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Many physical systems of current interest are chaotic, which means that numerical errors in their
simulation are exponentially magnified with the passage of time. This could mean that a numerical
solution of a chaotic system is the result of nothing but magnified noise, which calls into question
the value of such simulations. Although this fact has been well known for a long time, its impact on
the validity of simulations is not well understood. The study ofshadowingmay provide an answer.
A shadow is anexacttrajectory of a chaotic map or ordinary differential equation that remains close
to an approximate solution for a nontrivial duration of time. If it can be shown that a numerical
solution has a shadow, then the validity of the solution is strong, in the sense that it can be viewed
as an experimental observation of the shadow, which is an exact solution. We present a discussion
of shadowing, including an algorithm to find shadows, using the gravitationalN-body problem as an
example. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION AND MOTIVATION

‘‘The art of prophecy is very difficult, especially with
respect to the future,’’ attributed to Mark Twain.1

GravitationalN-body systems are chaotic, which mea
that they depend sensitively on the initial condition, so t
except for a few special cases, the phase-space distanc
tween two solutions whose initial conditions differ by a
arbitrarily small amount will increase exponentially wi
time. Because computers constantly make small errors in
computation of such solutions, it is guaranteed that a co
puted solution will diverge exponentially from the exact s
lution with the same initial conditions. Thus, it is possib
that numerical solutions for chaotic systems are ov
whelmed by the exponential magnification of small erro
which would imply that the computed solutions are wor
less, even if quantities such as the total energy or momen
are conserved to arbitrary accuracy. That is, there are
nitely many solutions whose energy is exactly the same,
that have vastly different phase space trajectories.

A. Simulations

Numerical simulation is a standard tool in the study
complex systems. For example, the astronomical literatur
brimming with the results of large gravitationalN-body
simulations. Examples include studies of the formation, e
lution and structure of galaxies and clusters of galaxies,2 and
the cosmos at large.3 Because such simulations have be
used to invalidate theories,3 establishing their validity is criti-
cal. Like many dynamical systems, however, a gravitatio
system displays chaotic behavior: two solutions whose in
conditions differ by an arbitrarily small amount genera
diverge exponentially from each other.4 Because numerica
methods introduce errors, it is virtually guaranteed tha
numerically computed solution diverges exponentially fro
the exact solution with the same initial conditions. The ph
nomenon has been described~see, for example, Ref. 4! as the
1251 Am. J. Phys.72 ~9!, September 2004 http://aapt.org
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‘‘exponential magnification of small errors,’’ leaving ope
the possibility that trajectories of such simulations are
result of nothing but magnified noise.

Although much effort has been devoted to many aspect
the reliability of simulations, and although sensitive depe
dence on initial conditions is widely known to be one
these aspects, its impact on simulation reliability is not w
understood. Can these simulation results really be trus
What conditions must a simulation meet for its accuracy
be assured? Is there a limit on the duration of the tim
system can be simulated accurately? What measures ca
used to ascertain the accuracy of a simulation? More fun
mentally, what do we mean by ‘‘accuracy’’ and ‘‘error’’ in
these simulations, given that we know the numerical solut
diverges exponentially from the exact solution?

B. History of exponential divergence in gravitational
systems

Miller5 was the first to show that small changes in t
initial conditions of a gravitational system result in expone
tially diverging solutions. Lecar6 coordinated a study be
tween many researchers, each of whom independently c
puted the solution to anN-body problem with identical
initial conditions. They found that different algorithms an
computers gave results in which some measures differed
as much as 100%. More recent work on the growth of err
includes Kandrup and Smith,7 who showed that under a larg
range of parameters, the time scale over which small per
bations grow by a factor ofe, called the e-folding or
Lyapunovtime, is comparable to thecrossing time, the aver-
age time it takes a particle to cross the system once. Go
man, Heggie, and Hut4 developed a detailed theory of th
growth of small perturbations, and verified it with simul
tions to show that the exponential increase of small err
results mostly from close encounters, which occur inf
quently. This result is interesting because it says that, e
though the full phase-space solutions may experience e
nential error growth, the growth is dominated by the partic
that undergo stronger collisions, while the error growth
1251/ajp © 2004 American Association of Physics Teachers
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less strongly interacting particles is slower. This result s
gests that perhaps the simulations of collisionless syst
can be trusted for longer than collisional ones, because c
encounters have a much smaller effect in the former. K
drup, Smith, and Willmes8 showed that as softening is in
creased~that is, the system is made less collisional—see S
II !, the Lyapunov exponent decreases, so errors are ma
fied more slowly. Reference 8 agrees with Ref. 4 that
error magnification is due more to the rare individual p
ticles whose errors grow much more quickly than the av
age, although they claim the collective gravitational poten
of all the particles, called the ‘‘global’’ potential, also plays
role.

