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Abstract

A shadow is an exact solution to a set of equations that remains close to a numer-
ical solution for a long time. Shadowing can thus be used as a form of backward
error analysis for numerical solutions to ordinary differential equations. This survey
introduces the reader to shadowing with a detailed tour of shadowing algorithms
and practical results obtained over the last 15 years.
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1 Introduction

An initial value problem (IVP) for an ordinary differential equation (ODE) is

y' (1) =£(y(t)), (1)

y(to) =Yo. (2)

An autonomous ODE such as (1) contains no explicit dependence on t. If
y(t;to,yo) is the solution of (1,2), we let the time-h solution operator ¢, be

on(u) = y(h;0,u). (3)

Let ¢, be a numerical approximation to ¢, computed by some numerical
method for small h, and let y; 1 = @p, (y;) define a sequence of discrete points
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representing approximations to y(%;y1; o, yo) where t;11 = t; + h;. We call this
sequence a pseudo-trajectory. The natural first question to ask about pseudo-
trajectories is how accurately they approximate the exact solution. Since the
forward error ||y; —y(ti; to, ¥o)|| can in general grow exponentially (Dahlquist
and Bjorck, 1974, §88.1.2, 8.3.6), more sophisticated methods of error analysis
must be used to gain insight into the value of the numerical solution.

Backward error analysis is a general term applied to methods of error analysis
that relate the pseudo-trajectory to the exact solution of a nearby problem
(Corless, 1994a). Defect based backward error analysis requires a piecewise
differentiable interpolant u(t) of the pseudo-trajectory, and then defines the
defect as 0(t) = u'(t) — f(u(t)). If for some input tolerance ¢ we can show
that ||0(¢)|| < e wherever u'(t) is defined over the whole of the interpolated
solution, then the interpolated solution is the exact solution to an e-close
problem (see for example (Corless and Corliss, 1992; Corless, 1994a)), namely
u'(t) = f(u(t)) + 6(1).

Defect-based and other backward error analysis methods modify (1) but leave
(2) untouched. In contrast, shadowing (Pilyugin, 1999; Palmer, 2000) is a
method of backward error analysis in which (1) remains fixed while (2) is
allowed to change. In other words, a shadow y(t) is an exact solution to (1)
remaining close to the pseudo-trajectory u(t), but having slightly different
initial conditions:

() =£t®), ly@#)—u@)l <e,

for a nontrivial duration of time ¢ including ¢ = ¢;. Shadowing is thus best ap-
plied to systems in which the governing equations are extremely well-known,
and virtually all error is introduced by imprecise knowledge of initial condi-
tions and/or by numerical error in the computation of the solution. It is less
applicable to systems in which the mathematics only approximately model
the truth. For example, shadowing is an appropriate measure of error for the
gravitational n-body problem, because the equations of motion are extremely
well-understood, and an exact solution of the model very closely approximates
the behaviour of a real system under the assumed conditions of the model,
whereas the initial conditions for the system are often not known precisely.
Conversely, shadowing is an inappropriate measure of error for a weather sim-
ulation, because the models are known to be only rough approximations of
the real processes involved, and so having a numerical solution that closely
follows an exact solution of such an approximate model is of dubious value.



1.1 Motiwvation

Many physical systems under active study today can be modelled using ODEs;
however, many of them display sensitive dependence on initial conditions,
which means that two solutions that are initially close to each other tend
to diverge exponentially with time. Since numerical methods introduce small
errors that produce a pseudo-trajectory rather than an exact solution, it is
virtually guaranteed that a pseudo-trajectory of such an ODE will diverge
exponentially away from the exact solution with the same initial conditions.
Although this is widely recognized, its impact on the qualitative properties of
a pseudo-trajectory is not well understood.

Even when the mathematical model corresponds extremely closely to reality,
real systems undergo external perturbations, so one could argue that numerical
errors can be grouped into the same category as external perturbations (Cor-
less, 1992b, 1994a). However, numerical errors may be biased in qualitatively
different ways than natural perturbations, and may introduce biases into the
numerical solution that cause it to behave in a nonphysical manner. For ex-
ample, (i) many physical perturbations do not appreciably change the energy
of the system, whereas spurious energy dissipation can be a major problem
in long numerical integrations of conservative systems. Although symplectic
integrators (Channell and Scovel, 1990; Sanz-Serna, 1992) and other types of
conservative integrators (Shadwick et al., 1999) may conserve certain quanti-
ties, it is not clear that they do not introduce other biases, such as nonphysical
energy transport. (i) Physical systems often satisfy properties such as conser-
vation of energy, phase-space volume and various types of momentum, many
of which are well-conserved in real systems that experience perturbations, but
are not well-conserved by an otherwise well-behaved numerical method. (iii)
The effect on simulations of numerical error can be much greater than actual
perturbations, even if those perturbations are larger. For example, nearby
stars and the Galaxy at large exert forces on the Solar System that are about
107!2 times smaller than the forces from our Sun. It is not difficult to create
integrations with local numerical errors several orders of magnitude smaller
than this, and yet unless these integrations somehow account for symplectic
structure or energy conservation, they produce an integration of the Solar
System which quickly and clearly diverges from the behaviour of the real So-
lar System. (iv) In general, we want to ensure that modifying the system of
equations represented by (1) does not affect any quantities of interest (Skeel,
1996, 1999).

Despite the above issues, numerical solutions often appear to mimic with as-
tounding accuracy the phenomena they purport to simulate. Simulations of
galaxies often closely resemble real galaxies (see almost any paper on galaxy
simulation in Clarke and West (1997) or Merritt et al. (1999)). Even galaxy



collisions can be modelled in a convincing manner (Struck, 1997). More gen-
erally, exponential divergence of nearby trajectories implies that an initially
dense ensemble of points will disperse into a uniform distribution in a rel-
atively short time (Skeel, 1996, 1999). This effect is also seen in numerical
simulations of chaotic systems (Merritt and Valluri, 1996; Merritt, 1999). The
natural question to ask is whether these simulations are behaving in a fashion
similar to real systems, or if they only superficially mimic real systems but are
in fact behaving incorrectly at a more fundamental level. If this were the case,
then we could be lulled into a false sense of security whilst our understanding
of these systems becomes compromised.

Since shadowing disallows changes in the model (1), some of these kinds of
insidious errors can be ruled out. Furthermore, if the problem (1) arises from
a purely mathematical context and not a physical one, we may be earnestly
interested in the properties of exact solutions of (1), in which case a recourse
to shadowing may be the only option. The only remaining question would
then be whether shadows are typical of exact solutions chosen at random.
This question is explored more deeply later in this survey. On the other hand,
shadowing is extremely expensive. Whereas defect controlled methods (En-
right and Hayes, 2003) are of roughly equal expense compared to more tra-
ditional integration methods, shadowing typically requires integration of the
variational equation, which for a large system can be orders of magnitude
more expensive to compute than the numerical solution.

1.2 Definitions

An orbit is a discrete sequence of points, a solution is a continuous curve,
and a trajectory more generally refers to either an orbit or a solution de-
pending upon context. We assume a well-scaled problem where all macroscopic
quantities of interest are of order unity; |- | denotes the magnitude of a scalar,
while || - || denotes a norm of a vector or matrix. We use the max norm unless
otherwise noted.

Let ¢(x) be a diffeomorphism. If ¢ is just a map, then it may be a simple
equation, such as the “logistic” equation ¢(z) = 1 — 222, which maps the
interval [—1, 1] onto itself. The case we are more interested in here is where ¢
represents the one-timestep flow through x of the solution to an ODE. If the
timestep is fixed, then ¢y, is the same function on each step, and for simplicity
we refer to ¢, simply as ¢ for constant h.

