
Department of Computer Science 6 King’s College Rd, Toronto
University of Toronto M5S 3G4, Canada
http://learning.cs.toronto.edu fax: +1 416 978 1455

November 25, 2009

UTML TR 2009–004

CUDAMat: a CUDA-based matrix
class for Python

Volodymyr Mnih
Department of Computer Science, University of Toronto

Abstract

CUDAMat is an open source software package that provides a CUDA-based
matrix class for Python. The primary goal of CUDAMat is to make it easy to
implement algorithms that are easily expressed in terms of dense matrix oper-
ations on a GPU. At present, the feature set of CUDAMat is biased towards
providing functionality useful for implementing standard machine learning al-
gorithms, however, it is general enough to be useful in other fields. We have
used CUDAMat to implement several common machine learning algorithms
on GPUs offering speedups of up to 50x over numpy and MATLAB implemen-
tations.

Contents

1 Introduction 2

2 Overview of CUDAMat 2
2.1 Initialization and shutdown . 2
2.2 The CUDAMatrix class . 3

2.2.1 Creating matrices on the GPU . 3
2.2.2 Copying matrices to and from the GPU . 3
2.2.3 Accessing and modifying matrix dimensions . 4

2.3 Matrix operations . 4
2.3.1 Assignment . 4
2.3.2 Basic algebraic operations . 4
2.3.3 Mathematical functions . 5
2.3.4 Slicing operations . 5
2.3.5 Matrix transpose . 6
2.3.6 Matrix multiplication . 6
2.3.7 Summing along an axis . 6

2.4 Matrix-vector operations . 7
2.5 Random number generation . 7

1

CUDAMat: a CUDA-based matrix class for Python

Volodymyr Mnih
Department of Computer Science, University of Toronto

1 Introduction

In the past few years GPUs have far surpassed the computational capabilities of CPUs for floating
point arithmetic. In the field of machine learning, early adopters of GPUs have reported speedups
of well over an order of magnitude for several popular machine learning algorithms [2]. However,
adoption of GPUs for machine learning research has been somewhat slow. Given that many machine
learning algorithms are easily expressed in terms of dense linear algebra, making them particularly
easy to parallelize, this is somewhat surprising.

Based on our communications with other machine learning researchers, the perceived difficulty of
programming GPUs appears to be a big hurdle to their widespread use. Tools such as AccelerEyes
Jacket [1], which adds nearly transparent GPU support to the popular MATLAB environment, have
made it much easier, however, there is currently a lack of free and open source tools for programming
GPUs that do not require a low-level understanding of GPU hardware. CUDAMat aims to provide
a free, open source alternative to tools such as Jacket, with the main goal being ease of use.

2 Overview of CUDAMat

The CUDAMat library is available as open source software under the New BSD License. The library
can be obtained at http://code.google.com/p/cudamat/ along with installation instructions. The
remainder of this section provides a brief overview of the features of CUDAMat.

2.1 Initialization and shutdown

CUDAMat must be initialized before any operations can be performed on the GPU. On machines
with a single CUDA-capable device it is enough to call the init method. If more than one CUDA-
capable device is present, a device should be selected by calling the cuda set device method with the
appropriate device id. It is important to call the shutdown method at the end of your program in
order to avoid unwanted behavior.

import cudamat as cm

cm.cuda_set_device (0)
cm.init()

Perform computations on GPU.

cm.shutdown ()

2

2.2 The CUDAMatrix class

The CUDAMatrix class represents a matrix of single-precision floats stored on the GPU. Similarly
to ndarray class from numpy a CUDAMatrix instance corresponds to a contiguous one-dimensional
region of memory. The memory layout of a CUDAMatrix is always column-major, because this is
the layout required by routines from the CUBLAS library.

2.2.1 Creating matrices on the GPU

There are two ways of creating a matrix on the GPU. The first is by calling the empty method with
a tuple of length two specifying the shape of the matrix. This will create an empty matrix with the
given shape on the GPU. The second way of creating a CUDAMatrix instance involves copying a
numpy ndarray object to the GPU. This is accomplished by instantiating a new CUDAMatrix object
with an ndarray object as the argument.

import numpy as np

Create an empty array with 10 rows and 20 columns on the GPU.
empty_array = cm.empty ((10, 20))

Create a numpy array and create a CUDAMatrix instance from it.
cpu_array = np.random.rand(10, 10)
gpu_array = cm.CUDAMatrix(cpu_array)

2.2.2 Copying matrices to and from the GPU

There are several ways of copying the contents of a CUDAMatrix to CPU memory. One way to do
this is by calling the asarray method of any matrix residing on the GPU. This will copy its contents
to an ndarray in CPU memory and return the ndarray object. Another way of copying data from
the GPU to the CPU is by calling the copy to host method of a GPU matrix. This method copies
the contents of the GPU matrix to an ndarray instance that is bound to the numpy array attribute
of the GPU matrix.