Because the time scale for the growth of errors is so s
~the errors can be magnified by a factor of;10 each cross-
ing time!, the results of allN-body simulations may be sus
pect. If the relative error per crossing time for a simulation
102p, then after aboutp crossing times, a particle’s positio
will have an error comparable to the size of the system—
other words, all information will have been lost about t
particle’s position. A typical simulation has an error p
crossing time withp between 4 and 8. Because such syste
are generally simulated for tens, hundreds, or thousand
crossing times, we can be sure that the positions of in
vidual particles bear no resemblance to the positions t
would have in the exact system, starting with the same in
condition.

C. The kinds of errors made in N-body simulations

1. Input and output errors

I first distinguish between two general types of errors.In-
put errors can be controlled directly while devising an
implementing models ofN-body systems. These errors
N-body systems may be divided into modeling approxim
tions and implementation approximations. Modeling a
proximations simplify the system being simulated, and
clude the following.

~i! Finite N sampling, also calleddiscreteness noise, be-
cause theN used is generally several orders of ma
nitude less than theN of the real system being mod
eled. The consensus is that this error is the limiti
source of error in current large N-body
simulations.9–15

~ii ! Force softening, that is, replacingr 2 by (r 21esoft
2 ) in

the denominator of Newton’s gravitational force equ
tion for some small constantesoft, usually chosen to
approximate the average inter-particle separati
Softening is used because it allows a smallerN to
approximate a largerN, and also to eliminate the sin
gularity at r 50.16

Implementationapproximations measure how well th
implementation simulates the model, and includes mach
roundoff error, numerical integration truncation error, a
approximate force computation algorithms like the Barne
Hut tree code or the fast multipole method.17 Hernquist, Hut,
and Makino9 have tried to show that the effect of this latt
error is negligible by showing that the energy of each in
vidual particle is conserved to a high degree regardles
whether the Barnes–Hut or the directO(N2) algorithm is
1252 Am. J. Phys., Vol. 72, No. 9, September 2004
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used. However, they used the leapfrog integrator with a c
stant time step, which guarantees that the energy error fo
entire system is bounded.18,19

Theoutput errormeasures the difference between the o
put and a real system, and results from the cumulative ef
of all the input errors. A simulation with small output erro
can be said to have high accuracy. Given thatN-body sys-
tems are chaotic, and that their simulation introduces
input errors we discussed, we must now ask precisely w
we mean by the ‘‘accuracy’’ of a simulation. Amazing as
may seem, there is currently no clear definition of simulat
accuracy.20 Obviously, attempting to follow the individua
paths of allN particles is impractical; Goodman, Heggie, a
Hut4 show that this would requireO(N) digits of precision.
On the other hand, most astronomical publications quote
ergy conservation as their only measure of output error, e
though there are infinitely many solutions with equal ene
but vastly different phase-space trajectories. Some of th
simulations even use an energy-conserving integrator suc
the leapfrog algorithm, in which case quoting energy cons
vation is of dubious merit, because the integrator conser
energy no matter how big other errors become!

2. Macroscopic statistics versus microscopic details

In largeN-body simulations, one is not usually concern
with the precise evolution of individual particles, but inste
with the evolution of the distribution of particles.21 Most
practitioners know that the exponential magnification of
rors means they cannot possibly trust the microscopic det
but they believe that the statistical results are independen
the microscopic errors, although little work has been done
test this belief.4 Barnes and Hut10 claim that gravitational
N-body simulations require only ‘‘modest’’ accuracy level
but also concede that quoting energy conservation is
enough, and that more stringent tests are needed.

