and (1− preq) is non-negligible,

Pr(Adv correct|Eng, Enp) is non-negligibly greater than 1
2 . Thus,

Pr(Adv wins KE1|Eng, Enp) = Pr(Adv correct|Eng, Enp) + (1− Pr(Adv correct|Eng, Enp)) · 1
2

is non-negligibly greater than 3
4 . Therefore Pr(Adv wins KE1|Eng) is non-negligibly

greater than 3
4 . This completes the proof of the theorem. �

Theorem 5. Let Π be a protocol. If there exist an adversary AdvM winning
KEM with probability non-negligibly greater than 1/2, then there exist an adver-
sary AdvM1 winning KEM1 with probability non-negligibly greater than 1/2.

Proof (sketch):
Let AdvM be an adversary satisfying the theorem’s condition. Let pr0 be

the probability AdvM wins (i.e. outputs 0) if b = 0 in KEM , and pr1 be the
probability AdvM wins (i.e. outputs 1) if b = 1 in KEM . We will construct
AdvM1 guaranteed by the theorem statement, by a simple hybrid construction.
Intuitively, since there is a noticeable difference in the effects of the two mistyping
sequences AdvM generates (string of pi’s and string of passwords of Ci), there
must be a noticeable difference in the effect of at least one consecutive pair of
the sequence of hybrid strings. Moreover, the expected difference is noticeable
in a randomly chosen such pair. Details below.

AdvM1 starts and runs AdvM , passing AdvM ’s requests to KEM1. All requests
of AdvM are directly satisfied, with the exception of the challenge requests,
since AdvM1 is only allowed to make one such request. AdvM1 randomly chooses
j ∈R [1..ld]. AdvM ’s k-th request (k ∈ [1..ld]) for mistyped clients creation
is satisfied as follows. If k < j, the corresponding Ci is instantiated with its
password pwd. If k > j, the corresponding Ci is instantiated with password pi,
supplied by AdvM . If k = j, AdvM1 supplies pi to KEM1, and the game chooses
its challenge by instantiating the corresponding Ci either with pwd or pi. When
AdvM terminates, AdvM1 outputs what AdvM output and terminates. It is not
hard to verify that AdvM1 wins KEM1 non-negligibly more often than 1/2. The
exact probability computation follows.

Consider the possible hybrid mistyping sequences caused by AdvM1 during
the execution of KEM1 while running AdvM . The actual sequence instantiated
depends on the chosen j and the bit b chosen by KEM1. There are ld + 1 such
sequences:

sld = pwd pwd pwd ... pwd pwd
sld−1 = pwd pwd pwd ... pwd pld

sld−2 = pwd pwd pwd ... pld−1 pld

...
s1 = pwd p2 p3 ... pld−1 pld

s0 = p1 p2 p3 ... pld−1 pld

Password Mistyping in Two-Factor-Authenticated Key Exchange 17

Let prhi be the probability that AdvM outputs 1 when sequence si was
instantiated. These probabilities are fixed, although not known. Observe that
prh0 = pr1 and prhld = 1− pr0.

Let Prw be the probability AdvM1 wins the game. Then

Prw = Pr(b = 0)·Pr(AdvM1 outputs 0|b = 0)+Pr(b = 1)·Pr(AdvM1 outputs 1|b = 1)

Note that

Pr(AdvM1 outputs 0|b = 0) =
1
ld

ld∑
i=1

(1− prhi)

and

Pr(AdvM1 outputs 1|b = 1) =
1
ld

ld∑
i=1

(prhi−1).

Since Pr(b = 0) = Pr(b = 1) = 1/2,

Prw =
1
2

1
ld

ld∑
i=1

(prhi−1 + 1− prhi) =
1
2

+
1
2

1
ld

ld∑
i=1

(prhi−1 − prhi)

=
1
2

+
1
2

1
ld

(prh0 − prh1 + prh1 − prh2 + ...+ prhld−1 − prhld)

=
1
2

+
1
2

1
ld

(prh0 − prhld) =
1
2

+
1
2

1
ld

(pr1 − (1− pr0)) =
1
2

+
1
2

1
ld

(pr0 + pr1 − 1)

By assumption, AdvM wins KEM with probability PrM = 1/2 + δ. Since
PrM = Pr(b = 0) ·pr0+Pr(b = 1) ·pr1 = 1

2 (pr0+pr1), conclude that pr0+pr1 =
1 + 2δ and, substituting in the above, obtain

Prw =
1
2

+
δ

ld

Noting that δ is non-negligible and positive completes the proof. �

C Proofs of Security

In this section we present formal proofs of security of protocols of Sect. 6.