The iterated map ¢*(x) is the result of repeatedly composing ¢ with itself
i times, e.g., ¢*(x) = @(p(p(x))). An exact orbit {x;};_; of ¢ satisfies
Xit1 = @(Xi), L., X; = ' (x;), for j < i < k. We allow j = —o0 and k = oo;



{yi}i_, is a d-pseudo-orbit or noisy orbit for ¢ if ||y, 11 — ¢(y:)|| < & for

j <1 < k, where ¢ is called the noise amplitude. For a discrete map, § can
be as small as the machine epsilon; for both discrete maps and ODE systems,
it is a bound on the one-step error. For j < i < k, the one-step error made
between step i and step i+ 1 of the pseudo-orbit {y;};_; is €11 = yiy1 —@(yi)-
Thus, an exact trajectory is one whose one-step errors are identically zero,
and a d-pseudo-orbit is one whose one-step errors satisfy |le;|| < ¢ for j <
i < k. An exact trajectory {x;}¥_; e-shadows a pseudo-trajectory {y}i;
if |lyi — xil| < e for j < 4 < k. The ¢'-pseudo-trajectory Z = {z;};_; is a
numerical shadow of the d-pseudo-trajectory Y = {yi}f:j if their one-step
errors are tightly bounded by ¢’ and §, respectively, and ¢’ < §. In practice,
a numerical shadow usually only has smaller error estimates than the original
noisy orbit, because in most cases neither orbit has rigorously computed error
bounds. To have confidence in the value of a numerical shadow, we like its noise
to be as small as possible. For a map, the noise should ideally be the machine
precision. For an ODE solution, the noise is “as small as possible” using some
accurate integrator with its error tolerance set very stringently. The pseudo-
orbit {y;}¥_; has a glitch at point i = Gy < k if for some relevant ¢ there
exists an exact trajectory that e-shadows {yi}g’j, but no exact trajectory
exists that e-shadows {y;}{; for G > G (Grebogi et al., 1990).

Although rigorously disproving the existence of shadows of particular numer-
ical trajectories is a virtually untouched area of research, the failure of a
particular method to find a shadow is often cited as evidence that an actual
glitch occurs somewhere in the vicinity of the computed end-of-shadow (Gre-
bogi et al., 1990; Sauer and Yorke, 1991; Dawson et al., 1994; Sauer et al.,
1997; Quinlan and Tremaine, 1992; Hayes, 1995). This conclusion is not al-
ways valid, however (see the discussion following Theorem 3.1, in this survey),
and so Hayes (2001) proposes two different terms. The term glitch, or hard
glitch, should be reserved for the case in which the above definition can be
verified, 7.e., non-existence of shadows can be proved. For example, a function
¢ : X — X which maps an interval onto itself may produce a numerically
generated orbit of the iterated map which lies outside this interval. If a nu-
merically generated point, say x;, moves more than ¢ away from the interval
X then a hard glitch has occurred. However, the failure of a particular method
to find a shadow is a different matter, and for this case Hayes (2001) proposes
the term soft glitch. For systems such as the n-body problem, the notion of a
hard glitch cannot be used without proof because the set of unphysical points
in phase space has measure zero. That is, in a Newtonian, Euclidian phase
space, particles can have any finite position and velocity. Furthermore, small
numerical errors are constantly occuring, and, if the system is integrated care-
fully and local errors remain small, there is no obvious point at which one can
say, “this behaviour is nonphysical”. One can arbitrarily decide, for example,
that when the total computed energy of the numerical solution has diverged
from the known energy of the system by some chosen amount, the solution is



no longer valid. But this is not the spirit of the term “glitch”. The spirit of
the term is “a point at which all exact trajectories diverge from a numerical
one”, and currently this can only be proved for simple systems.

1.3  Tutorial

A simple example of a shadow is provided by Quinlan and Tremaine (1992),
hereafter referred to as QT. Let y” = y, which can be re-written as a pair of
first order equations as y' = v, v' =y, where v is velocity. If y(to) = v(ty) =0
for any %, then the exact solution is y = v = 0 V¢. Now, assume that y =
v = 0 for ¢t < 0, and assume that the system is solved exactly for all ¢t # 0.
Introducing a perturbation of size Av = ¢ at ¢t = 0 gives the following “noisy”
solution:

0, t <0,

set_;_t, t > 0.

y(t) =

A shadow of this noisy solution is x(t) = ee*/2, which remains within &//2
(in phase space) from y(t) for all .

Next, purely for pedagogical purposes, we offer a proof of an almost “trivial”
theorem: if a map is contracting, then noisy orbits are shadowed.

Theorem 1.1 (Contracting map shadowing theorem) Let X be a met-
ric space and let ¢ : X — X be a continuous, uniformly contracting map,
ie, dp < 1 st Vx,y € X, |lo(x) — o) < pllx —y||. Then for every
e > 0 there exists 6 > 0 such that every J-pseudo orbit remaining in X is
e-shadowed.

Proof 1.1 Assume we are given ¢ > 0. Let 6 = (1 — p). Suppose {y;}i2;
is a 0-pseudo-orbit that remains in X. Let x; = y; and let X417 = ¢(x;) for
i > j, i.e, {X}2; is an exact orbit. We will show by induction on i that
|xi — yill < e fori>j.

Base case: ||x; —y;|| =0 < e, by our choice of x;.

Induction step: Assume ||x; — y;|| <€ fori>j. Then

[%i+1 — yirrl| = [lo(x:) — o(ya) + aill, 1] <6
<lp(x:i) — o(yi)l| + 0
<pe+d
=€

Remark: If ¢ is expanding, then ¢~! is contracting, and we can apply the



above theorem in reverse time, as long as y; € X Vi > j.

Another instructive way to look at shadowing is in terms of its relation to
finding the zero of a function. To wit, let Y = {y;} Y, be a §-pseudo-trajectory
in R", and let E = {e;}, be the set of one-step errors. Let g : RV —
RM" be a function that takes as input the entire orbit Y and produces as
output the set of one-step errors E, i.e., g(Y) = E. Since the one-step errors
are assumed to be small, ||E|| is small. That is, Y may be close to a zero of
g, if one exists. A zero of g would represent an orbit with zero one-step error,
i.e., an exact orbit. This is an ideal situation in which to apply a zero-finding
method such as Newton’s method. If the method converges to an orbit X
which is e-close to Y, then X e-shadows Y. This is the idea behind refinement
(Grebogi et al., 1990; Quinlan and Tremaine, 1992) which will be discussed in
more detail below.

2 Hyperbolicity

One of the most important concepts in shadowing is that of hyperbolicity. The
following definitions are commonly used in the shadowing literature. See for
example Palmer (1988), on which the following description is based. In this
section, we will concentrate on maps, keeping in mind that we can translate
between maps and solutions of ODEs by looking at the time-h solution oper-
ator ¢p(z) defined in equation (3). Let ¢ : R® — R"™ be a diffeomorphism.
Let Dp(x) be the Jacobian of ¢(x), which exists, is unique, and is invertible
since ¢ is a diffeomorphism. Every orbit of ¢ has associated with it a linear
difference equation called the linear variational equation,

Ziy1 = Do(x;)z;. (4)

A sequence of Jacobians along an orbit can be multiplied together to produce
a Jacobian of the corresponding sequence of applications of the map, ®(i, j).
The linear variational equation (4) is said to have an ezponential dichotomy if
there are positive constants K, a and a family of projections P; such that

Pi1Do(x;) = Dop(x;) F; for all 1, (5)
1@ (7, 7) P < Ke=0=9) for i > j, (6)
193, ) (I — Py)l| < Ke ®9~9 for j > 4. (M)

By repeated application of (5) we obtain the identity P;®(i,7) = ®(4, j)P;.
This means that the projections P; are invariant with respect to equation
(4). That is, if {z;}}_; is a solution to (4) such that z; is in the range
(resp. nullspace) of P; for some j then z; is in the range (resp. nullspace)



of P; for all i. Inequalities (6-7) say firstly, that the P, are bounded (proof:
set 4 = j in (6)) and secondly, that the solutions z; of equation (4) which lie
in the range of P, decay exponentially in forward time (the stable subspace),
while those in the nullspace of P; (the unstable subspace) decay exponentially
in backward time (Palmer, 1988).