An example of conservation of macroscopic properties
given by Kandrup and Smith.7 They show that a histogram o
the Lyapunov times of individual particles stays consta
within statistical uncertainties, even though the phase-sp
distribution of those particles is vastly different for differe
initial conditions.

II. SHADOWING

‘‘What shadows we are, and what shadows we pur-
sue,’’ Edmund Burke.22

We have noted that many dynamical systems display s
sitive dependence on initial conditions. This sensitive dep
dence guarantees that a typical numerical solution diver
exponentially from the exact solution with the same init
conditions. Fortunately, most studies of dynamical syste
do not aim to predict the precise evolution of a particu
choice of initial conditions. Instead, the dynamics of the s
tem is sampled in order to study its general behavior. In s
cases, we typically choose initial conditions from a rando
distribution and would be happy if our numerical solutio
exhibited behavior typical ofany valid choice of initial con-
ditions from our distribution. In particular, we would be sa
isfied if our numerical solution closely follows some exa
solution whose initial conditions are close to those that
chose. The study ofshadowingprovides just such a property
a shadowis an exact solution to a given set of equations t
remains close to a numerically computed solution of
1252Wayne Hayes



on
ls
u

e
nt
iti

u-

il
d
s
it
d

n
nc
oc
h
ce

a
in

lik
of

e

t

en

ec-

l.
xpo-
le
ns
h a

een
ay

all
ws

-
d-
la-

ons
oo
the

n,
at-
ent
s

per
ed
nd
r
the

lu-
ro-
is

ted
vo-
cal
is

ik-
n.

y
rd

ha
lut
tio
d
in
same set of equations. A shadow, if it exists, has initial c
ditions close to those of the numerical solution, and a
remains close to the numerical solution for a nontrivial d
ration of time. By ‘‘nontrivial duration,’’ we mean that th
shadow remains close to the numerical solution significa
longer than the exact solution that starts at the same in
condition as the numerical solution, becausethat exact solu-
tion is known to diverge exponentially away from the n
merical one~see Fig. 1!.

A. Definitions

When referring to mathematical variables, boldface w
refer to vectors, anditalic will refer to scalars, matrices, an
functions. Scalars are written in lower case and matrice
upper case. Some of the following definitions are taken, w
minor modifications, from Grebogi, Hammel, Yorke, an
Sauer~GHYS!.23 The termstrajectory, orbit, and solution
are used interchangeably throughout this paper.

Although most physical systems we model evolve co
tinuously in time, a numerical solution is a discrete seque
of points $yi% i 5a

b , representing snapshots of the system
curring at successive small time intervals. The relations
between the continuous system and the discrete sequen
points can be discussed by defining thetime-h solution op-
erator wh to be the function that takes a pointx in phase
space and gives us theexactsolution passing throughx at a
time h later. For convenience, we will drop the subscripth.
Then we say thatw generates an exact solution. A numeric
solution, on the other hand, is a discrete sequence of po
generated using anapproximationto w. We now define these
ideas more formally.

Definition: An exact trajectory$xi% i 5a
b of w satisfiesxi 11

5w(xi) for a< i ,b. We are interested in the case wherea
and b are finite integers. For a chaotic map,w may be a
simple equation, such as the logistic equationw(x)51
22x2, which always maps the interval@21,1# onto itself.
For a system described by ordinary differential equations
the N-body problem,w~x! represents the exact solution
integrating the phase-space coordinatesx for one time step.

Definition: $yi% i 5a
b is a d-pseudo-trajectory, also called a

noisy orbit, for w if iyi 112w(yi)i,d for a< i ,b. We calld
the noise amplitude.

Definition: For a< i ,b, the 1-step errormade between

Fig. 1. A schematic diagram of shadowing. Because a chaotic system
sensitive dependence on initial conditions, and because a numerical so
contains errors that perturb it from the exact solution, the numerical solu
diverges exponentially from the exact solution with the same initial con
tion. A shadow, if one exists, has a nearby initial condition, and rema
close to the numerical solution for a nontrivial duration of time.
1253 Am. J. Phys., Vol. 72, No. 9, September 2004
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step i and stepi 11 of the pseudo-trajectory$yi% i 5a
b is the

vector ei 115yi 112w(yi). Thus, an exact trajectory is on
whose 1-step error is identically zero.