C.1 Proof of security of the protocol of Constr. 1 (Theorem 1)

We first prove that, assuming security of the underlying primitives of Π, there
does not exist an adversary winning the game KE1 too often. The proof of this
case is delicate due to handling precise quantitative advantage of Adv; it presents
main ideas for the proof of the other cases.

Proposition 1. If the PRFG F and the CCA2 encryption scheme E used in
Π are secure, then for every polytime Adv, the probability p of Adv winning the
game KE1 is no more than 1/2 + q

2|D| + ε, where ε is negligibly small (in the
security parameter n).

18 Vladimir Kolesnikov and Charles Rackoff

Prop. 1 follows from lemmas 1 and 2, presented in the Sect. C.1.
The other cases are handled by

Proposition 2. If the PRFG F , MAC, and the CCA2 encryption scheme E
used in Π are secure, then for every polytime Adv1 and Adv2 the probabilities of
them winning the games KE2 and KE3 respectively are no more than p > 1/2+ε,
where ε is negligibly small (in the security parameter n).

Prop. 2 follows from lemmas 3, 4 and 5, presented in Sect. C.1.
Theorem 1 follows from Prop. 1 and 2.

Proof for the case when the adversary is given the long key and chal-
lenges the server Consider the following game (parameterized by n). that a
distinguisher Dist1 plays. We suggest looking at the game briefly at the first
reading – the motivation behind it would be clear in the proof of the reduction
from game KE1 (Lemma 1).
Game G1. A maximum number of “password tries” q is deterministically (based
on n) chosen by Dist1 and fixed. The game initializes a CCA2 secure encryp-
tion scheme (by generating public and private keys pkS and skS) and randomly
chooses the password pwd ∈R D. Only the public key pkS is given to Dist1.
Dist1 queries the decryption oracle OD(e′) = DecskS

(e′) to obtain decryptions
of chosen strings. Then Dist1 chooses a “client name” NC and a constant u.
Then, for i = 1, ..., u, Dist1 queries the encryption oracle OE(p′) that produces
random encryptions ei, as follows. Here p′ ∈ D ∪ ⊥. If p′ = ⊥, then ei =
EncpkS

(NC , pwd, ki), otherwise ei = EncpkS
(NC , p

′, ki), where ki ∈R {0, 1}n
are chosen randomly and unknown to Dist1. Then Dist1 proceeds by executing
Steps 1 - 2 multiple times, in any order:

1. Dist1 queries the PRFG oracle OF (i, r) = Fki
(r), where ki was chosen (but

not revealed) by OE during it’s i-th query. Here r ∈ {0, 1}n and i ∈ {1..u}
are chosen by Dist1.

2. Dist1 queries the decryption oracle OD(e′), where e′ is chosen by Dist1. He
is not allowed to query OD on any ei obtained from OE.

Then Dist1 chooses i ∈ {1, ..., u} and r0 ∈ {0, 1}n and queries the challenge
oracle OC(i, r0). OC produces a challenge as follows: it randomly chooses a bit b
and a string ρ ∈R {0, 1}n. Then OC(i, r0) = Fki(r0) if b = 0, and OC(i, r0) = ρ
if b = 1. Dist1 is not allowed to query OC(i, r0), if he queried OF (i, r0).

Then, Dist1 continues running Steps 1-2, with the exception that he is not
allowed to query OF (i, r0).

Finally, Dist1 generates a list of q password guesses PL = {p1, ..., pq} and
outputs a bit b′. Dist1 wins if pwd ∈ PL or if b = b′.

Lemma 1. Suppose there exists an adversary Adv that wins KE1. Then there
exists Dist1 winning the game G1 with probability non-negligibly greater than
1/2 + q

2|D| , where G1 is run with the same encryption scheme E and PRFG F

as KE1.

Password Mistyping in Two-Factor-Authenticated Key Exchange 19

Proof: We prove the theorem by constructing Dist1 that wins G1, essentially
whenever Adv wins the KE game. Dist1 simulates an environment (i.e. KE
players and their actions), in which he runs Adv, answers Adv’s queries and uses
Adv’s decisions to make decisions in G1. We say “Dist1 stops”, meaning “Dist1
finishes processing Adv’s request and returns control to Adv”, and “Dist1 sends
(outputs) m”, meaning “Dist1 simulates the given player sending (outputting)
m, by giving m to Adv”.