Definitions. A trajectory X = {x; = ¢'(x)};_; for some x is said to be
hyperbolic under ¢ if the linear variational equation z;,1; = Dy(x;)z; along
X has an exponential dichotomy. Equivalently, we say that ¢ is hyperbolic
along X. A set S C R"™ is said to be invariant under ¢ if p(S) = S. A
compact invariant set S is said to be hyperbolic under ¢ if every trajectory
X in S is hyperbolic with the same constants K, «, and the projection matrices
P; have a rank which is independent of X. Equivalently, we say that ¢ is
hyperbolic on S, or that S and ¢ form a hyperbolic system. If a system
is hyperbolic, then the angle between the stable and unstable subspaces is
always bounded away from 0 (Grebogi et al., 1990).

2.1 Hyperbolic systems

Shadowing was first discussed by Anosov (1967) and Bowen (1975), in relation
to hyperbolic systems. Let S and ¢ be the invariant set and the map of a
hyperbolic system, respectively. In such systems, Anosov (1967) proved that
Ve > 0, 34 > 0 such that every infinite-length §-pseudo orbit remaining in S
is e-shadowed by a true trajectory in S. Bowen (1975) proved that the same
result holds if the map is required to be hyperbolic only along trajectories in
the vicinity of the pseudo-orbit. Palmer (1988) proved a similar theorem along
the way towards using the theory of exponential dichotomies to prove Smale’s
Theorem (Smale 1965; 1967):

Theorem 2.1 (Hyperbolic set shadowing theorem) Let S be a compact
hyperbolic set for the Ct diffeomorphism ¢ : R™ — R™. Then given any & > 0
sufficiently small there exists 6 > 0 such that every doubly-infinite 6-pseudo-
orbit in S has a unique e-shadowing orbit.

Chow and Van Vleck (1992) proved a similar theorem in the case that the
function ¢ is allowed to change at each step. We omit the (rather long and
involved) specifications of the hyperbolicity conditions of the following the-
orem, except to note that when the conditions hold, the difference equation
z;+1 = D¢;(x;)z; has an exponential dichotomy for all sequences of functions
{6i}32, if xi41 = ¢i(x;). These conditions, of course, tightly restrict the classes
of sequences of functions whose orbits can be shadowed; otherwise, shadowing
of numerical solutions of ODEs would be trivial!

Theorem 2.2 (Random Diffeomorphism Shadowing Lemma) Let M be



a smooth compact k-dimensional Riemannian manifold and let Diff(M) rep-
resent the set of all diffeomorphisms from M to M. Assume further that the
[omitted] hyperbolicity conditions are satisfied. Let {y;}32, be a sequence of
points in M. Then for all ¢ > 0 sufficiently small 36 > 0 such that if there
erists a sequence of functions {¢; € Diff(M)}2, satisfying ||yi+1 — ¢i(yi)|| <
0 then there exists a unique sequence {x;}°, such that x;11 = ¢;(x;) and
|xi — yill <e for alli.

3 Algorithms for finding shadows of maps

Although our primary purpose in this survey is to shadow numerical ODE
integrations, we start with maps because they are simpler, and shadowing
ODEs is a direct extension of shadowing maps.

3.1 Containment

This survey deals not with hyperbolic systems, but with systems whose pseudo-
trajectories are shadowable for finite but nontrivial lengths of time even though
they are not hyperbolic. For this to occur, a system must display pseudo-
hyperbolicity (Hayes, 2001). We say that a system is pseudo-hyperbolic if
trajectories of the system tend to have solutions to the variational equation
which can be split into two classes, one of which tends to expand exponen-
tially, while the other tends to contract exponentially, both simultaneously
and for nontrivial lengths of time. This notion could be made more formal by,
for example, attempting to find the two classes of solutions using the com-
mon methods described below, and then performing least-squares fits of these
solutions to exponential curves.

For systems that are not hyperbolic, but whose trajectories display pseudo-
hyperbolicity for a finite number of iterations of ¢, we must be satisfied with
proving the existence of finite-length shadows. The first study of shadows for
non-hyperbolic systems appears to be Hammel et al. (1987). Hammel et al.
(1988) and Grebogi et al. (1990) (hereafter GHYS) provide the first proof
of the existence of a shadow for a non-hyperbolic system over a non-trivial
length of time. Their method consists of two parts. First, they refine a noisy
trajectory using an iterative method that produces a nearby trajectory with
less noise. Refinement will be discussed in more detail below. When refinement,
converges to the point that the noise is of order the machine precision, they
invoke containment, which can prove the existence of a nearby exact trajectory.

Let {y;:}._, C R? be a two-dimensional §-pseudo-orbit of ¢ for integers a and
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Fig. 1. Containment in two dimensions, reproduced from GHYS. The horizontal
direction is contracting, and the vertical direction is expanding.

b. As 1 increases, orbits separated from each other by a small distance along
the expanding direction diverge on average away from each other, while orbits
separated by a small distance along the contracting direction approach each
other, on average. The containment process consists of building a parallelo-
gram M; around each point y; of the pseudo-orbit such that two sides C;*! are
separated from each other along the contracting direction, while the other two
sides Eif! are separated along the expanding direction. In order to prove the
existence of a shadow, the image of M; under ¢ must intersect M; ., such that
©(M;) makes a “plus sign” with M;,; (Figure 1). The property that GHYS
define as a “plus sign” is

p(EN)NMipa =0,  o(M)NCL, =0, j=+1. (8)

To ensure this occurs, GHYS require a bound on the second derivative of
@, and the expansion and contraction amounts need to be resolvable by the
machine precision. The proof of the existence of a shadow then relies on the
following argument. Let vy be a continuous curve in M, connecting the ex-
panding sides E, ' and Ej . Its image ¢() is then stretched such that there
is a subsection of ¢(7y) lying wholly within M;, and in particular () leaves
M, through the expanding sides EE! at both ends. Let 7, be a subsection of
©(70) lying wholly within M;. Now look at ¢(v1) in M,. Repeat this process
along the orbit, producing vy lying wholly within the final parallelogram M.
Then any point lying along vy, traced backwards, represents an exact orbit
that stays within M;, i =N, N—1,...,1,0, and we are done (Grebogi et al.,
1990).

With this picture, there is a nice geometric interpretation of the requirement
that the angle between the stable and unstable directions be bounded away
from 0O: if the angle gets too small, then the parallelogram essentially loses
a dimension, and ¢(M;) can not make a “plus sign” with M;,;. Practically
speaking, this occurs when the angle becomes comparable with the noise am-
plitude of the refined orbit. Hence, the more accurate the orbit, the longer it
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can be shadowed (Grebogi et al., 1990; Quinlan and Tremaine, 1992).

Extending the above argument to three dimensions is fairly straightforward
(Hayes, 2001), in which there are precisely two interesting cases:

(i)

1 expanding direction, and 2 contracting (Figure 2). Assume that the z
direction is expanding, while the z and y directions are contracting. (We
assume, for simplicity of exposition and for ease of drawing, that these three
directions are roughly orthogonal, although in practice they need only be
resolvable from each other.) Then, analogous to the 2 dimensional argu-
ment, we draw cubes M; around the noisy points y;, and require that ¢(M;)
maps over M;,; so that ¢ stretches M; into a long, thin tube, a segment
of which lies wholly in M;, ;. Then, precisely as in the 2-dimensional case,

z @y;)

y|+1ﬁ

e = g 4

Mi Mi+l uu (p(M i)
A

Y { ,
C LA T

Fig. 2. Containment in 3D, case (i): 1 expanding direction and 2 contracting.

we introduce a curve -; that runs approximately along the expanding (ver-
tical) direction from any point on the top of M; to its bottom. If (M)
maps over M;,; as in Figure 2, then we are guaranteed that a contiguous
section of ¢(;) lies inside M; 1, connecting its top and bottom along the
expanding direction. This becomes 7;,1, and by induction vy lies inside
My, and any point xy on it can be traced backwards to a point x; € M;
fori=0,1,...,N — 1.