Definition of shadowing:The exact trajectory$xi% i 5a
b

e-shadowsthe d-pseudo-trajectory$yi% i 5a
b on a< i<b if ixi

2yi i,e for a< i<b.
Definition: The pseudo-trajectory$yi% i 5a

b has aglitch at
point i 5g0,b if for some relevante, there exists an exac
trajectory thate-shadows$yi% i 5a

b for a< i<g0 , but no exact
trajectory thate-shadows it fora< i<g, for g.g0 .

The first group of chaotic systems for which it was prov
that shadow orbits exist arehyperbolicsystems.24,25In a two-
dimensional hyperbolic system, there are two special dir
tions called theunstable~or expanding! and thestable ~or
contracting! directions, which are generally not orthogona
Small perturbations along the stable direction decrease e
nentially in time, while small perturbations in the unstab
direction increase exponentially in time. The two directio
reverse roles if the time is reversed. A trajectory for suc
system can be imagined as a point moving in a plane.

For such a system it was shown that, if the angle betw
the stable and unstable directions is uniformly bounded aw
from 0, then a noisy trajectory can be shadowed for
time.24,25For nonhyperbolic systems, it appears that shado
may exist only for a finite time.23 The most important ques
tion in this regard is, how long can a noisy orbit be sha
owed? If the time is at least as long as most typical simu
tions of chaotic nonhyperbolic systems, then the simulati
have great validity; if the shadowing time turns out to be t
short, then we cannot use shadowing as a justification for
validity of the simulation.

Refinementis an iterative process that, on each iteratio
simultaneously perturbs all points of a noisy orbit in an
tempt to produce a nearby orbit with less noise. A refinem
iteration issuccessfulif the trajectory before the iteration ha
noised0 and the trajectory after the iteration has noised1,
where d1,md0 for some reasonablemP(0,1). Otherwise,
the iteration isunsuccessful.

The refinement algorithm that interests us in this pa
was first given in two dimensions by GHYS, and generaliz
to handle arbitrary Hamiltonian systems by Quinlan a
Tremaine~QT!.20 Refinement is not the only way to look fo
shadows; see Refs. 26 or 27 for a review. QT make
distinction betweendynamical noise and observational
noise. Observational noise does not affect the future evo
tion of the system. Laboratory measurements of a mac
scopic system are usually of this type; another example
computer output that prints fewer digits than are represen
internally. In contrast, dynamical noise affects the future e
lution of the system. The noise introduced by the numeri
solution of a system of ordinary differential equations
dynamical.

B. The refinement procedure of GHYS

1. The algorithm

The refinement procedure of GHYS and QT can be l
ened to Newton’s method for finding a zero of a functio
The basic idea is as follows. LetY5$yi% i 50

S be a trajectory
with S steps that has noised.hemach, whereemach is the
machine precision, andh is some constant significantl
greater than 1 which allows room for improvement towa

s a
ion
n

i-
s
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the machine precision. Letei 115yi 112w(yi) be the 1-step
error at stepi 11, whereiei 11i,d for all i . The set of 1-step
errors is represented byE5$ei% i 51

S , and is estimated by a
numerical technique that has higher accuracy than use
computeY. ~Note that the list of errors has one less elem
than the list of points in the noisy trajectory, because a po
on the noisy trajectory only has an error defined if ha
predessor point in the trajectory.! The process of computing
the one-step errors across the entire noisy trajectory defin
function, call it g, that takes as input the entire orbitY and
produces an output equal to the set of 1-step errorsE, that is,
g(Y)5E. Because the 1-step errors are assumed to be s
iEi is small. That is,Y may be close to a zero ofg, if one
exists. A zero ofg would represent an orbit with zero 1-ste
error, that is, an exact orbit. This situation is an ideal one
which to use Newton’s method. If Newton’s method co
verges, then an exact orbit has been found. Refinement is
exactly an example of Newton’s method, but it is very sim
lar.