Create a matrix of random numbers on the GPU.
gpu_array = cm.CUDAMatrix(np.random.rand(10, 10))

Approach 1: Copy the contents of gpu_array to an ndarray return it.
cpu_array = gpu_array.asarray ()

Approach 2: Copy the contents of gpu_array to an ndarray
gpu_array.copy_to_host ()
print gpu_array.numpy_array # print ndarray

In some cases one may want to modify a matrix on the CPU and copy the results back to the
GPU. This can be accomplished by performing in place modifications to the numpy array attribute
and calling the copy to device method. Note that in some cases a CUDAMatrix instance may not
have a numpy array attribute (if, for example, it was created using the empty method) so one may
need to call the copy to host method to create it.

Create a matrix of random numbers on the GPU.
gpu_array = cm.CUDAMatrix(np.random.rand(10, 10))

3

Copy contents of gpu_array to CPU , modify the matrix , and copy the modified
version back to the GPU.
gpu_array.copy_to_host ()
gpu_array.numpy_array += 1.
gpu_array.copy_to_device ()

2.2.3 Accessing and modifying matrix dimensions

All CUDAMatrix instances have a shape property, which is a tuple of length two specifying the shape
of the matrix that the instance should be interpreted to have. Sometimes, it may be convenient to
change the shape of a matrix and this can be accomplished by calling the reshape method with a new
shape. Note that the reshape method only changes the shape that the matrix is interpreted to have
and does not move any data.

Create an empty array with 10 rows and 20 columns on the GPU.
empty_array = cm.empty ((10, 20))

Reshape empty_array.
empty_array.reshape ((5, 40))

2.3 Matrix operations

2.3.1 Assignment

The assign method of the CUDAMatrix class takes a single argument that can be a scalar or a
CUDAMatrix instance. If the argument is a scalar it is assigned to every element of the GPU matrix.
If the argument is a CUDAMatrix instance of the same size its contents are assigned to the contents
of the GPU matrix.

Create a matrix of zeros on the GPU.
zeros = cm.empty ((10, 20))
zeros.assign (0)

empty_array = cm.empty ((10, 20))
random_array = cm.CUDAMatrix(np.random.rand(10, 20))

Assign the contents of random_array to the contents of empty_array.
empty_array.assign(random_array)

2.3.2 Basic algebraic operations

The CUDAMatrix class supports elementwise addition, subtraction, multiplication, and division be-
tween two matrices or a matrix and a scalar. The add, subtract, mult, divide methods of the CU-
DAMatrix class each take an argument named val and an optional argument named target. If val
is a scalar a matrix/scalar operation is performed, if val is a CUDAMatrix instance an elementwise
matrix/matrix operation is performed. If target is provided it is used to store the result, otherwise it
is stored in the matrix whose method was called.

Create some matrices on the GPU.
A = cm.CUDAMatrix(np.random.randn (10, 20))

4

B = cm.CUDAMatrix(np.random.randn (10, 20))
T = cm.CUDAMatrix(np.random.randn (10, 20))

Add A and B and store the result in T.
A.add(B, target = T)

Multiply A by 42.
A.mult (42)

2.3.3 Mathematical functions

The cudamat module class has a number of routines for applying various mathematical functions to
each element of a CUDAMatrix instance. All of these functions take an optional target argument
that is used to store the result if provided. If no target is provided a new GPU matrix is allocated to
store the result.

Function Description
exp(mat, target) Elementwise exp.
log(mat, target) Elementwise natural logarithm.
sqrt(mat, target) Elementwise square root.
pow(mat, p, target) Take every element of mat to the power of p.

Create some matrices on the GPU.
A = cm.CUDAMatrix(np.random.randn (10, 20))
T = cm.CUDAMatrix(np.random.randn (10, 20))

Apply the exp function to each element of A and store the result in T.
cm.exp(A, target = T)

Apply the log function to each element of A and assign the result to B.
B = cm.log(A)

2.3.4 Slicing operations

Instances of CUDAMatrix have limited slicing support. Since matrices are stored in column-major
order CUDAMat allows one to obtain a view of a slice of columns without copying any data. Obtaining
a slice of some rows of a matrix is also possible, but currently requires copying data. Slicing is done
with the get col slice and get row slice methods, which take the indices of the first (inclusive) and
last (non-inclusive) column/row in the slice as well as an optional target matrix. Assigning to a
column/row slice can be done using the set col slice and set row slice methods.