Dist1 starts up Adv, who outputs the threshold q and requests to create (the
only) server S. Dist1 then starts the game G1 with q, and obtains the public
key pkS for Enc. Dist1 sends pkS to Adv as the public key of the server. Dist1
initializes its password list PL to empty.

Dist1 then runs Adv and satisfies its requests for information as follows.
Note that a client C must have been created to create its instances Ci or server
instances SC

j .

1. Adv creates a bad client Bi:
Adv chooses the password and the long key, and reveals them to S (thus
giving them to Dist1).

2. Adv creates (the only) honest client C with the name NC :
Dist1 chooses the name NC for G1 to be the name of the client. Let u
be the upper bound on the number of client instances Adv creates. Then,
for i = 1, ..., u, Dist1 queries oracle OE and obtains random encryptions
ei = EncpkS

(NC , pwd, ki), where ki ∈R {0, 1}n are chosen randomly and
are unknown to Dist1. (We note that Adv did not cause any calls to OF or
OC yet, although he may have created and run server with corrupt clients.
Therefore, there is no conflict with G1’s scheduling.) Then Dist1 randomly
chooses ` ∈R {0, 1}n to be C’s long key. Adv asks for it, so Dist1 reveals `
to Adv.

3. Adv creates an instance SC
j or SBi

j of S and starts the protocol:
Dist1 randomly chooses rj ∈R {0, 1}n and sends it.

4. Adv creates new (i-th) instance Ci of the honest client C.
Recall that Dist1 already obtained ei from OE . Dist1 computes maci =
MAC`(ei) and sends (ei,maci).

5. Adv delivers a message mCi to an instance Ci of honest client C (allegedly)
from server S:
Dist1 outputs session id sidi = (mCi

, ei). Recall, ei is the encryption previ-
ously sent by Ci.

6. Adv delivers a message mSj = (e′,m′) to SC
j (allegedly) from client C (recall,

C is honest, and rj is the message previously sent by SC
j):

Dist1 outputs the session id sidj = (rj , e′) and stops.
7. Adv checks SC

j :
Recall, SC

j sent rj , received mSj
= (e′,m′), and terminated.

If m′ 6= MAC`(e′), Dist1 outputs ⊥ and stops. Otherwise Dist1 proceeds
as follows.
If e′ = ei was obtained from OE , Dist1 outputs OK and stops.

20 Vladimir Kolesnikov and Charles Rackoff

Otherwise, if e′ was not obtained from OE , Dist1 continues and decrypts
e′ by querying the decryption oracle OD(e′) to obtain (N ′C , pwd

′, k′). If de-
cryption fails or N ′C 6= NC , Dist1 outputs ⊥ and stops. Otherwise, i.e. if the
client’s name matches, Dist1 adds pwd′ to the list PL of passwords to try,
unless this causes |PL| > q. (Since Adv cannot check SC

j after q P⊥’s, the
only case when Adv causes the q+ 1-st execution of this clause is when Adv
had produced a valid guess at C’s password. If so, pwd has already been
added to PL, and there is no benefit in adding anything to PL.) Finally,
Dist1 outputs P⊥ and stops. (Note if this response is incorrect, then pwd
has been added to PL, and Dist1 wins, so we don’t worry about properly
simulating the game anymore.)

8. Adv delivers a message mSj = (e′,m′) to SBi

j (allegedly) from client Bi(recall,
Bi is corrupt):
Dist1 outputs the session id sidj = (rj , e′).

9. Adv checks SBi
j :

Recall that Dist1 knows Bi’s long key and password. Dist1 verifies MAC;
if MAC failed, Dist1 outputs ⊥and stops. If e′ = ei was obtained by any
oracle call to OE , Dist1 outputs ⊥ and stops(since the client name would
not verify).
Otherwise (if MAC checked and e′ was not obtained fromOE)Dist1 proceeds
as follows. Dist1 decrypts e′ by querying the decryption oracle OD(e′) =
(N ′C , pwd

′, k′) and acts according to the Server’s protocol, as follows. Dist1
verifies whether N ′C equals to the name of Bi. If not, Dist1 outputs ⊥ and
stops. Then Dist1 verifies whether pwd′ is the Bi’s password; if not, Dist1
outputs P⊥ and stops. Otherwise, Dist1 outputs OK.

