
Multidimensional Subset Sum Problem

Vladimir Kolesnikov
M.Sc. Thesis Overview

Rochester Institute of Technology, 1997

1 Introduction

This document is an informal description of our main results presented in the thesis [2]. We
propose heuristic modifications to the successful use of Lenstra, Lenstra and Lovasz’s LLL
algorithm [4] to solving the Subset Sum (or knapsack) problem.

Informally, the knapsack problem is as follows. Given a vector of n positive integers
~a = {a1, a2, ..., an} and a positive integer M , find a {0, 1}-vector ~x = (x1, x2, ..., xn), such
that

∑n
i=1 ai · xi = M .

The LLL algorithm is the most recognized and successful tool for finding short vectors in
an integer lattice. Although its formal performance guarantees are very weak, very often LLL
performs much better than the theoretical bound. A common way to solve combinatorial
problems, such as knapsack, is to represent the instance as a lattice, such that the solution
to the instance is a very short vector in the lattice. Running LLL will often quickly find
the right short vector and thus solve the problem. Recall, it was this approach that caused
demise of knapsack based public-key cryptosystems [1, 5].

Our work concerns representation of the knapsack instance as a lattice with the above
properties.

1.1 The traditional reduction

Consider the following reduction [3, 7, 6]. Associate with the n knapsack weights a1, ...an

and knapsack volume M the following basis ~b1,~b2, ...,~bn+1 ∈ Zn+2:

~b1 = (2, 0, 0, ..., 0, na1, 0)

~b2 = (0, 2, 0, ..., 0, na2, 0)

~b3 = (0, 0, 2, ..., 0, na3, 0) (1)

...

~bn = (0, 0, 0, ..., 2, nan, 0)

~bn+1 = (1, 1, 1, ..., 1, nM, 1)

1

Let L(~b1, ...,~bn+1) be the integer lattice generated by the basis vectors ~b1, ...,~bn+1. Every

lattice vector ~z = (z1, z2, ..., zn+2) ∈ L(~b1, ...,~bn+1) that satisfies

|zn+2| = 1, zn+1 = 0, z1, z2, ..., zn ∈ {1,−1} (2)

yields the following solution for the Subset Sum problem

xi =
|zi − zn+2|

2
, for i = 1, 2, ...n (3)

We stress that such vectors are very short, and are likely to be found by LLL.

2 Our reduction

We note that the most interesting knapsack problems are the ones where approximately half
of the items perfectly fit the knapsack and the weights are chosen randomly. We optimize
our approach to solving such problems.

Our main idea is to split the “data column”, defining the knapsack constraints, into
several such constraints satisfied by the same solution. As our experiments show, LLL
performs much better when it is given several linearly independent data columns, rather
than one. The difficulty is in obtaining several linearly independent knapsack weights/volume
relationships from the given one.

The first idea that comes to mind is to use remainders and modulo arithmetic. We could
choose (several) random r’s from an approporiate domain and set (several) new constraint(s):
∀i = 1..n, a′

i = ai mod r and M ′ = M mod r. Unfortunately, LLL does not seem to
perform well in finite fields. Further, it seems highly desirable to have basis vectors of higly
varying magnitude, as in (1).

Therefore, we propose guessing an integer k and setting ∀i = 1..n, a′
i = ai mod r and

M ′ = M mod r +k · r. If k is guessed correctly, a′
i, M

′ form a linearly independent instance
of knapsack, with the solution vector coinciding with that of the original instance.

Now we make use of our assumption that the solution vector consists of roughly half
zeros and half ones, and the weights are chosen uniformly from a given domain. This allows
us to get a good estimate on k. According to our experiments, there is a high (around 97%)
probablilily of guessing k within 2 if we know the approximate ratio of ones and zeros in
vector ~x and r is sufficiently large.

The necessity of guessing prevents us from using a large number of such linearly inde-
pendent constraints. It turns out that having two constraints is optimal.

We now show a way to construct two constraints, while having to make only one guess of k.
Let ~x be the knapsack instance solution vector, ~a be the weights vector. Suppose r is chosen.
Set the remainders vector ~s = {a1 mod r, ..., an mod r}. Let ~p = {a1 div r, ..., an div r},
where div is the integer division operation. Let m = M mod r and p0 = M div r.

Then since ~a · ~x = M , it is also true that ~s · ~x + ~p · ~x · r = m + p0 · r. Now, if we guess
the coefficient k, such that ~s · ~x = k · r + m, then it also holds that ~p · ~x = p0 − k. The above

2

two constraints constitute two linearly independent constraints, simultaneously satisfied by
the solution to the original knapsack instance.

2.1 Putting it all together

Consider a knapsack instance as discussed above. Associate with weights ai, i = {1, ..., n}
and volume M the following basis ~b1,~b2, ...,~bn+1 ∈ Zn+3.