2 expanding and 1 contracting direction (Figure 3). Assume now that the z
(vertical) direction is contracting, while the x and y directions are expand-
ing. We again draw a cube M; around each noisy point y;, except now ¢(M;)
maps over M, so that ¢ flattens M; into a thin slice, cutting M;,; into
3 pieces, the middle piece of which contains a contiguous section of ¢ (M;).
Now, 7; must be a surface, whose boundary connects all of the expanding
sides, so that under the mapping, ¢(7;) is stretched in all the directions it
has extent (both horizontal directions), and is “compressed” along the di-
rection it has measure zero (vertical). Then, we are guaranteed that there is
a contiguous segment of ¢(;) lying wholly in M;,; and connecting all of its
expanding sides. We call this surface 7,11, and by induction 7y lies wholly
within My, and any point on 7y, traced backwards to a point x; € M; for
1=0,1,...,N —1.

11
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Fig. 3. Containment in 3D, case (ii): 2 expanding directions and 1 contracting.

It seems intuitively clear that we can replace “cube” with “n-cube”, “surface”
with “manifold”, and the above argument still applies in arbitrarily high di-
mension, although the proof has been elusive (Hayes, 2001; Hayes and Jackson,
2003). The crucial points appear to be that v has dimension equal to the num-
ber of expanding directions, and that its border must “wrap around” all the
expanding sides of M;.

3.2  Refinement

Refinement (Hammel et al. 1987; 1988; Grebogi et al. 1990; Quinlan and
Tremaine 1991; 1992; Hayes 1995) is a numerical procedure similar to Newton’s
Method (and also analogous to iterative improvement methods for solving lin-
ear systems (Golub and Van Loan, 1991)) that takes a noisy orbit as input
and attempts to produce a nearby orbit with less noise, 7.e., one with smaller
one-step errors. A refinement iteration is successful if before the iteration the
trajectory has noise tightly bounded by ¢°, after the iteration it has noise
tightly bounded by 4, and §' < pud° for some practical p € [0, 1). Otherwise
the refinement iteration is unsuccessful. Here, a “practical” yu is one that will
allow a noisy trajectory to be refined to noise levels near the machine precision
in a small number of refinement iterations.

The refinement procedure of GHYS is analagous to Newton’s method for find-
ing a zero of a function. GHYS presented their method for the two-dimensional
case. (The basic idea was described immediately following Theorem 1.1.) As-
sume we have a noisy n-dimensional orbit Y = {y;}¥,, y; € R", and it has a
shadow {x;}¥,, x; € R™. Then x;,; = ¢(x;) and y; 11 = &(y:) = ¢(y:) +€ir1,
where ¢ is an approximation to ¢ with noise bounded by §. Now suppose we
approximate the one-step errors €;;1 = y;11 — ©(y;) using a method with
noise significantly less than §. Let ¢; = x; — y; represent a correction term
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that perturbs y; towards x;. Then

Cit1 = Xiy1 — Yig1 = ©(Xi) — 0(¥i) — €1 = Do(y:)€ —eiy1 + O(||éz||2) 9)

In the spirit of Newton’s method, we ignore the O(||¢;||?) term, and so one
refinement iteration defines the corrections along the entire orbit:

i1 := Do(yi)c; — ey (10)

For a discrete map, Do(y;) is just the Jacobian of the map at step i. For a
system of ODEs, Dy(y;) is the Jacobian of the solution of the ODE from step
1 to step 7 + 1. For simplicity of explanation, we assume an n = 2 dimen-
sional problem for the remainder of this subsubsection. For a generalization
to arbitrary n, see Quinlan and Tremaine (1992) or Hayes (1995).

If the problem did not display pseudo-hyperbolicity, then the correction terms
c; could be computed directly from (10). But since D¢ displays an approx-
imate exponential dichotomy, it tends to amplify any numerical errors in c;
not lying in the stable direction. Thus computing the c;’s by iterating (10)
forward will amplify errors and typically produce nothing but noise; iterating
backwards suffers the same problem. Therefore, GHYS split the error and cor-
rection terms into components in the stable (s;) and unstable (u;) directions
at each timestep:

€; = €4, U, + €g,54, C; = Cy; Uy + Cs,;S;- (11)

Since it is not known a priori which direction is unstable at each timestep,
the unstable vector ug at time % is initialized to an arbitrary unit vector. The
linearized map is then iterated forward with

Ui = Do(yi)wi,  Wipr = Bipr/[[ @ ]]. (12)

Since Dyp(y;) magnifies any component that lies in the unstable direction, and
assuming we are not so unlucky to choose a ug that lies too close to the stable
direction, then after a few iterations u; will point roughly in the unstable
direction at t;. Similarly, the stable unit direction vectors s; are computed
by initializing sy to an arbitrary unit vector and iterating backward with
s; = Dp(y;)"!s;;1 and s; = §;/||8;]|. Substituting (11) into (10) yields

CuipWit1 + Csiy1Si+1 = D(p(Yi)(cwui + Csisi) - (eu¢+1ui+1 + 68¢+1Si+1)' (13)

While Dy(y;) magnifies errors in the unstable direction, it damps them in the
stable direction. Likewise, Dy(y;)~! damps errors in the unstable direction
and magnifies errors in the stable direction. Thus the ¢, terms should be
computed backward, and the ¢, terms forward. Taking components of (13) in
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the unstable direction at step 7 + 1, we iterate backward on

Cy; = (CuH.l + eui+1)/||ﬁi+1||7 (14)

and taking components in the stable direction, we iterate forward on
Csipr1 — ”D(p(Yi)si”CSi — €sipq- (15)

The initial choices for ¢y, and c,, are arbitrary as long as they are small
— smaller than the maximum shadowing distance — because (15) damps
initial conditions and (14) damps final conditions. GHYS and QT choose them
both as 0. This choice is probably as good as any, but it can be seen here
that, if one shadow exists, there are infinitely many of them (because a small
enough perturbation of the initial condition of one shadow produces another).
Another way of looking at these initial choices for ¢y, and c,, is that they
“pinch” the growing components at the end point, and the backward-growing
components at the initial point, to be small. That is, boundary conditions are
being forced on the problem so that the exponential divergence is forcibly
masked, if possible, making the solution of (10) numerically stable.

The refinement algorithm of GHYS as originally presented (Hammel et al.,
1987, 1988; Grebogi et al., 1990) was not rigorous; if it worked at all, it only
produced a new pseudo-trajectory with less noise than the original. Refinement
was made rigorous by Sauer and Yorke (1991) with the following theorem:

Theorem 3.1 (Sauer and Yorke (1991)) Let Y = {y;}¥, be an n > 2
dimensional §-pseudo-orbit of the map @. Assume further that the local stable
and unstable subspaces, S; and U;, respectively, at each step are known to a
tolerance of §. Let 0; be the angle between the stable and unstable subspaces
at step i. Let ||Dp(z)|| < rillz|| for z € S;, and let | Dp(z) Y| < ti||z| for
z € U;yy. Let Cy = Dy = 0, and recursively define C;11 = csc ;11 + r;C; for
1=0,...,N=1and D;_y = cscO;_1+t;_1D; fori =1,...,N. Let B be a bound

—1
on Do, D™, D*p, and D*¢™". If § < 55 and max{C;, D;} < (n5/2B2\/5)
for alli=0,...,N, thenY has an e-shadow of ¢ such that € = /3.

