
Mon. Not. R. Astron. Soc. 386, 295–306 (2008) doi:10.1111/j.1365-2966.2008.13024.x

Surfing on the edge: chaos versus near-integrability in the system
of Jovian planets

Wayne B. Hayes�
Computer Science Department, University of California, Irvine, CA 92697-3435, USA

Accepted 2008 January 25. Received 2008 January 17; in original form 2007 October 18

ABSTRACT
We demonstrate that the system of Sun and Jovian planets, integrated for 200 Myr as an isolated

five-body system using many sets of initial conditions all within the uncertainty bounds of their

currently known positions, can display both chaos and near-integrability. The conclusion is

consistent across four different integrators, including several comparisons against integrations

utilizing quadruple precision. We demonstrate that the Wisdom–Holman symplectic map using

simple symplectic correctors as implemented in MERCURY 6.2 gives a reliable characterization

of the existence of chaos for a particular initial condition only with time-steps less than about

10 d, corresponding to about 400 steps per orbit. We also integrate the canonical DE405 initial

condition out to 5 Gyr, and show that it has a Lyapunov time of 200–400 Myr, opening the

remote possibility of accurate prediction of the Jovian planetary positions for 5 Gyr.

Key words: celestial mechanics – ephemerides – Solar system: general.

1 I N T RO D U C T I O N

Both the man of science and the man of art live always at the edge of mystery,
surrounded by it. Both, as a measure of their creation, have always had to
do with the harmonization of what is new with what is familiar, with the
balance between novelty and synthesis, with the struggle to make partial
order in total chaos.

J. Robert Oppenheimer

When one speaks of the stability of our Solar system, one must

carefully define the meaning of ‘stable’. We say that the Solar system

is practically stable if, barring interlopers, the known planets remain

gravitationally bound to the Sun and suffer no close encounters be-

tween themselves or the Sun, over the main-sequence lifetime of the

Sun. In a practically stable Solar system, the orbital eccentricities,

inclinations and semimajor axes of all the planets remain within

some bounded region, not too far from their present values. In this

sense, work by many authors over the past 15 yr has all but proven

that the Solar system is practically stable (Laskar 1994, 1996, 1997;

Ito & Tanikawa 2002). Good reviews exist (Lissauer 1999; Lecar

et al. 2001), and we will not discuss it further in this paper. A second,

more formal definition involves the question of whether the Solar

system is chaotic or not. In a chaotic system, nearby solutions tend

to diverge from each other exponentially with time, although in a

weakly chaotic system such as the Solar system, the exponential

divergence can be preceded by an initial period of polynomial di-

vergence. Let d(t) be the distance between two solutions, with d(0)

being their initial separation. Then d(t) increases approximately as

�E-mail: wayne@ics.uci.edu

d(0) eλt in a chaotic system, where λ is the Lyapunov exponent. The

inverse of the Lyapunov exponent, 1/λ, is called the Lyapunov time,

and measures how long it takes two nearby solutions to diverge by a

factor of e. A system that is not chaotic is called integrable or regu-

lar, and has a Lyapunov exponent of zero. A practical consequence

of being chaotic is that small changes become exponentially mag-

nified, so that uncertainties in the current positions of the planets

are magnified exponentially with time. Even though the Solar sys-

tem is practically stable, a positive Lyapunov exponent means that

uncertainties in the current positions of the planets are magnified to

the point that we cannot predict the precise positions of the planets

in their orbits after a few (or at most a few tens of) Lyapunov times.

KAM (Kolmogorov–Arnold–Moser) theory tells us that essen-

tially all Hamiltonian systems which are not integrable are chaotic.