~b1 = (2, 0, 0, ..., 0, c · s1, c · p1, 0)

~b2 = (0, 2, 0, ..., 0, c · s2, c · p2, 0)

~b3 = (0, 0, 2, ..., 0, c · s3, c · p3, 0) (4)

...

~bn = (0, 0, 0, ..., 2, c · sn, c · pn, 0)

~bn+1 = (1, 1, 1, ..., 1, c · (k · r + m), c · (p0 − k), 1)

Here ~s, ~p are chosen as described above. Best performance is observed when r is of bit
length 65% of that of ai. Set k =

∑n
i=1 si/2r. Here c is a multiplier (a random 10-bit number

proved to perform best for our tests) used to introduce longer basis vectors to make LLL
perform more efficiently.

Every lattice vector ~z = (z1, z2, ..., zn+3) ∈ L(~b1,~b2, ...,~bn+1) that satisfies

|zn+3| = 1, zn+1 = 0, zn+2 = 0, z1, z2, ..., zn ∈ {1,−1} (5)

yields the following solution for the Subset Sum problem

xi =
|zi − zn+3|

2
, for i = 1, 2, . . . , n (6)

Since we are not sure on k, we run five instances of the above algorithm, in parallel, with
k1 = k, k2 = k + 1, k3 = k + 2, k3 = k − 1, k4 = k − 2.

2.2 Results and Analysis

The following table represents the results we obtained. Twenty instances were attempted
for every size/bits combination (size is the number of weights n, bits is the bit-size of each
weight). Instances were generated by randomly setting each of the bits of set elements. Then
the solution vector was generated that contained 50% zeros. The sum was generated based
on the set and solution vector. Then the set and the sum were passed to the algorithm,
and correctness of the solution obtained by the algorithm was verified by comparing the two
sums (the one generated as part of the instance of the problem, and the other generated
based on the produced solution.) The entries in the table represent the number of instances
solved out of 20.

3

size/bits 46 50 53 58 61 66 76

50 20 19 20 19 20 20 19
58 20 20 16 10 14 18 11
66 20 20 18 5 7 1 2
70 19 19 16 8 2 1 0

Significant improvement over previous reductions was observed. The following results
were obtained by Schnorr in [7] using the simplest version of LLL algorithm (the one used
in this thesis):

size/bits 46 47 50 53 58 61 66 76

50 6 – 12 – 17 – 20 –
58 – 3 – 1 2 – 11 –
66 – – 0 – 1 – 0 –

An important feature of our implementation of the algorithm is single precision compu-
tations. No floating point or multiprecision arithmetic is used. The generated set elements
and sums are represented as two long integers on a 64-bit machine. A mini-package was
implemented to manipulate data that exceeds 64 bits in size. However, we do slow mul-
tiprecision computations only at the matrix generation and solution verification stages of
the algorithm. Splitting the information carried by the data column into two columns let
us create matrices with single precision long integer entries. Avoiding slow multiprecision
computations substantially reduced execution time. Most of the previous implementations
reply on the (inefficient) multiprecision arithmetic.

Efficiency of the application of LLL to knapsack increased substantially with our repre-
sentation. We note that the variations of the parameters are possible. This allows to achieve
better results for some size/bits combinations.

We note that a lot of work is done on improving the LLL algorithm itself, e.g. LLL with
deep insertions and Korkine-Zolotarev reduction. It seems interesting to evaluate perfor-
mance of our representation with new versions of LLL.

References

[1] E. F. Brickell, “The cryptanalysis of knapsack cryptosystems“, in Applications of Discrete
Mathematics, SIAM, 1988, pp. 3-23

4

[2] Vladimir Kolesnikov, “Multidimensional Subset Sum Problem“, M.Sc. Thesis, Rochester
Institute of Technology, 1997

[3] J.C. Lagarias and A. M. Odlyzko, “Solving low-density Subset Sum problems“, J. Assoc.
Comp. Mach, 1985, 229-246

[4] A. K. Lenstra, H.W. Lenstra, L. Lovasz “Factoring polynomials with rational coefficients“
Math. Ann. 261 (1982), 515-534

[5] A.M. Odlyzko, “The rise and fall of knapsack cryptosystems“, in Cryptology and Com-
putational Number Theory, Proc. Symp. Appl. Math. 42, Amer. Math. Soc., 1990, 75-88

[6] Radziszowski S.P. and Kreher D. L., “Solving Subset Sum Problems with the LLL Algo-
rithm“, JCMCC 3(1988), pp. 49-63

[7] Schnorr C.P. Euchner M., “Lattice Basis Reduction: Improved Practical Algorithms and
Solving Subset Sum Problems“, Foundations of Computation Theory, 1991, 1993

5