10. Adv sends an open request on a (completed and not failed or challenged)
client instance Ci of C:
Note that Ci output sidi = (mCi

, ei). Dist1 queries oracle OF (i,mCi
) =

Fki(mCi), and gives the answer to Adv. Note that there are restrictions on
when Dist1 is allowed to call OF (OF and OC cannot be called with the
same parameters). We argue later that we are not violating them.

11. Adv sends an open request on a (completed and not failed or challenged)
server instance Sj of S:
Recall that Sj received mSj

= (e′,m′) and Sj output sidj = (rj , e′). If
e′ = ei was generated by OE , then Dist1 queries oracle OF (i, rj) and outputs
the answer. As in 10, we will later argue that we are not violating G1’s
restrictions.
Otherwise, Dist1 decrypts e′ by calling OD(e′) and outputs Fk′(rj), where k′

is the key inside e′. Note that this is the case corresponding to the last para-
graph of case 8 above, since Dist1 always reports failure when SC

j receives
e′ not generated by OE . No OF call is made in this clause.

12. Adv sends a challenge request on a (completed and not failed or opened)
server instance SC

j of S:
Recall, SC

j sent rj , received mSj
= (e′,m′) and output sidj = (rj , e′). If

e′ = ei was generated by OE (i.e. sent by a client Ci), Dist1 queries the

Password Mistyping in Two-Factor-Authenticated Key Exchange 21

challenge oracle ch = OC(i, rj), gives ch to Adv and (later, after submitting
the list PL) submits Adv’s output as his answer to the challenge of G1. As
in 10 and 11, we will later argue that we are not violating G1’s restrictions
when querying OC(i, rj).
Note that the case when e′ of mSj

was not generated by OE cannot happen,
since Dist1 would have reported to Adv that SC

j failed.

We note that Dist1 always ensures legality of calls to OD(e) by checking that
e was not generated by OE . We now argue that all calls to OF in 10–11, and to
OC in 12 will be legal requests in G1, that is that Dist1 never calls both OF (i, r)
and OC(i, r), for any pair (i, r).

First note that OF and OC are only called when Adv opens or challenges
instances, respectively. Adv always challenges a server instance. Suppose, he
challenged SC

j , and thus caused the call OC(i, rj), where ei was generated by
OE and sent by some client Ci. Consider two possible cases. First, for k 6= j,
Adv opens (either earlier or later) a server instance Sk, causing a call OF (i′, rk).
This call is legal, since Prob(rj = rk) is negligible. Second, Adv opens a client
instance CS

k , thus causing a call OF (k,mCk
). Suppose this call is illegal, i.e.

i = k (implying that ei = ek) and rj = mCk
. However, in this case, the session

ids output by the parties match. Then SC
j and CS

k are partners, and such Adv’s
behaviour is not allowed in KE1.

Now it is easy to see that the simulated messages provided by Dist1 are
distributed almost identically to those generated in a real execution, until the
point when Adv does guess the password correctly, and Dist1 incorrectly returns
P⊥. What happens after that point, however, does not matter, since Dist1 had
already won the game.

By assumption of the lemma, Adv wins with probability non-negligibly more
than 1/2 + q

2|D| . It is easy to see that Dist1 wins whenever Adv wins, except
for a negligible fraction of the time. Therefore, the constructed Dist1 wins the
game G1 with probability non-negligibly more than 1/2 + q

2|D| .
�
We now show that the adversary Dist1 described in Lemma 1 cannot exist,

if secure primitives are used.

Lemma 2. If the PRFG F and the CCA2 encryption scheme E used in G1

are secure, then for every polytime Dist1, the probability p of Dist1 winning
the game G1 is no more than 1/2 + q

2|D| + ε, where ε is negligibly small (in the
security parameter n).

Proof (sketch): Consider a polytime Dist1. We first argue that he cannot
produce a password list PL containing pwd with probability significantly more
than q/|D|. To prove this, we strengthen Dist1 by allowing him choose ki used
in the calls to OE . Then G1 can be further simplified – Dist1 does not need
access to OF (he can evaluate it himself). It is now easy to see that if Dist1 can
produce a list PL of q passwords with probability significantly more than q/|D|,
he can be used to break the security of E (since he must have obtained some
information about pwd from playing essentially the game of the CCA2 security.)

22 Vladimir Kolesnikov and Charles Rackoff

Now, return to the original Dist1 and G1. Let E1 be the event of Dist1
producing PL containing pwd, and E2 be the event of Dist1 winning by an-
swering the challenge correctly. Then the probability of Dist1 winning G1 is
p = prob(E1)+(1−prob(E1))prob(E2|¬E1). Note that the lemma trivially holds
for n, where q ≥ |D|.