Assume that we have a noisyn-dimensional orbit withS
steps,Y5$yi% i 50

S , yiPRn, and it has a shadow$xi% i 50
S , xi

PRn. Then xi 115w(xi) and yi 115w̃(yi)5w(yi)1ei 11 ,
wherew̃ is an approximation tow with noise bounded byd.
Now suppose we approximate the one-step errorsei 11

5yi 112w(yi) using an integration method with noise si
nificantly less thand. Let ĉi[xi2yi represent a correction
term that perturbsyi towardxi . Then

ĉi 115xi 112yi 115w~xi !2w~yi !2ei 11

5Dw~yi !ĉi2ei 111O~ i ĉi i2!. ~1!

In the spirit of Newton’s method, we ignore theO(i ĉi i2)
term, and so one refinement iteration defines the correct
along the entire orbit:

ci 11ªDw~yi !ci2ei 11 . ~2!

For a discrete map,Dw(yi) is just the Jacobian of the map
step i . For a system of ordinary differential equation
Dw(yi) is the Jacobian of the solution of the ordinary diffe
ential equation from stepi to stepi 11.28 In other words, let

y85f„y~ t !… ~3!

be the first-order ordinary differential equation. Note th
yi 115w(yi) is the solution of Eq.~3! usingyi as the initial
condition and integratingf to time t i 11 . The JacobianDf(yi)
measures howy8 changes ify is changed by a small amoun
The resolvent R(t i 11 ,t i) is the integral ofDf(y) along the
pathy(t), and describes how a small perturbationdy of yi at
time t i is mapped to a perturbation ofyi 11 at time t i 11 .
R(t i 11 ,t i) is the solution of thevariational equation,

]R

]t
5Df„y~ t !…R~ t,t i !, R~ t i ,t i !5I , ~4!

whereI is the identity matrix. The reason the arguments toR
seem to be reversed is for notational convenience: they
isfy the identityR(t2 ,t0)5R(t2 ,t1)R(t1 ,t0), and so a per-
turbationdy at timet0 gets mapped to a perturbation at tim
t2 by the matrix–matrix and matrix–vector multiplicatio
R2dy5R1R0dy.29 Finally, the linear map in the GHYS re
finement procedure isDw(yi)5R(t i 11 ,t i), wherew is the
time-h solution operator for Eq.~3!.
1254 Am. J. Phys., Vol. 72, No. 9, September 2004
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For brevity, we setLi[Dw(yi), and for simplicity, we
assume ann52 dimensional problem for the remainder
this section.

If the system were not chaotic, the correction termsci

could be computed directly from Eq.~2!. But becauseLi will
amplify any errors inci that occur near the unstable dire
tion, computing theci ’s by iterating Eq.~2! quickly produces
nothing but noise; iterating backward suffers the same pr
lem in the stable direction. Therefore, GHYS split the er
and correction terms into components in the stable (si) and
unstable (ui) directions at each time step:

ei5eui
ui1esi

si ~5!

ci5cui
ui1csi

si . ~6!

Because it is not knowna priori which direction is un-
stable at each time step, the unstable vectoru0 at time t0 is
initialized to an arbitrary unit vector. The linearized map
then iterated forward with

ūi 115Liui , ui 115ūi 11 /uūi 11u. ~7!

BecauseLi magnifies any component that lies in the unsta
direction, and assuming we are not so unlucky as to choo
u0 that lies precisely along the stable direction, then afte
few Lyapunov times,ui will point roughly in the actual un-
stable direction. Similarly, the stable unit direction vectorssi

are computed by initializingsS to an arbitrary unit vector and
iterating backward,

s̄i5Li
21si 11 , si5 s̄i /us̄i u, ~8!

whereLi
21 is most efficiently computed by invertingLi . ~We

also could integrate the resolvent backward as describe
Ref. 28, but this procedure is more expensive.!

If we substitute Eqs.~5! and ~6! into Eq. ~2!, we obtain

cui 11
ui 111csi 11

si 115Li~cui
ui1csi

si !