The proof of the theorem (see Sauer and Yorke (1991), Theorem 3.3) is con-
structive, in the sense that it uses the procedure for refining noisy orbits
originally given in Hammel et al. (1988). The essential point of the proof is to
show that under the conditions of the theorem, the iterated application of the
refinement procedure beginning with the pseudo-orbit results in a sequence of
refined pseudo-orbits with decreasing noise level whose limit is an exact orbit.
Furthermore, the exact orbit is not too far from the original pseudo-orbit.

Sauer and Yorke (1991) considered this theorem as a justification for the non-
rigorous refinement procedure. Conversely, QT argued that if the refinement
algorithm fails then there is good reason to believe that no shadow exists, for

14



two reasons. First, from the more rigorous study of simpler systems, glitches
are known to exist and are not just a failure of any particular refinement al-
gorithm. Second, QT’s results are consistent with a conjecture by GHYS on
the frequency of glitches. However, there is no guarantee that refinement con-
verges towards an exact orbit. In fact, even if some refinements are successful,
numerical refinement alone does not prove that an ezact shadow exists; it only
proves the existence of a numerical shadow, i.e., a trajectory with less noise
than the original. Hayes (1995) frequently saw cases in which the refinement
algorithm failed to find a numerical shadow for noisy orbits of length /N, but
succeeded in finding a numerical shadow for the superset of length 2/NV. Hence,
the algorithm failed to find a numerical shadow of length N, even though one
clearly exists. On the other hand, refinement can iterate indefinitely without
converging and without “blowing up” (Hayes, 1995), implying the local errors
cannot be decreased and that no shadow exists. This leads us to ask the ques-
tion of whether convergence to machine precision is enough: is it possible that
refinement, if continued in higher precision, would stop before converging to
an exact orbit (Hayes, 1995)7 Despite these objections, we believe that refine-
ment to machine precision implies with reasonable probability that a shadow
exists whose length is comparable to that of the numerical shadow, although
this evidence should not be taken as conclusive.

If one is simply interested in studying high-dimensional systems, then a chaotic
map would be a more efficient test problem than an ODE system, because no
variational equation integration is needed. Hayes (1995) and Hayes and Jack-
son (1996) list several optimizations to the procedure that increase the speed
of GHYS/QT refinement by about two orders of magnitude. We note that the
GHYS/QT refinement algorithm is trivially parallelizable, since the computa-
tion of each Dyp(y;) is completely independent of all the others. For the same
reason, it also has excellent locality of reference in a serial implementation,
so virtual memory paging is minimized. Finally, we note that D%y has O(n?)
elements so, unless significant sparsity is present, actually applying Theorem
3.1 is impractical for any but small n.

3.8  Results by bounding non-hyperbolicity

The procedures of containment and refinement do not make explicit use of
the hyperbolicity of the system, although they work only if some measure
of hyperbolicity is present (Chow and Palmer, 1991). In contrast, Chow and
Palmer 1991; 1992 make explicit use of the hyperbolicity of the system, and use
the ideas of the traditional Shadowing Lemma (Anosov, 1967; Bowen, 1975;
Palmer, 1988) to estimate how far a shadow is from a pseudo-orbit. Chow and
Palmer (1991) discussed the one-dimensional case, and Hadeler (1996) made
explicit the relationship between the one-dimensional case and Kantorovich’s
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Theorem, which lays out conditions under which Newton’s method will con-
verge. We omit detailed discussion of the one-dimensional case because later
work by the same authors (Chow and Palmer, 1992) subsumes it, except to
note one very interesting fact: Chow and Palmer (1991) proved that in the
one-dimensional case, the shadowing distance not only has an upper bound,
but a lower bound as well. That is, they proved that the shadow must main-
tain a minimum distance from the noisy orbit; it cannot approach the noisy
orbit arbitrarily closely. It is not clear if this result is extendible to higher di-
mensions, nor is it clear exactly what the significance of this result is; however,
it is certainly interesting. Their multi-dimensional theorem follows.

Let ¢ : R® — R"™ be a C? function and let {y;}¥, be a d-pseudo-orbit
of ¢. Given any sequence (h;)¥,' in R™V, the difference equation z;,; =
Dy(y;)z; + h; has many solutions. So the linear operator L : RN+l — RN
defined for Z = {z;}X, by (LZ); = z;11 — Dy¢(y;)z; is onto and so has right
inverses. For the following theorem, we choose any such right inverse.

Theorem 3.2 Let ¢ : R" — R" be a C? function and let M = sup{||D*p(x)|| :
x € R"}. Let {y;}X, be a d-pseudo-orbit of ¢ with 2M||L™||?6 < 1, where
L™ is a right inverse of L. Then there is an ezact orbit {x;}~., of © such that

v 2L o .
||Xz YZ” S 1+\/1—2M||L_1||2(5, ] —0,-..,N.

Remark: Tt is not necessary to assume that D?p(x) is bounded over R™ because
usually y; would be restricted to a bounded set and M could be replaced by
a bound for ||D%p(x)|| over that set (Chow and Palmer, 1992). Although
the proof of the theorem (Chow and Palmer, 1992) is short and elegant, the
result is unfortunately of little practical use for large problems if no closed
form for D?y is available, because M can be extremely expensive to compute
numerically.

If ¢ is the local error made in computing the orbit, then |[L7!|| is called th
“magnification factor”, because ||L7!||§ is approximately the distance to the
shadow. Thus, the next step is to choose L™! in such a way that ||[L7!]| is
minimized. Not surprisingly, the best L~! to choose is one whose compo-
nents are as aligned as possible with the stable and unstable subspaces at
each step, computed in a fashion similar to the refinement algorithm. Finally,
computing an upper bound for ||L7!|| involves noting that even though the
orbit {x;} is not hyperbolic under ¢, it may be hyperbolic under ¢? (¢ iter-
ated p times) for some integer p > 1. If such a p is found, it allows explicit
bounds to be computed on the hyperbolicity constants for the orbit {x;} un-
der P using the ideas of the traditional Shadowing Lemma (Anosov, 1967;
Bowen, 1975; Palmer, 1988), leading to an upper bound on ||L™}||. Chow and
Palmer demonstrate their method on a d-pseudo-orbit of the Hénon map with
§ = 275 ~ 107155, For a particular orbit of N = 333, 000 iterates of the map,
they find that p = 40 guarantees hyperbolicity of the orbit under P and that
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IL7!|| < 113277 ~ 10°. This means that the shadowing distance is about 10°
times the size of the one-step errors, giving a shadow distance of about 107195,

This “magnification factor”, the ratio between the shadow distance and the
local error, is termed the “brittleness” of an orbit by Dawson et al. (1994) (also
called “modulus of continuity” and “condition number”). If the brittleness is
of order the inverse of the machine epsilon or larger, then all accuracy is lost as
the shadowing error is comparable to the size of the variables themselves. They
show that if the number of positive and negative Lyapunov exponents changes,
or if a Lyapunov exponent fluctuates about zero, then the brittleness can blow
up. The effect of a fluctuating exponent is depicted in Figure 4. However,

[
@e':'®"

Fig. 4. Fluctuating Lyapunov exponent in the “vertical” direction, reproduced from
Dawson et al. (1994). ¢ is the local error, and the vertical direction is initially
contracting, but then becomes expanding. (a) an ensemble of trajectories that starts
off in an e-ball is first compressed into a sheet. (b) If the local error steps outside this
sheet, and then the direction becomes an expanding direction, then (c) the numerical
trajectory diverges away from all exact trajectories that started in the original e-ball,
(d) possibly entering regions of phase space with qualitatively different behaviour
than the exact trajectories.

Dawson et al. (1994) make the strong claim that they believe this kind of
fluctuating Lyapunov exponent is “common” in high dimensional systems,
with the only justification apparently being that there are so many dimensions
that there must be a fluctuating exponent somewhere. Although this argument
is not formally compelling, it may have some merit. On the other hand, Hayes
and Jackson (1996) demonstrated numerical shadowing of a 180-dimensional
non-hyperbolic system, although that system was artificially constructed to
have pseudo-hyperbolicity.