An initial condition (IC) not lying precisely on a KAM torus will

eventually admit chaos, but with a time-scale that depends criti-

cally on the IC. Symplectic integrators (Channell & Scovel 1990;

Wisdom & Holman 1991; Sanz-Serna 1992) have many nice prop-

erties when used for long-term integrations of Hamiltonian systems,

such as conservation of phase-space volume, and bounded energy

error. However, the validity of symplectically integrated numeri-

cal solutions also depends critically upon the integration time-step

h, with the longevity of the solution’s validity scaling as ea/h for

some constant a (Benettin & Giorgilli 1994; Reich 1999). For linear

problems, the dependence is even stronger and manifests itself as a

bifurcation in the Lyapunov exponent, going discontinuously from

zero to a non-zero value (Lessnick 1996; Newman & Lee 2005 –

but see Rauch & Holman 1999). Since the Solar system is not

integrable, and experiences unpredictable small perturbations, it

cannot lie permanently on a KAM torus, and is thus chaotic. The
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operative question is the time-scale of the chaos. To compute the

time-scale accurately, we must be confident that the measured time-

scale is not an artefact of the integration method.

What is the Lyapunov time of the Solar system? Sussman &

Wisdom (1988) first demonstrated that the motion of Pluto is chaotic

with a Lyapunov time of about 20 Myr, corroborated over a longer

integration later by Kinoshita & Nakai (1996). Laskar (1989) per-

formed an averaged integration of the eight major planets (excluding

Pluto) and found that the Lyapunov time was about 5 Myr, with the

divergence dominated by that of the inner planets. Laskar (1990)

believed that secular resonances are the cause of the chaos in the

inner Solar system (but see Murray & Holman 2001), although he

did not believe the system of Jovian planets was affected by the

chaos displayed by the inner planets. Sussman & Wisdom (1992)

performed a full (non-averaged) integration of the entire Solar sys-

tem and confirmed Laskar’s 5 Myr Lyapunov time, and further

found that the system of Jovian planets by itself had a Lyapunov

time of between 7 and 20 Myr, although their measurement of the

Lyapunov time displayed a disturbing dependence on the time-step

of the integration. This dependence was later discovered to be due to

symplectic integration schemes effectively integrating a slightly dif-

ferent set of ICs; the effect can be corrected (Saha & Tremaine 1992;

Wisdom, Holman & Touma 1996), although it decreases with de-

creasing time-step.

Since there are no two-body resonances amongst the Jovian plan-

ets, the cause of the chaos between them was not understood until

Murray & Holman (1999) identified the cause as being the overlap

of three-body resonances. Murray & Holman (1999) also performed

Lyapunov time measurements on a large set of outer Solar systems

differing only in the initial semimajor axis of Uranus. They found

that their three-body resonance theory correctly predicted which

regions of ICs were chaotic, and which were not, at least over the

200-Myr integration time-span they used. For the ‘actual’ Solar sys-

tem, they found that the Lyapunov time was about 10 Myr. Guzzo

(2005) went on to corroborate the three-body resonance theory by

performing a large suite of integrations, numerically detecting a

large web of three-body resonances in the outer Solar system.

Murray & Holman (1999) noted that the widths �a/a of the indi-

vidual resonant zones was of order 3 × 10−6, so that changes in the

ICs of that order can lead to regular motion. They note, however, that

‘‘the uncertainties in the ICs, and those introduced by our numeri-

cal model, are comfortably smaller than the width of the individual

resonances, so [the outer] Solar system is almost certainly chaotic.”

Given that Guzzo (2005) has also detected many three-body reso-

nances consistent with Murry & Holman’s theory, it would seem at

first glance that chaos in the outer Solar system is a fact.

However, the conclusion that the isolated outer Solar system is

chaotic cannot be taken for granted. For example, it is known that

symplectic integration with too large a time-step can inject chaos

into an integrable system (Herbst & Ablowitz 1989; Newman et al.