Create some matrices on the GPU.
A = cm.CUDAMatrix(np.random.randn (10, 20))
col_slice = cm.empty ((10, 5))

Obtain a view into A (no copying is performed).
view = A.get_col_slice (5, 10)

Obtain the same slice as a copy.
A.get_col_slice (5, 10, col_slice)

5

Get a row slice (copying is performed).
row_slice = A.get_row_slice (0, 5)

Assign to a row slice.
A.set_row_slice (5, 10, row_slice)

2.3.5 Matrix transpose

GPU matrices can be transposed using the transpose method. This method takes an optional target
parameter and returns a transposed copy of the matrix whose method was called.

Create some matrices on the GPU.
A = cm.CUDAMatrix(np.random.randn (10, 20))
T1 = cm.CUDAMatrix(np.random.randn(20, 10))

Put transpose of A into T1.
A.transpose(target = T1)

Get transpose of A (new matrix is created).
T2 = A.transpose ()

2.3.6 Matrix multiplication

The cudamat module provides the dot function for performing matrix multiplication. One often
needs to transpose a matrix just to use it in a matrix multiplication and the dot function makes this
easy. If A and B are instances of CUDAMatrix then one can pass A.T and/or B.T to dot to use the
transposed matrices in a matrix multiplication. Since dot uses the CUBLAS library it is able to use
the transpose of one or both matrices without explicitly computing and storing it. The dot method
takes an optional target parameter. If a target is not provided, a new matrix will be created on the
GPU to store the result.

Create some matrices on the GPU.
A = cm.CUDAMatrix(np.random.randn (10, 20))
B = cm.CUDAMatrix(np.random.randn (20, 30))
C = cm.CUDAMatrix(np.random.randn (30, 20))
target = cm.empty ((10, 30))

Multiply A and B putting the result in target.
cm.dot(A, B, target)

Multiply A and the transpose of C.
result = cm.dot(A, C.T)

2.3.7 Summing along an axis

Instances of CUDAMatrix have a sum method that sum a matrix along a given axis. As in numpy
summing along axis 0 means summing along the columns, while summing along axis 1 means summing
along the rows. The sum method takes an optional target parameter. If a target is not provided, a
new matrix will be created on the GPU to store the result.

6

Create some matrices on the GPU.
A = cm.CUDAMatrix(np.random.randn (10, 20))
col_sums = cm.CUDAMatrix(np.random.randn(1, 20))
row_sums = cm.CUDAMatrix(np.random.randn (10, 1))

Sum along rows and columns.
A.sum(axis = 0, target = col_sums)
A.sum(axis = 1, target = row_sums)

2.4 Matrix-vector operations

CUDAMat supports a number of basic matrix-vector operations. It is possible to add a row or column
vector to a matrix using the add col vec and add row vec methods. These methods add a column
or a row to every column or row of a matrix respectively. Similarly, it is possible to multiply every
column or row of a matrix by a given column or row vector using the mult by col and mult by row
methods. All of these methods take an optional target parameter.

Create some matrices on the GPU.
A = cm.CUDAMatrix(np.random.randn (10, 20))
row = cm.CUDAMatrix(np.random.randn(1, 20))
col = cm.CUDAMatrix(np.random.randn(10, 1))

Add row to every row of A.
A.add_row_vec(row)

Multiply every column of A by col.
A.mult_by_col(col)

2.5 Random number generation

CUDAMat currently provides support for sampling from uniform and Gaussian distributions. Be-
fore random numbers can be generated one must seed the random number generator (at present
multiply-with-carry is used) by calling the init random static method of the CUDAMatrix class.
The init random method takes an optional seed parameter, which is 0 by default. Once initialized,
a matrix can be filled with samples from a Uniform(0, 1) distribution by calling its fill with rand.
Similarly, a matrix can be filled with samples from a standard normal distribution by calling its
fill with randn method.

Create some matrices on the GPU.
uniform_samples = cm.CUDAMatrix(np.random.randn (10, 20))
normal_samples = cm.CUDAMatrix(np.random.randn(10, 20))

Initialize and seed the random number generator.
cm.CUDAMatrix.init_random(seed = 42)

Generate random numbers.
uniform_samples.fill_with_rand ()
normal_samples.fill_with_randn ()

7

References

[1] AccelerEyes. Jacket, May 2009. http://www.accelereyes.com.

[2] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. Large-scale deep unsupervised learning using
graphics processors. In ICML ’09: Proceedings of the 26th Annual International Conference on
Machine Learning, pages 873–880. ACM, 2009.

8