Systems which possess such fluctuating Lyapunov exponents are termed hy-
perchaotic by Sauer et al. (1997). Let z; be the displacement from the pseudo-
orbit to the shadow at step i. Sauer et al. (1997) observe that the evolution
of z; with 7 is similar to a biased random walk. A glitch occurs when the
random walk pushes the numerical orbit further away from the shadow than
the hyperbolicity can correct for. They model the random walk formally as a
Kolmogorov diffusion process and demonstrate that the distribution of shad-
owing distances using this model closely resembles actual shadowing distance
distributions. Furthermore, they compute how often glitches occur, based on
the behaviour of the fluctuating Lyapunov exponent which is closest to zero.
They show that the expected time (7) for the shadowing distance to become
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the same size as the variables is proportional to (7) ~ 5 20/%  where A
and oy are the mean and standard deviation, respectively, of the fluctuating
Lyapunov exponent closest to zero. Finally, they demonstrate that when the
fluctuations are sufficiently badly behaved, the length of the shadow is virtu-
ally independent of the local error — in other words, in a sufficiently badly
behaved system, the shadow length will never get very long for any practical
local error.

Methods have also been developed to shadow one-dimensional lattice maps,
typically discretizations of partial differential equations (Chow and Van Vleck
1993; 1994b), and for problems that are piecewise hyperbolic in which the
number of stable dimensions is monotonically increasing with time (Chow

and Van Vleck, 1994a).

4 Shadowing algorithms designed explicitly for ODE systems

There is a fundamental difference between a discrete map, whose shadows
were discussed above, and a discrete solution to an ODE. Local errors of
the former are restricted to being “space like” — there is no notion of the
passage of time between iterations of the map. The latter, however, can have
errors in space as well as time. The numerical error in the length of each
timestep can accumulate, leading the numerical solution to have a slightly
different time scale than the real system. In the integration of periodic or
almost periodic systems like the solar system, this is also known as phase
error, because the numerical solution may have a slightly different period than
the exact solution. Thus, although the orbit of a planet may be reproduced
correctly by the numerical trajectory, the time at which a real and simulated
planet pass through a fixed plane perpendicular to the orbit may differ. This
is the case even if the integrator is symplectic (Gonzalez and Stuart, 1999).
Thus, when attempting to shadow a numerical solution of an ODE, it may
be necessary to “rescale” time (Coomes et al. 1994b; 1995a; 1995b; Van Vleck
(1995); Hayes (2001); Hayes and Jackson (2003)). To take this into account,
we redefine a shadow of an ODE system as follows:

Definition of ODE shadowing: A pseudo-trajectory Y = {y;}~, with timesteps
{h Y, is e-shadowed by an exact trajectory X = {x;}Y, with timesteps
{35 if x40 = @r, (%), where ||y; — x| < ¢, and |h; — 73] < .

Remark: In the above definition, we assume that € < h;, that is, the shadowing
distance is significantly smaller than the timesteps. In practice, this appears
sufficient for the systems we have studied. If this were not the case, the above
definition could be modified to include some notion of global time error per-
unit-step.
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In other words, the numerical trajectory is shadowed if it closely follows the
path of an exact solution, but at time ¢ it is allowed to be a little ahead of
or behind the exact solution. This linear growth of time errors is due to a
lack of hyperbolicity in the direction of the flow in phase space (Van Vleck,
1995). For large |t — to| this can be a significant difference, so a shadowing
method which does not take the rescaling of time into account is likely to
grossly underestimate the length of the shadow. Coomes et al. 1994b; 1995a;
1995b dramatically demonstrate this when they show that a rescaling of time
allows the Lorenz equations to be shadowed for almost 10° time units, while
the map method, which does not rescale time, finds shadows lasting only 10
time units—an astounding increase in shadow length of a factor of 10*

Finally, note that the non-shadowable example given in the tutorial (y” = 0)
s shadowable if time is rescaled. This matches what our intuition would say:
as long as we care only about qualitative properties of the solution, it should
not matter if the numerical trajectory traverses the path at a slightly different
velocity than the exact solution, as long as the trajectories, taken as a whole,
remain near to each other.

4.1 Explicitly rescaling time in Newton’s method

Errors in time manifest themselves as errors directed along the direction of
y’, and so one way to account for these errors is to explicitly perturb the
noisy solution along the y’ direction. These perturbations translate back into
a rescaling of time. To this end, Van Vleck (1995) proves a theorem similar to
that of Chow and Van Vleck 1993; 1994b in which time is explicitly added to
the variational equation of the one-step error function. To wit, if Y = {y;}~ is
a d-pseudo trajectory with associated timesteps {h; }iy!, then let z; = (y;, h;)
and Z = {z;}Y, and compute the one-step error by g(Z); = yir1 — ©n,(¥i)-
Then the first variational equation Dg(Z) : R"¥*+) x RY — R"" including
the effects of time is

(Dg(2)AZ); = Ay — 220y, g20000) ),

9y oh;
Opn, (yi
= yips - 22y, — 07, ) A

where 6 is a user-input parameter controlling the amount of time rescaling
which is allowed. (This is the only place in this survey where D¢y includes a
differentiation with respect to h;. It is this term which allows a rescaling of
time by allowing an adjustment along y’.) More formally, we are changing the
norm with respect to which the variation is performed: # = 0 corresponds to
the norm in which variations with respect to time are not considered at all,
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whereas 6 = 1 corresponds to the norm in which variations with respect to
time are fully considered. Choosing 6 € [0, 1] allows the scale of variations in
time to be different from the scale of variations in space, which is precisely
what we need in order to perform a rescaling of time. Then we have the
following theorem.

Theorem 4.1 (Van Vleck (1995)) Given constants 6,¢ > 0 and n > 0
suppose L is an approzimation to Dg(Z) such that

(1) a right inverse L™ of L satisfies ||L7| < c.
(ii) ||L~t — Dg(Z) || < n for some right inverse Dg(Z)~* of Dg(Z).

Assume that ||g(Z)|| < 6 and let € :== 26(n + ¢). If ||Dg(Z) — Dg(W)|| <
1/(2(n+¢)) for |W — Z|| < €, then g has a solution W of g(W) = 0 such
that |W — Z|| < e.

For problems that lack hyperbolicity in the direction of motion, Van Vleck
(1995) demonstrates that non-zero values of # are capable of finding shadows
between 10 and 100 times longer than if § = 0, with shadow lengths for
the Lorenz system lasting up to about 10* time units. However, good values
for # must be found by trial and error, and forcing # to be constant for all
timesteps—which forces the rescaling to be similar across all timesteps—may
also restrict its applicability.

4.2 Implicitly rescaling time

Coomes et al. 1994b; 1995a build a hyperplane H; perpendicular to f(y;)
and containing y;, and then find a sequence of points x; € H; such that
Xi+1 = ¢n(x;) and |, — h;| < e. (See Figure 5.) In this way, they avoid
having to find 7; explicitly, as opposed to Van Vleck (1995) who computes

i)

ey

Fig. 5. Pseudo-orbit y; and the shadowing orbit x; in hyperplane H; (Coomes,
Kocak and Palmer 1994).
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the 7; explicitly. The statement of their theorem requires some introductory
notation.