2~eui 11
ui 111esi 11

si 11!. ~9!

For the same reason thatLi magnifies errors in the unstabl
direction, it damps errors in the stable direction. Likewis
Li

21 damps errors in the unstable direction and magni
errors in the stable direction. Thus thecu terms should be
computed in reverse order, and thecs terms in forward order.
If we take components of Eq.~9! in the unstable direction a
stepi 11 ~recall thatLiui5ūi 11 lies in the same direction a
ui 11), we can iterate backward on

cui
5~cui 11

1eui 11
!/uūi 11u. ~10!

Similarly, if we take components in the stable direction@cf.
Eq. ~2!#, we can iterate forward on

csi 11
5uLisi ucsi

2esi 11
. ~11!

The initial choices forcs0
and cuS

are arbitrary as long as
they are small—smaller than the desired maximum allowa
shadowing distance because Eq.~11! damps initial condi-
tions, and Eq.~10! damps final conditions. QT and GHYS
choose them both as 0. This choice is probably as good
any, but it can be seen here that if one shadow exists, t
are infinitely many of them. Another way of looking at the
initial choices forcs0

andcuS
is that they ‘‘pinch’’ the grow-

ing components at the final end point and the backwa
1254Wayne Hayes
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growing components at the initial point, to be small so th
(y02x0)•s050 and (yS2xS)•uS50. That is, the boundary
conditions are being forced on the problem so that the ex
nential divergence is forcibly masked, if possible, making
solution of Eq.~2! numerically stable.

Note that these boundary conditions allow the initial co
ditions for the shadow and noisy orbits to differ along t
unstable direction. In fact, thismustbe the case if the chang
in initial conditions is to have any effect. That is, when loo
ing for a shadow, the perturbations in the stable direct
would die out, leading the ‘‘shadow’’ to follow the exac
orbit that passes through the initial conditions—the one t
is already known to diverge exponentially from the co
puted~noisy! orbit.

2. Discussion of the GHYS algorithm

There is no guarantee that refinement converges towar
exact orbit; if there were, then all noisy orbits would b
shadowable! In fact, even if some refinements are succes
numerical refinement alone does not prove rigorously tha
exact shadow exists; it only proves the existence of a n
merical shadow, that is, a trajectory that has less noise
the original. Furthermore, the 1-step errorei 11 computed by
any numerical technique measures the difference betw
the noisy and more accurate solutions at time stepi 11,
where both start from the same position at time stepi . This
is different than computing the actual error per step. O
must therefore have faith in the accuracy of the ‘‘more ac
rate’’ integrator to have faith in the numerical shadow.

Furthermore, a numerical integration routine that is
quested to integrate to a tolerance close to the machine
cision might not achieve it, because it might undetecta
lose a few digits near the machine precision. Thus, e
when a numerical shadow is found with 1-step err
claimed to be as small as 10215 by the ‘‘accurate’’ integrator,
the actual 1-step errors may be closer to 10212. GHYS pro-
vide a method calledcontainmentthat can prove rigorously
when an exact shadow exists, but containment~generalized
for arbitrary dimension ordinary differential equations
Refs. 27 and 26! is far too expensive for theN-body prob-
lem. As a surrogate to containment, QT did experiments
simple chaotic maps with 100-digit accuracy~using the
Maple symbolic manipulation package30! showing that if the
GHYS refinement procedure refined the trajectory to 1-s
errors of about 10215, then successful refinements could
continued down to 102100. It is probably reasonable to as
sume that refinement would continue to decrease the no
converging in the limit to a noiseless~exact! trajectory. For
these reasons, we are confident that convergence to a nu
cal shadow implies, with high probability, the existence of
exact shadow.

There also is no guarantee that, even if the refinem
procedure converges, that it converges to a reason
shadow ofY; in principle, it could converge to an exact orb
that is far fromY, in which case the term ‘‘shadow’’ would
be inappropriate. However, in practice it appears that, if
finement fails, it always fails due to the 1-step errors beco
ing large. This error explosion occurs when the 1-step er
are so large that the linearized map becomes invalid for c
puting corrections. Because the method is global~that is,
each correction depends on all the others!, inaccuracies in the
computation of the corrections can quickly amplify the no
1255 Am. J. Phys., Vol. 72, No. 9, September 2004
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rather than decreasing it. Thus, within 1 or 2 refinement
erations, the 1-step errors can grow by many orders of m
nitude, resulting in failed refinements.