2000). Although most authors verify their primary results by per-

forming ‘checking’ integrations with smaller time-steps, the check-

ing integrations are not always performed for the full duration of

the main integrations. This, combined with the fact that longer sym-

plectic integrations require shorter time-steps (Benettin & Giorgilli

1994; Reich 1999) means that one cannot assume that a time-step

good enough, for example, for a 100-Myr integration is also good

enough for a 200-Myr integration. There is currently no known

method for analytically choosing a short-enough time-step a priori,

and so the only method of verifying the reliability of an integra-

tion is to reperform the entire integration with shorter-and-shorter

time-steps until the results converge. Newman et al. (2000) used this

method to demonstrate that, for a given set of ICs, the Wisdom &

Holman (1991) symplectic mapping with a 400-d time-step (about

11 steps per orbit, a commonly quoted time-step) admits chaos, but

that the results converge to regularity for any time-step less than

about 100 d. However, many authors who find chaos have also per-

formed reasonable convergence tests, demonstrating that the chaos

does not always disappear at convergence.

There exists compelling evidence for the absence of chaos in the

outer Solar system. Laskar and others noted that when the entire

Solar system is integrated, the inner Solar system manifests chaos

on a 5-Myr time-scale, but the outer Solar system appears regular in

these integrations. Although Laskar’s approximate theory can over-

look some causes of chaos, there also exist full-scale integrations

that indicate the absence of chaos. Grazier et al. (1999) and Newman

et al. (2000) utilized an Störmer integrator with optimal local error

properties (see the description of NBI in Section 2) and performed 16

integrations of the Jovian planets lasting over 800 Myr, and found

no chaos. Varadi, Runnegar & Ghil (2003) performed a 207-Myr

integration of the entire Solar system, down to the effects of the

Moon both explicitly as a separate body, and implicitly using some

analytic approximations that well approximated the effects of the

explicitly integrated Moon. They placed a lower bound of 30 Myr

on the Lyapunov time of the system of Jovian planets.

We are thus left with the disturbing fact that, utilizing ‘best prac-

tices’ of numerical integration, some investigators integrate the sys-

tem of Jovian planets and find chaos, while others do not.

In this paper, we demonstrate that this apparent dilemma has a

simple solution. Namely, that the boundary, in phase space, between

chaos and near-integrability is finer than previously recognized. In

particular, the current observational uncertainty in the positions of

the outer planets is a few parts in 107 (Morrison & Evans 1998;

Standish 1998). Within that observational uncertainty, we find that

some ICs lead to chaos while others do not. So, for example, drawing

seven-digit ICs from the same ephemeris at different times, one finds

some solutions that are chaotic, and some that are not. Thus, different

researchers who draw their ICs from the same ephemeris at different

times can find vastly different Lyapunov time-scales.

2 M E T H O D S

With the exception of the two sets of ICs we have received from other

authors (Murray & Holman 1999; Grazier et al. 2005) and the set

included in MERCURY 6.2 (Chambers 1999), all ICs used in this paper

are drawn at various epochs from DE405 (Standish 1998), which is

the latest planetary ephemeris publicly available from Jet Propulsion

Laboratory (JPL). It has stated uncertainty for the positions and

masses of the outer planets of a few parts in 107. To ensure that our

integration agrees over the short term with DE405, we verified in

several cases that we can integrate between different sets of DE405

ICs, separated by as much as 100 yr, while maintaining at least seven

digits of agreement with DE405.

We integrate the system of Jovian planets using only Newtonian

gravity. The inner planets are accounted for by adding their masses

to the Sun and perturbing the Sun’s position and linear momentum

to equal that of the Sun–Mercury–Venus–Earth–Mars system. This

ensures that the resonances between the outer planets is shifted by

an amount that is second order in this mass ratio, roughly 3 × 10−11

(Murray & Holman 1999), which is far smaller than the uncertainty

in the outer-planet positions. We assume constant masses for all

objects and ignore many effects which are probably relevant over

a 200-My time-scale (see for example Laskar 1999). We account

for solar mass loss at a rate of ṁ/m ≈ 10−7 Myr−1 (Laskar 1999;
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Noerdlinger 2005), but note that we observe no noticeable difference

if we keep the solar mass constant.