From now on, consider n, such that q < |D| (q is polynomially bounded).
Then, Prob(¬E1) is bounded away from 0 by a polynomial (in n) fraction. We
now show that forDist1, prob(E2|¬E1) < 1/2+ε2, where ε2 is negligible. Suppose
otherwise. Then we construct a polytime D′ who, with the knowledge of pwd,
answers the challenge of G1 with probability significantly better than 1/2. D′

proceeds as follows. He runs Dist1 up to the point when Dist1 produces PL. D′

checks whether pwd ∈ PL. If so, he flips a coin to answer the challenge. If not
(and this happens non-negligibly often), he continues running Dist1 (and obtains
non-negligible advantage). At the same time, it can be easily shown by standard
hybrid techniques that such D′ cannot exist. Thus prob(E2|¬E1) < 1/2 + ε1.

Therefore, if all the employed primitives are secure, p = prob(E1) + (1 −
prob(E1))prob(E2|¬E1) < q

|D| + ε1 + (1− q
|D|)(1/2 + ε2) = 1/2 + q

|D| + ε.
�

Other cases In all other cases, we reduce the KE game to a simpler variant G2

of the game G1.
Game G2. G2 proceeds exactly as G1 with the following two exceptions. First,
the client’s password pwd is revealed to the distinguisher Dist2 as soon as Dist2
sets the name C. Second, Dist2 is not allowed to win by presenting PL (thus
PL generation is omitted).

Lemma 3. If there exists an adversary Adv breaking the protocol Π that chal-
lenges a client and is given the long key ` and the password pwd, then there exists
Dist2 winning the game G2 with probability non-negligibly greater than 1/2.

Proof (sketch): The construction of Dist2 and the following discussion proceed
almost identically to construction of Dist1 of Lemma 1. Here we only point out
the differences in construction and discussion.

– PL is not created nor used in any way by Dist2.
– In Step 2, when the honest client is created, both the long key ` and the

password pwd (obtained from G2) are given to Adv.
– In Step 7 (Adv checks SC

j) Dist2 proceeds like Dist1, with the following
exception. If e′ (an encryption of (N ′C , pwd

′, k′)), was not obtained from
OE , and the client name matches (N ′C = NC), then instead of modifying
PL, Dist2 does the following. Recall, Dist2 knows the password pwd of C.
If pwd′ 6= pwd, Dist2 outputs P⊥, otherwise Dist2 outputs OK. Recall, rj
is the message previously sent by SC

j .
– Dist2 handles a new type of request: Adv sends a challenge request on a

(completed and not failed or opened) client instance CS
i of C:

Note that CS
i previously received mCi and output sidi = (mCi , ei). Dist2

Password Mistyping in Two-Factor-Authenticated Key Exchange 23

queries the challenge oracle ch = OC(i,mCi
), gives ch to Adv and submits

Adv’s output as the answer to the challenge of G2. Note that there are
restrictions on when Dist2 is allowed to call OC (OF and OC cannot be
called with the same parameters). We argue later that we are not violating
them.

– Request 12 (challenging a server instance) is now not allowed.

We note that all oracle calls made by Dist2 are legal requests in G2. The argu-
ment is also similar to that of Lemma 1. Indeed, as in construction of Dist1, we
always ensure that e was not generated by OE before calling OD(e).

Further, OF and OC are only called when Adv opens or challenges instances,
respectively. Consider the two possible cases (there are only two since Adv always
challenges a client). First, Adv opened and challenged client instances Ci1 and
Ci2 . Then, for the conflict to happen, it must be that ei1 = ei2 , which happens
with negligible probability. Second, Adv opened a server instance SC

j and a
challenged a client instance CS

i . For the conflict to happen, it must be that the
client instance received rj , and the server instance received ei during the game.
However, in this case, the sid output by the instances would match, and thus Ci

and Sj would be partners, and Adv would not be allowed to challenge CS
i and

open Sj .
Now it is easy to see that the simulated messages provided by Dist2 are dis-

tributed almost identically to those generated in a real execution. By assumption
of the lemma, Adv wins with probability non-negligibly more than 1/2. It is easy
to see that case Dist2 wins whenever Adv wins, except for the negligible fraction
of the time. Therefore, the constructed Dist2 wins the game G2 with probability
non-negligibly more than 1/2.

�
Finally, we consider the adversary who is not given the long key `, and is

attacking the server.