An important open question is whether shadows are ty
cal of exact orbits chosen at random. Simple examples e
of shadows that are atypical,31–33 although it seems unlikely
that atypical shadows are common—lest the numerical s
tions we compute would be commonly atypical as well. A
extensive discussion of this issue can be found in Ref. 2

III. SHADOWING THE GRAVITATIONAL N-BODY
PROBLEM

‘‘It is in vaine to goe about to make the shadowe
straite, if the bodie whiche giveth the shadowe bee
crooked,’’ Stefano Guazzo.34

Although not all numerical simulations are likely to b
shadowable, the existence of a shadow is a strong proper
asserts that a numerical solution can be viewed as anexperi-
mental observationof an exact solution. As such, within th
‘‘observational’’ error, the dynamics observed in a numeric
solution that has a shadow represent the dynamics of an
act solution. We consider the existence of a shadow to be
‘‘gold standard’’ of reliability for simulations of chaotic sys
tems. For the systems we consider, a shadow lasting se
tens of crossing times is sufficient. For example, because
formation about 1010 years ago, our Milky Way galaxy ha
rotated only about 40 times at the orbital radius of our S
a shadow of a numerical simulation of our galaxy lasting
long would be more than sufficient.

If we think of shadowing as a measure of the error o
simulation—with the relevant measures being how close
shadow is and how long it lasts—then we also must emp
size when shadowing is an appropriate measure of the e
The answer is that it only makes sense to use shadowin
the model being simulated accurately reflects the system
ing studied. Shadowing is thus best applied to systems
which the governing equations are well known, and virtua
all error is introduced by the imprecise knowledge of init
conditions or by numerical error in the computation of t
solution. It is less applicable to systems in which the mo
only approximate. For example, shadowing is an appropr
measure of error for the gravitationalN-body problem, be-
cause the equations of motion are extremely well understo
and an exact solution of the model very closely approxima
the behavior of a real system under the assumed condit
of the model. Conversely, shadowing is an inappropri
measure of error for a weather simulation, because the m
els are known to be only rough approximations and havin
numerical solution that closely follows an exact solution
such an approximate model is of a dubious value.

To apply refinement to theN-body problem, the method
needs to be generalized to work in more than two dim
sions. The extensions were introduced by QT and are
scribed in Refs. 35 and 27. QT undertook the first study
shadows of numerical simulations of theN-body problem,
and found that a single particle moving in the potential
100 fixed particles can be shadowed for a few tens of cro
ing times. Hayes36 demonstrated that the distribution o
shadowing lengths for such a system is fit well by an ex
nential curve, suggesting that glitches in one-particle traj
tories are encountered as a Poisson process in an unsof
system. This observation is intriguing because a Poisson
1255Wayne Hayes
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cess is memoryless,37 which means that the history of th
orbit has no effect on the glitch probability. This result
consistent with the view of Ref. 23, that a glitch is asudden
occurrence independent of the history of the orbit, and
the result of a long-term buildup of error.

Shadowing large systems is extremely expensive. Strai
forward integration of the variational equation for anN-body
system requiresO(N3) per time step. Because a typical ga
axy or cosmological simulation today contains millions
particles, we would not be capable of shadowing the tra
tories of such a simulation for a long time. However, sha
owing can still provide significant insight into the reliabilit
of such simulations for two reasons. First, in a large syst
the motion of particles is governed far more by the glo
potential than by the positions of nearby particles,16 and sec-
ond, individual particles appear to encounter glitches in
pendently of one another.36,38 These observations sugge
that if one particle encounters a glitch, then it will have
negligible effect on the motion of the others, at least at fi
because one errant particle does not appreciably chang
global gravitational potential created by the~millions of!
other particles. In fact, the global potential will remain su
stantially valid as long as most particles are on valid traj
tories. This interpretation implies that the validity of a sim
lation slowly degrades as the number of glitched partic
increases, infecting the field and the motion of other p
ticles. The question is how many particles remain on va
trajectories as the simulation time progresses?