To reduce the possibility that our results are dependent on the

integration scheme, we used three different numerical integration

methods to verify many of our results in this paper. First, we used the

MERCURY 6.2 package (Chambers 1999), with the Wisdom–Holman

(Wisdom & Holman 1991) symplectic mapping option (called MVS

in the input files). We used step sizes varying from 2 to 400 d.

Secondly, we used the NBI package, which contains a 14th-order

Cowell–Störmer method with modifications by the UCLA research

group led by William Newman (Grazier et al. 1995, 1996; Varadi

et al. 2003).1 NBI has been shown to have relative truncation errors

below the double precision machine epsilon (about 2 × 10−16) when

more than 1000 steps per orbit are used and the orbital eccentric-

ity is less than 0.5.2 More precisely, if the largest component of the

phase-space vector of the solution at time t has absolute value M, then

the local errors per step of each of the components are all less than

2 × 10−16M. Note that this means that the component-by-component

relative error can be significantly greater than the machine preci-

sion for components of the solution that are significantly less than

M, but all components have errors relative to M which are smaller

than the machine precision. Furthermore, the authors of NBI have

gone through great pains to ensure that the round-off error is unbi-

ased. We used a 4-d time-step for all NBI integrations, which gives

more than 1000 time-steps per Jupiter orbit. We have verified the

above ‘exact to double precision’ property by comparison against

quadruple precision integrations described below. Note that such

an integration is symplectic by default since it is equivalent the

locally exact solution rounded to machine precision. Furthermore,

except for the possibility of having the same property with a larger

time-step, this is practically as good an integration as is possible us-

ing double precision. In our 200-Myr integrations, NBI always had

relative energy errors and angular momentum errors of less than

2 × 10−11, with an average of about 2 × 10−12.

Our third integrator was the TAYLOR 1.4 package (Jorba & Zou

2005). TAYLOR 1.4 is a recent and impressive advance in integration

technology. It is a general-purpose, off-the-shelf integrator which

utilizes automatic differentiation to compute arbitrary order Taylor

series expansions of the right-hand side of the ordinary differential

equation (ODE). TAYLOR 1.4 automatically adjusts the order and step

size at each integration step in an effort to minimize truncation error,

and utilizes Horner’s rule in the evaluation of the TAYLOR series to

minimize round-off error. As the authors note, integration accuracy

is gained more efficiently by increasing the order of the integration

than by decreasing the time-step, since the accuracy increases ex-

ponentially with the order but only polynomially in the time-step.

Although TAYLOR 1.4 allows the user to specify a constant order and

time-step, we chose to allow it to use variable order and time-step

while providing it with a requested relative error tolerance equal

to 1/1000 of the machine precision, in order to produce solutions

which were exact to within round-off error. We found that TAYLOR 1.4

typically used 27th order with about a 220-d time-step, although or-

ders of 26th and 28th were observed, and time-steps varied between

about 200 and 240 d. We allowed TAYLOR 1.4 to choose its order

and time-step automatically, with the only constraint being that the

1
NBI is available at http://astrobiology.ucla.edu/∼varadi/NBI/NBI.html, or

by searching the web for ‘NBI VARADI’.
2 Note that these properties may be attainable with a larger time-step

(Goldstein 1996; Grazier 1997), but we did not test any other values of

time-step.