Lemma 4. Suppose the employed MAC scheme is secure. Then, if there exists
an adversary Adv breaking the protocol Π who is not given the long key ` and is
attacking the server, then there exists Dist2 winning the game G2 with probability
non-negligibly greater than 1/2.

Proof (sketch): The construction of Dist2 and the following discussion proceed
almost identically to construction of Dist1 of Lemma 1. Here we only point out
the differences in construction and discussion.

– PL is not created nor used in any way by Dist2.
– In Step 2, when the honest client is created, the long key ` is not revealed

to Adv. The password pwd (obtained from G2) is given to Adv.
– In Step 7 (Adv checks SC

j) Dist2 proceeds like Dist1. We note that e′ was
not obtained from OE only with negligible probability (since otherwise we
can construct a forger for MAC), and thus we don’t handle the corresponding
clause.

24 Vladimir Kolesnikov and Charles Rackoff

– In Step 12 (Adv sends a challenge request on a (completed and not failed
or opened) server instance SC

j of S:) Dist2 proceeds like Dist1. (Note that
e′ was not obtained from OE only with negligible probability, due to the
security of MAC; thus we don’t handle the corresponding clause.)

We note that all oracle calls made by Dist2 are legal requests in G2. The ar-
gument is analogous to that of Lemma 1. Thus, the simulated messages provided
by Dist2 are distributed almost identically to those Adv sees in a real execution.
By assumption of the lemma, Adv wins with probability non-negligibly more
than 1/2. It is easy to see that case Dist2 wins whenever Adv wins, except for a
negligible fraction of the time. Therefore, the constructed Dist2 wins the game
G2 with probability non-negligibly more than 1/2.

�
We now show that the adversary described in Lemmas 3 and 4 cannot exist,

if secure schemes are used.

Lemma 5. If the PRFG F and the CCA2 encryption scheme E used in G2 are
secure, then there does not exist a polytime Dist2 winning the game G2 with
probability p > 1/2+δ, where δ is not negligibly small (in the security parameter
n).

The proof of Lemma 5 is done by a standard hybrid argument, and is omitted.
�

C.2 Proof of Theorem 2

The proof is a simple natural modification of the above proof of Thm. 1.

D KE Definition in the Setting with Confirmation Flows

It is easy to observe that Def. 2 does not allow for the “connection established”
or failure notification flows from the server to the client. This is because Adv
would otherwise always win KE1 by trying a password, and learning whether he
succeeded without checking the server.

Requiring such a flow increases the minimal round complexity of the protocol.
Indeed, secure two-flow protocols – S starts, C responds – are possible without
this requirement. (These two flows must be ordered, due to replay issues in
DoA, as discussed in Sect. 4.1.) The confirmation flow from S must come after
the client’s message, and thus a secure protocol would have a minimum of three
ordered flows.

The inability of S to confirm its status is not necessarily an insecurity, and is
often acceptable. The one-round savings that comes with it justifies the interest
in the definition and protocols. In Sect. D.1 we discuss attacks that exploit the
absence of the confirmation flow, and their relevance and importance. We amend
our definition to allow for the confirmation flow and to ensure protection against
these attacks.

Password Mistyping in Two-Factor-Authenticated Key Exchange 25

D.1 Failure accounting on the client side

Consider the following attack by real-life Adv. He pretends to be S to the client
C. While Adv cannot establish a session with C, he can simulate behaviour of S
when the password was mistyped by C. C will reasonably believe that he indeed
mistyped the password. Then Adv will try a password with S. Then he will let
C login to S. During this authenticated session, S will verify with C that C
indeed mistyped the password, and will reset his P⊥ counter. Ad now received
a “free” password try. Def. 2 is vulnerable to this attack since S is not allowed
to let C know its status (see Sect. D for discussion). Further, to our knowledge,
protection against this attack has not been formally considered in the literature.

Biometric-based authentication is even more vulnerable to this attack. This
is because biometric reading is not in control of the the user, and the state of
the art of the technology still admits high false rejection rate. Therefore, clients
might readily believe their biometric was misread frequently.

The need for client failure outputs. A natural way to handle this situ-
ation is to allow C output special failure symbols ⊥C and P⊥C . Symbol P⊥C is
output whenever the client indeed has mistyped the password (as confirmed by
a real S), and ⊥C may be output whenever a non-P⊥C error occurs.

The intent is to let S certify to C that he’s seen the P⊥ in this session.
This will prevent the attack described above, since C will only be convinced of
his mistyping if he indeed mistyped in a session with S. Additionally, C could
detect behaviour of S inconsistent with the protocol, and ⊥C might be used for
reporting this. The use of ⊥C is allowed, but not required by a secure protocol.