Let Y = {y;}¥, be a é-pseudo orbit with associated stepsizes {h;};rp'. Also
suppose that we have a sequence {Y;}Y ' of n x n matrices such that ||¥; —
Doy, (yi)|| <6, i=0,...,N—1. Now, let S; be an nx (n—1) matrix chosen so
that its columns form an a]most—orthonormal basis for the subspace orthogonal
to £(y;), |[STE(y:)|| < 61, ||SES;—1I|| < 61, for some positive number §;. Now,
we compute (n—1) x (n — 1) matrices A; satisfying ||4; — ST, Y;S|| < 61, i =
0,...,N — 1. Geometrically, A; is Y; restricted to the subspace orthogonal to
f(y;) and then projected to the subspace orthogonal to f(y;;1). Next, define
a linear operator L : (R D)+ — (RN in the following way: If
E = {&}Y, isin (RD)PHD then we take LE = {(LZ);}," where (LE); =
&1 — A&, 1=0,...,N—1. The operator L has right inverses and we choose
one such right inverse L™!. Let U be a convex subset of R™ containing {y;}~,
in its interior. For such U, we define

Mo =sup [[f(x)[l, M, =sup|DEf(x)|l, M, =sup|D*(x)].
xeU xeU xeU
Then we define
h= sup h;, h= iof h,.

0<i<N—-1 0<i<N-1
Next, we choose a positive number ¢y < A such that for i =0,...,N —1 and
all x satisfying ||x — y;|| < €0, the solution ¢;(x) is defined and remains in U
for 0 <t < h; + g¢. Finally, we define

My = inf [[f(yi)ll, Mo= sup [[f(y;)ll, M= sup [[Df(y;), ©=

0<i<N 0<i<N 0<i<N

Then, we have the following theorem.

Theorem 4.2 (Coomes et al. (1994b)) Let
C:max{M O ILY (1 +6) + 1), |IL- 1||\/1+51}

o = C((My + /14 6,)6 + (30,(\/1 + 6, + M) /(1 — 6,(1 + M?)),

sup
0<i<N—1

M = (M,+Msyvo) (MO + Myus + 2eMiteo), /1 4 51) + My (hteo) (146, )e2Mi (o),

where v = 20 (eM(+20) /T + 5,4+ M) (1—0u) "' +1. If these quantities together
with 0, 81 and €y satisfy the inequalities (i) §;(1 + My?) < 1 (i) 6u < 1 (idi)
2C(1—6m) 101+ 01 < &g (iv) 2MC?(1 —6m) 25 < 1, then Y is e-shadowed
with shadowing distance ¢ < 2C(1 — ) '6v/1 + 4;.

Coomes et al. use a Taylor series integration method with interval arithmetic
(see, for example, Nedialkov (1999)) to produce a rigorously bounded local
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error of their numerical trajectory, and also require the computation of an
integer p identical to the p in Chow and Palmer (1992).

As Coomes et al. state, “Admittedly, the statement of the theorem seems
rather imposing.” The requirement that the bounds M;, M;, and M, be over
the entire convex set U containing the pseudo-trajectory can probably be
weakened to be over a “tube” surrounding the trajectory, making it more
applicable to problems like the n-body problem that contains poles. The bound
on the second derivative of f over U could be very expensive to compute if a
closed form bound is not available. However, requiring bounds on the first and
second derivatives of f is a significant improvement over requiring bounds on
the first and second derivatives of ¢, as required by Theorem 3.1. For a local
error of about 1073, Coomes et al. were able to find shadows for the Lorenz
system lasting 10° time units, with a shadowing distance of about 10~°.

4.8  Rescaling time in containment

Hayes (2001) and Hayes and Jackson (2003) use an idea similar to Coomes
et al. 1994b; 1995a as depicted in Figure 5 (although the proofs are pro-
foundly different), inspired by the idea of the Poincaré section, also known as
a Poincaré map or return map. To rescale time for containment, the idea is to
place a plane H; in the vicinity of the solution at time ¢;, placed so that H;
is approximately perpendicular to y'(¢;), and prove that the solution passes
through H; precisely once during some short time interval surrounding ¢;.

To facilitate containment, the idea of the Poincaré section must be gener-
alized to encompass a small ensemble of solutions. To that effect, take a set
M;_ 1 C H;_1, where the diameter of M;_; is small, and place a plane H; in the
vicinity of ¢p, ,(M;_1). Then define the Poincaré section of the set ¢p,, | (M;_1)
pointwise as follows. Let Ah;_; bound the time interval over which the en-
semble ¢y, (M; 1) crosses H;; i.e.,

Vx € M;_13h € [hi_1 - Ahi_1, hi—1+ Ahi_l] s.t. (ph(X) € H,,

assuming that for each x, the h chosen is unique. That is, take the point-by-
point Poincaré section of the points in M;_; with respect to the plane H;. This
is called a splash operation (Hayes, 2001; Hayes and Jackson, 2003), because we
imagine that the points in M;_, evolving via ¢y, for h € [h;_1 — Ah;_1,h;_1 +
Ah; 1], “splash” through H; approximately simultaneously, and we assume
that each trajectory intersects H; precisely once during that interval. See
Figure 6.

This allows us to build the parallelepipeds M; inside H;, and then show that
the point-by-point Poincaré section at H;, ¢.e., the splash operation, is a home-
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@n, (M)

Fig. 6. The “splash” operation depicted for a two-dimensional ensemble evolving in
a three-dimensional configuration space. M;_1 is embedded in the plane H; ;, and
evolves through one timestep to ¢, ,(M;_1). As depicted, the ensemble is about
to splash through H;.

omorphism. This then allows direct application of the containment theorems
detailed earlier. Namely, we apply the containment theorems to the n — 1-
dimensional M;’s which are each contained in the n—1-dimensional hyperplane
H;, for an ODE system of n equations.

4.4 Periodic shadowing

The problem of errors in time is exacerbated when attempting to shadow
periodic solutions of ODEs, because any non-zero error in time is repeated ad
infinitum. Thus, a rescaling of time is absolutely necessary to shadow periodic
solutions of ODEs. The idea for shadowing periodic solutions is simple. Given
a pseudo-trajectory {y;}~¥, with timesteps {h;}i,', We require not only that
the local error ||y;+1 — ¢n,(y:)|| is small, but also that ||yo — ¢ny(yn)|| is
small. This gives a periodic pseudo-orbit. Then, only minor modifications are
required to non-periodic shadowing theorems to produce a periodic shadowing
theorem (Beyn, 1987; Van Vleck, 1995; Coomes et al., 1994a). It is also possible
to use refinement-like algorithms to produce accurate pseudo-trajectories from
remarkably inaccurate ones, allowing one to prove the existence of very long

periodic trajectories (Coomes et al., 1997).

4.5  Shadowing conservative integrations

Much attention has recently been devoted to integrators that preserve vari-
ous quantities such as symplectic structure (Channell and Scovel, 1990; Sanz-
Serna, 1992) and energy (Gonzalez and Stuart, 1999; Shadwick et al., 1999).
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Coomes (1997) demonstrates that such integrations are often shadowable. In
particular, if M is the submanifold of interest (e.g., symplectic manifold or
energy surface) on which the initial condition y, lies, then a shadow of the
pseudo-orbit Y = {y;} ¥, exists in M if Y has sufficiently small local error,
remains close to M, avoids the neighborhood of fixed points of f, and the
variational equation along Y exhibits sufficient hyperbolicity. This is a very
significant result for problems in which such submanifolds occur, most notably
Hamiltonian systems.

5 Example application: the gravitational n-body problem

As mentioned previously, a numerical simulation of the gravitational n-body
problem is an ideal candidate system to attempt to shadow, because the math-
ematical model is so well understood and is a virtually perfect description of
the real system. In such a system, the existence of a shadow is a strong prop-
erty: it asserts that a numerical solution can be viewed as an experimental
observation of an exact solution. As such, within the “observational” error,
the dynamics observed in a numerical solution that has a shadow represent
the dynamics of an exact solution. Furthermore, most studies of dynamical
systems do not aim to predict the precise evolution of a particular choice of
initial conditions. Instead, the dynamics of the system is sampled in order
to study its general behaviour. In such cases, initial conditions are typically
choosen from a random distribution and we would be happy if a numerical
solution exhibited behaviour typical of any valid choice of initial conditions
from the distribution. In particular, we may be satisfied if the numerical so-
lution closely follows some exact solution whose initial conditions are close to
those that were chosen.