tolerance was set three orders of magnitude below machine preci-

sion. The fact that the solution is exact to machine precision over

such a long time-step guarantees that accumulated round off is by

far the smallest in the TAYLOR 1.4 integrations. Furthermore, Taylor

series integrators are extremely stable when applied to non-stiff

problems, with the radius of convergence increasing linearly with

integration order, and in our case the time-step is well within the

radius of convergence (Barrio, Blesa & Lara 2005). Finally, TAYLOR

1.4 allows the user to specify the machine arithmetic to use, in-

cluding software arithmetics. Out-of-the-box, TAYLOR 1.4 supports

the use of IEEE 754 DOUBLE precision (64 bit representation with a

53 bit mantissa), Intel extended precision [80 bit representation with

a 64 bit mantissa, giving a machine precision of about 10−19, acces-

sible as LONG DOUBLE when using GCC (GNU Compiler Collection)

on an Intel machine], the DOUBLEDOUBLE data type3 which provides

software quadruple precision in C++, and the GNU Multiple Pre-

cision Library, which allows arbitrary precision floating point num-

bers in C++. Most of our integrations using TAYLOR 1.4 used Intel

extended precision, which is almost as fast as double precision and

gives about 19 decimal digits of accuracy. Over our 200-Myr in-

tegrations using Intel extended precision, TAYLOR 1.4 typically had

relative energy errors of less than 8 × 10−14; the worst relative

energy error observed in any of our integrations was 2 × 10−13.

Integrations began with the Solar system’s barycentre at the origin

with zero velocity. After 200 Myr the barycentre drifted a maximum

of 3 × 10−10 au, while the z component of the angular momentum

was always conserved to a relative accuracy better than 3 × 10−14.

We also performed a suite of quadruple precision integrations, in

which energy and angular momentum were each conserved to at

least 26 significant digits over 200 Myr.

Now we analyse the error growth as a function of time for our

non-symplectic integrators, applied to a non-chaotic IC. One con-

sequence of having a solution whose numerical error is dominated

by unbiased round off (i.e. exact to machine precision) is that when

integrating a non-chaotic system, the total phase-space error grows

polynomially as t1.5. If the local error is biased (either by biased

round off, or due to truncation errors in the integration scheme),

then the total phase-space error grows as t2. (This is assuming that

the integrator is not inherently symplectic, as is the case with both

NBI and TAYLOR 1.4.) This is known as Brouwer’s law (Brouwer

1937). As noted above, we chose a time-step for NBI such that its

integration is dominated by unbiased round off. We tested TAYLOR

1.4 in Intel extended precision for similar properties by integrating

the system of Jovian planets for 200 Myr using various integration

tolerances up to and beyond the machine precision of 10−19, and

compared these integrations to a TAYLOR 1.4 integration that used

quadruple precision. In Fig. 1, we plot the phase-space separation

between the quadruple precision integration and several integrations

using Intel extended precision. We see that when the relative inte-

gration tolerance is set above the machine precision, the error grows

as t2 and is therefore truncation dominated. However, when the tol-

erance is set to 10−22 (about a factor of 1000 below the machine

precision), the error grows as t1.5, and is therefore dominated by

unbiased round off. This is consistent with TAYLOR 1.4 producing

results that are exact in Intel extended precision when given a local

relative error tolerance of 10−22, just as NBI produces exact results

in double precision when used with 1000 or more time-steps per

orbit. We see that after 200 Myr, the errors in the positions of the

planets are of order 10−5 au (in the case of non-chaotic ICs). This

3 Developed by K. Briggs (http://keithbriggs.info/doubledouble.html).
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Brouwer’s Law: Taylor 1.4’s error is roundoff-dominated at most stringent tolerance

tolerance=1e-12
tolerance=1e-14
tolerance=1e-16

6e-8*t**2
average of 14 tolerances of 1e-22

9e-9*t**1.5

Figure 1. TAYLOR 1.4 satisfies Brouwer’s law: when local tolerance is set

above machine precision of 10−19, phase-space error grows as t2 due to

biased truncation errors (upper three curves). However, with tolerance set

well below the machine precision, its result is exact (i.e. correctly rounded)

to machine precision, so that phase-space error grows only as t1.5 (lowest

curve).

translates into a phase error, or equivalently an observational error,

of substantially less than 1 arcmin. A comparison of our Fig. 1 with

fig. 2 of Grazier et al. (1999) at their 200 Myr mark also demonstrates

that TAYLOR 1.4 using Intel extended precision provides about three

extra digits of precision over NBI using double precision, as would

be expected when comparing 19-digit and 16-digit integrations. As

we show later (Fig. 7), the differences in orbital elements are even

smaller.