Note, Adv can prevent P⊥C by not delivering messages, but it is not in his
interest to do so.

Definitional approach to P⊥C . Note that the fact whether the KE session
was successful can be later determined by a confirmation flow. Could one then
use Def. 2 and consider the failure confirmation flow and P⊥C externally to
KE? That is, could one define a “confirmation flow” protocol, that would take
as input the output of the KE protocol, and guarantee the correctness and
integrity of the confirmation flow? If so, one might use the sid output by KE
as something to bind the confirmation flow and P⊥C to. However, in case of P
⊥ the confirmation flow cannot be transmitted securely to the instance of C,
since there is no common secret to encrypt with. The ephemeral information
is lost after KE is completed, and the use of non-ephemeral information tying
the instances of S and C – the server’s secret key – in a relatively independent
protocol is not a good idea. Thus approaching the confirmation flow externally
to Def. 2 is not very elegant. Instead, we incorporate the output of P⊥C in the
definition.

Correctness requirement. Justified by the above discussion, we require
that in the absence of an active adversary, if a client mistypes his password,
with overwhelming probability he will output P⊥C .

26 Vladimir Kolesnikov and Charles Rackoff

D.2 Definition of KE with the confirmation flow

Recall that Def. 2 disallows a confirmation flow, since it would let Adv learn “for
free” whether S accepted the password. If we are to allow this flow, we must
“charge” Adv for the information he learns. A natural way to do so is to charge
for every P⊥, even if Adv doesn’t check that instance. However, we still want to
give Adv the ability to observe mistyped executions freely. Thus, we allow Adv
to specify the password given to instance of C, and we credit Adv for each P⊥C .
Thus, the charged P⊥ will be reversed if and only if it was caused by a client
instance, in which case Adv did not learn whether the password was accepted.
Of course, Adv might want to see the output of instances of S and C. We employ
the same “checking” mechanism, and charge Adv for each P⊥ and P⊥C resulting
from checking. The following definition is based on Def. 2, and incorporates the
above changes. As in Sect. 4, the definition for the HK setting with mistyping is
extracted from Def. 3 simply by removing all uses of ` and the games where Adv
does not know `. Due to space constraints, the formal definition is postponed to
Appendix D.3.

Definition 3. We say that a KE protocol Π is secure in the Combined Keys
Model with Mistyping and P⊥C , if it satisfies requirements of Def. 2, but with
respect to the games modified as described above.

It is easy to see that this definition affords Adv similar powers, as Def. 2. The
only difference is that now Adv is charged immediately for each P⊥ of S, which
is reversed if a client instance outputs P⊥C . This simply requires Adv to mistype
by substituting C’s password, if he wishes to observe a mistyped execution for
free. Therefore, Adv of Def. 3 can perform the same attacks as Adv of Def. 2.

Notes. In Def. 3, we require that the protocol outputs P⊥C when appro-
priate. We note an additional, technical, justification of this requirement. By
not outputting P⊥C , the protocol causes charges to Adv, preventing him from
observing mistypings “for free”. This is inconsistent with the design of the defi-
nition.

Note, Ci must not output P⊥C before a partner Sj outputs P⊥. If that were
the case, Adv could simply not deliver further messages to Sj , thus gaining a
“free” P⊥C , and a password attempt with it.

Consider a protocol Π that does not send the P⊥C confirmation if Adv was
active (e.g. set a certain bit) during the execution. Since Adv cannot get a credit
for P⊥C , Π can leak information of his choice and still be secure by Def. 3. We
do not view as a problem that Adv learns information in form other than “is
p the password of C?”. What matters is the probability of success of Adv in
guessing the session key, reflected in the games. We believe our definition serves
as a good tie-breaker in subjective cases.

D.3 Formal Definition of Security in the Setting with the
Confirmation Flow

In this section, we give a formal definition of security informally described in
Appendix D.2

Password Mistyping in Two-Factor-Authenticated Key Exchange 27

Let n,m,D be as in Def. 2.

Game KE1. The adversary Adv starts by deterministically choosing the active
attack threshold q ∈ 1..|D| (based on the security parameter n) and creating an
(honest) server S. Adv chooses S’s name; then S’s public and private keys are
set up, and only the public key revealed to Adv. Adv then runs the parties by
executing steps 1-7 multiple times, in any order:

1. Adv creates an honest client C. Adv is allowed to pick any unused name for
the client; the client C is registered with S, and long key ` and password pwd
are set up and associated with C. Only one honest client can be created. Adv
is given the long key `, but not pwd.