If each particle encounters glitches independently a
Poisson process, then we would expect the number of n
glitched particles to decay exponentially with time. Figure
plots this fraction of nonglitched~that is, shadowed! particles
as a function of time for a set of parameters described m
fully in Ref. 38. As Fig. 2 shows, for these simulation p
rameters over 90% of particles still have valid trajector
after about 50 crossing times. Thus, a simulation of a gal
for 50 crossing times~which is about the age of our Milky
Way Galaxy! with these parameters would probably ha
more than 90% of its particles in the ‘‘correct’’ place, with

Fig. 2. The estimated fraction of particles that would be shadowed
function of time in a system of 100 particles in which the gravitation
force-softening parametere is 1/4 of the mean inter-particle spacing. Nois
trajectories were generated using a leapfrog integrator with a time step
allows particles to travel an average distance ofe/5 per time step. Each
particle has an expected shadow duration of 280 crossing times, equiv
to having a glitch probability of 0.36% per crossing time. The number
valid ~nonglitched! particles decays exponentially, assuming each part
encounters glitches as a Poisson process independent of all the othe
ticles.
1256 Am. J. Phys., Vol. 72, No. 9, September 2004
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‘‘observational’’ ~that is, shadow distance! error. This is a
very encouraging sign that perhaps such galaxy simulat
are reliable in the shadowing sense.

IV. EXERCISES

‘‘On voit courir après l’ombre Tant de fous qu’on n’en
sait pas.’’~‘‘One sees chasing after shadows more fools
than one can count.’’!—La Fontaine.39

~1! Write a program to implement refinement in two dime
sions. Your program should first create a noisy traject
of a two-dimensional map, and then pass the entire
jectory to the refinement subroutine, which returns,
possible, a new trajectory with the noise as small as p
sible. You can find the longest shadow by trying
shadow longer and longer segments of the noisy tra
tory. You will need to calculate~by hand! the Jacobian of
the map to compute the variational equation. The follo
ing two-dimensional hyperbolic maps whose trajector
you can try to shadow are taken from Chapter 2 of R
40. The second problem exercise is suitable as an ass
ment for lower year courses; the second is more app
priate for upper years; and the third is more suitable
graduate students.

~2! The Hénon map,
~xi11,yi11!ª~a2xi

21byi ,xi!. ~12!

The classical parameter values used by He´non area
51.28,b50.3; another interesting set isa51.4,b
520.3. A good initial condition is (x0 ,y0)5(0,0).

~3! The map,
~ri11,ui11!ª~ri

2 ,2u!, ~13!
is derived from the polar coordinate form of the compl
map f (z)5z2. It can be shown that there exist initia
conditions that produce chaotic trajectories of this m
that are bounded, have a positive Lyapunov expon
and do not converge to the point~0,0!.40 Find such an
initial condition ~using either the paper and penc
method described in Ref. 40, or by experimenting with
large number of random initial conditions!, and see how
long you can shadow it.

~4! The time-2p map of the forced-damped pendulum,

~ui11,u̇i11!5F~ui ,u̇i!, ~14!
is found by integrating

ü52cu̇2sinu1r sint, ~15!
from 0 to 2p using an integer number of time steps
size 2p/k for somek. One integration from 0 to 2p
constitutes one iteration of the map; a new integrat
must be performed for each iteration of the map. T
integration allows us to use the map shadowing meth
described in this paper to shadow trajectories of an o
nary differential equation. We see that shadowing an
dinary differential equation is much more expensive th
shadowing a map, because a map such as the He´non map
does not require an ordinary differential equation in
gration at each step. Note that to compute the Jacob
of this map, you actually need to compute a resolven
the ordinary differential equation for one time step
described in Ref. 28. Interesting parameter values
clude c50.05, r52.5) andc50.2, r51.66. Try vari-

ous randomly generated initial conditions in (u0 ,u̇0)
P(@2p,p#,@22,4#).
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