However, as mentioned previously, shadowing is extremely expensive. Thus,
shadow searches can only be performed on simplified systems. Quinlan and
Tremaine (1992) performed the first experiments on shadowing a single parti-
cle moving in a potential of 99 fixed particles, and demonstrated the particle
could orbit the system as many times as a full simulation would rotate, while
still having a shadow. Hayes (2003) studied how this result changes as the
number of moving particles M increases, and found that if the gravitational
potential is “softened”, shadow durations tend to decrease with M slowly
enough that shadows of large N-body simulations may exist for nontrivial du-
rations of time. Hayes (2003) also demonstrated that M one-moving-particle
systems can be used to approximately predict the shadow duration of an M-
moving-particle system. This was done by postulating that a glitch in the large
system occurs when one of its moving particles encounters a glitch local to
its own trajectory, and then showing that the same process can be approx-
imated by superimposing M one-moving-particle trajectories and taking the
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menimum shadow duration of those trajectories. The approximation is excel-
lent for unsoftened systems, and reasonable for softened ones. This reduces
the amount of computation required to study shadows of large systems from
O(M?3) to O(M), which greatly facilitates the study of large systems. (Hayes,
2002) then used this conclusion to perform an extensive study of the depen-
dence of shadow lengths on various simulation parameters, and demonstrated
an explicit statistical relationship between simulation accuracy A, the number
of particles N being simulated, and average shadow length L. Thus, given N
and a desired shadow length L, one can pre-compute the accuracy required
for that simulation to have an expected shadow length of L. To this author’s
knowledge, the n-body problem for large n represents by far the largest system
of equations to which shadowing methods have been successfully applied.

6 Are shadows typical of true orbits chosen at random?

The presence of a shadowing orbit does not imply that the statistical properties
of a numerical orbit having a shadow are typical of those of true orbits chosen
at random; the shadowing orbit might be atypical (Quinlan and Tremaine,
1992). This is a key open question remaining regarding the use of shadows as
a measure of error.

For example, consider the binary shift map x;,; = 2x; mod 1. Iteration on a
computer that uses binary floating point arithmetic always results in z; = 0
after a finite (and relatively small) number of iterations. Although {z; =
0}¢2,, for some m is a valid exact orbit, it is highly atypical, with misleading
statistical properties (Farmer and Sidorowich, 1991). Fryska and Zohdy (1992)
proved that numerical simulation of a simple piecewise linear ODE sometimes
produces solutions with substantially different statistical properties than the
closed-form solution. This idea is taken further by Corless (1994b) (see also
Corless (1992a)), who studies the Gauss mabp,

Glz) = 0, ifzx =0, (16)

27! mod 1, otherwise.

This well-known map has several properties which make it very interesting,
especially from the shadowing viewpoint (Corless, 1994b):

1. The orbit {x;} (where z;41 = G(x;), i = 0...00) of every rational initial
point xg goes to zero in a finite number of iterations. The rationals are dense
in [0,1].

2. An orbit is ultimately periodic if and only if it starts from a quadratic ir-
rational or, trivially, a rational initial point. Quadratic irrationals are roots
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of quadratics with integer coefficients, and are dense in [0,1]. Like the ratio-
nals, they are countable, and hence of measure zero. There are an infinite
number of orbits with each period.

3. The map is ergodic, meaning almost all initial points have orbits that are
dense in [0,1].

4. The Lyapunov exponent of this map is, for almost all initial points, 72/(6 log 2) ~
2.3731, but is undefined for rational initial points and is different for each
quadratic irrational initial point.

As Corless (1994b) states, we see that there are “formidable numerical difficul-
ties in simulating this map.” From point #1, we see that unless our numerical
orbit goes to zero in a finite number of iterations, it is not representing the
properties of the exact orbit starting at our (numerically represented) initial
point. Since any numerical orbit must ultimately be periodic, and if our nu-
merical orbit does not converge to zero, we see from point #2 that we can
only shadow periodic solutions whose initial points are unrepresentable. From
point #4 we see that a numerically computed Lyapunov exponent may be
completely unrepresentative of almost all orbits. Paradoxically, the numeri-
cally computed Lyapunov exponent does give a good approximation to the
almost-sure value. In fact, a very strong shadowing result can be proved (Cor-
less, 1992a, 1997). However, from point #2, we see that, ultimately, we can
shadow only periodic orbits, and thus the shadow that follows our numerical
solution has a quadratic irrational initial point, and thus does not have a dense
orbit (point #3) or the “correct” Lyapunov exponent. The final resolution of
this paradox must account for the fact that the true shadowing orbit behaves
like a typical orbit, even though it is not. An analysis of this behaviour is
provided by Corless (1994b), based upon Géra and Boyarsky (1988).

On the other hand, Géra and Boyarsky (1988) showed that long pseudo-
trajectories of a one-dimensional map 7 satisfying some special properties
have densities which approach that of 7 itself. This is an exciting result, and
if it can be generalized to continuous systems of arbitrary dimension, it may
go a long way towards answering the question of whether shadows are typical
of true orbits chosen at random.

A weak result concerning this question can be abstracted from Coomes et al.
(1997). The paper is chiefly concerned with shadowing long periodic orbits,
and they use the Lorenz equations as their example. Long-term solutions to
the Lorenz system are confined approximately to two disks in three-space,
and solutions generally jump between the two disks chaotically. If a revolution
around one disk is labelled ‘0’ and a revolution around the other is labelled
‘1’, Coomes et al. (1997) demonstrated that they were able to build pseudo-
trajectories with an arbitrary sequence of ‘0O’s and ‘1’s, and then prove the
existence of periodic shadows for these pseudo-trajectories. This eliminates
at least one simple kind of bias: if we assume that true periodic orbits of
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the Lorenz system chosen at random can produce arbitrary sequences of Os
and 1s, it appears that we can build pseudo-trajectories that possess each
sequence, and so shadows of the Lorenz system are not biased in such a way
as to disallow certain sequences. PalmerStoffer99 (1999) demonstrate a similar
result for the Hénon map.

Note that if shadows are generally atypical of true orbits chosen at random,
then the properties of the original pseudo-trajectories that produce the shad-
ows are also atypical. This conclusion would have grave implications for the
vast quantities of literature over the past several decades that have stud-
ied problems numerically. If otherwise reliable-looking pseudo-trajectories are
atypical, they must be atypical in an extremely subtle way, because researchers
have been making apparently reliable, self-consistent, peer-reviewed conclu-
sions based on numerical simulations for decades. Considering that shadowing
is only one of many available methods of error analysis, it would be very
surprising (to say the least!) if shadows and their otherwise reliable-looking
parent pseudo-trajectories were atypical in a substantial way. This does not
mean that the problem should not be studied, of course; the apparently small
chance that pseudo-trajectories are substantially atypical is balanced by the
importance of proving that they are not.

Finally, we would like to point out that similar criticisms can be levelled
against all forms of backward error analysis. For example, defect analysis says
that the solution obtained by a defect-controlled method is the exact solu-
tion to a nearby problem in which the right-hand-side of the ODE suffers a
small time-varying perturbation. We can then ask, “Is this slightly perturbed
problem typical of nearby problems chosen at random?” Or even more point-
edly, we can ask if the perturbations are typical of perturbations suffered by
a real-life system? We argue in subsection 1.1 that the answer is sometimes
“no”. This criticism can also be levelled at the method of modified equations.
Even symplectic integrations, which have received much attention recently,
suffer the same problem: a solution to a Hamiltonian problem integrated with
a symplectic integrator is guaranteed to be exponentially close to the exact
solution of a nearby Hamiltonian problem; but is that nearby Hamiltonian
problem typical of (pertinent) nearby Hamiltonian problems chosen at ran-
dom?

This discussion illustrates that answering the question, “Are shadows typical
of exact solutions chosen at random?” may be very difficult, and that to be
fair, we must ask similar questions of other forms of backward error analysis.
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