2. Adv creates a corrupt client Bi. Adv is allowed to initialize him in any way,
choosing any unused name, long key and password for him.

3. Adv creates an instance Ci of the honest client C. Ci is given (secretly from
Adv) as input: his name C, the partner server’s name S, the public key of S,
the long key and the password of C. Adv may choose to specify the password
for C.

4. Adv creates an instance Sj of the honest server S. Sj is given (secretly from
Adv) as input: his name S, the private key of S, the partner client’s name
(C or Bi) and that client’s long key and password.

5. Adv delivers a message m to an honest party instance. That instance im-
mediately responds with a reply (by giving it to Adv) and/or terminates and
outputs the result (a sid and either session key, the failure symbol ⊥, or the
password failure symbol P⊥ for the server and P⊥C for the client) according
to the protocol. Adv is given only sid.
Adv gets charged one attempt for each P⊥ and credited same for each P⊥C

output by honest parties.
6. Adv “checks” any completed honest instance – then he is notified whether

the instance output P⊥, P⊥C , ⊥, or a session key. Adv gets charged one
attempt, if he checked SC or CS and it output P⊥ or P⊥C correspondingly.
When Adv accumulates q charges, he becomes restricted (and is notified of
that) – he can never again deliver messages to any instances SC

j or check
any instances.

7. Adv “opens” any successfully completed and checked honest instance – then
he is given the session key output of that instance.

Then Adv asks for a challenge on an instance SC
j of the server S. SC

j , who
has been instantiated to talk to the honest client C, must have completed, been
checked by Adv, and output a session key. The challenge is, equiprobably, either
the key output by SC

j or a random string of the same length. Adv must not have
opened SC

j or a partner of SC
j , and is not allowed to do it in the future.

Then Adv continues to run the game as before (execute steps 2-7). Finally,
Adv outputs a single bit b which denotes Adv’s guess at whether the challenge
string was random. Adv wins if he makes a correct guess, and loses otherwise.
Adv cannot “withdraw” from a challenge, and must produce his guess.

Note the following subtleties relevant specifically to this game. Here it may
so happen that Adv does not know how many charges he had accumulated.

28 Vladimir Kolesnikov and Charles Rackoff

However, as long as Adv delivers the confirmation flow to C, charges do not
accumulate, even though C may have mistyped. Further, consider the case when
Adv accumulated q − 1 charges. P⊥ caused by C’s mistyping would make Adv
restricted, even though Adv might have in hand the confirmation flow which will
cause P⊥C . This situation can be avoided for every Adv by simply choosing a
greater q and modifying his strategy accordingly. Technical problems only arise
when |D| = 2: q = 1 disallows free mistyping, and q = |D| does not enforce
security. However, this setting is of limited interest; we choose to give a simpler,
rather than marginally more general definition.

Games KE2, KE3, DOA and SID are derived from KE1 in the same manner
as the corresponding games in Def. 2. The only difference between these games
and the ones of Def. 2 is syntactic – here C may output P⊥C . This is because the
other differences between the two KE1 games is only in the password accounting
and the client’s password substitution abilities. Both of these differences are
removed by the modifications.

D.4 Efficient Protocol in the Setting with the Confirmation Flow

Construction 3 (KE with mistyping and P⊥C)

SC CS

choose r ∈R {0, 1}n choose k ∈R {0, 1}n ,
r →

set α = EncpkS
(NC , pwd, k)

← α,MAC`(r, α)
set sid = (r, α), out = OK; set sid = (r, α)
decrypt α

if fail, set NC = ⊥, k ∈R {0, 1}n;
verify MAC`(r, α) and NC

if fail, set out =⊥
else verify pwd

if fail, set out =P⊥;
set K = FFk(r)(0),K ′ = FFk(r)(1) set K = FFk(r)(0),K ′ = FFk(r)(1)

FK′(out)→
decode out ∈ {P⊥, ⊥, OK}

if fail, output (sid,⊥)
if out =P⊥, output (sid,P⊥C)

If out = OK, output (sid,K) if out =⊥, output (sid,⊥)
else output (sid, out) if out = OK, output (sid,K)

Theorem 6. The protocol Π of Constr. 3 is secure by Def. 3.

Proof. Proof of Theorem 6 is similar to that of Theorem 1 presented in Appendix
C and is omitted for conciseness.