For comparison, we briefly mention the run-times of the integra-

tion algorithms. All timings are for a 2.8 GHz Pentium 4 processor.

As we shall see later, the largest time-step for which the MERCURY

6.2 integrations agreed with the others was 8 d; a 16-d time-step was

almost as good. Thus we compare the Wisdom–Holman mapping

with time-steps of 16 and 8 d to NBI with a 4-d time-step, and TAYLOR

1.4. In addition to the TAYLOR 1.4 extended precision (LONG DOUBLE)

timings used in this paper, we present its timings for standard IEEE

754 DOUBLE precision, for comparison to the other DOUBLE preci-

sion integrations. Table 1 presents the results. We found that the total

run-time was linearly proportional to the inverse of the time-step, as

would be expected. We note several observations. First, TAYLOR 1.4

is not competitive in terms of efficiency. However, note that TAYLOR

1.4 is a ‘proof-of-concept’ software package for general-purpose

integration of any system of ODEs, and it currently generates code

that can be quite inefficient. A carefully hand-coded TAYLOR series

integrator for Solar system integrations is far more efficient, and can

be competitive with the above codes (Carles Simo, personal com-

munication). Secondly, Wisdom–Holman with an 8-d time-step is

the fastest case among the integrations we tested that showed com-

plete convergence. Thirdly, Wisdom–Holman with a 4-d time-step

(51 h, not shown in the table) is slower than NBI with a 4-d time-

step. Finally, although we did not test NBI for convergence at time-

steps less stringent than 4 d, it is capable of maintaining the lead in

Table 1. Run-times for integrating the five-body system for 200 Myr on a 2.8 GHz Pentium 4 for MERCURY

6.2 (using the Wisdom–Holman integrator – ‘WH’) with time-steps of 16, 8 and 4 d; for NBI with a 4-d

time-step and TAYLOR 1.4 – ‘T’, in DOUBLE, LONG DOUBLE and DOUBLEDOUBLE (i.e. quad) precision.

Integrator WH 16 d WH 8 d WH 4 d NBI T DOUBLE T LONG DOUBLE T DOUBLEDOUBLE

Time (h) 13 26 51 40 100 150 (1 week) 1500 (2 months)

being more efficient than Wisdom–Holman with larger time-steps

(Goldstein 1996; Grazier 1997).

We will not directly measure the Lyapunov time in this paper,

since it is difficult to create an objective measure of the Lyapunov

time over a finite time interval. Formally, the Lyapunov time is

only defined over an infinite time interval. In practical terms, the

divergence is almost always polynomial for some non-trivial dura-

tion before the exponential divergence emerges, and it is difficult

to pinpoint the changeover objectively. However, when plotting the

distance between two nearby trajectories as a function of time, it

is usually evident by visual inspection whether or not exponen-

tial divergence has occurred by the end of the simulation. Thus

we will plot the actual divergence between two numerical trajec-

tories initially differing by perturbing the position of Uranus by

10−14 au (about 1.5 mm) in the z direction. We will call these pairs

of trajectories ‘siblings’. In the cases where we see only polynomial

divergence between siblings over a 200-Myr integration, we will

abuse terminology and call these systems ‘regular’, ‘near-integrable’

or ‘non-chaotic’, although formally all we have shown is that the

Lyapunov time is longer than can be detected in a 200-Myr

integration.

As a prelude to our main results, we first crudely reproduce the

results of Murray & Holman (1999). Murray & Holman performed a

survey in which the semimajor axis of Uranus aU was varied around

its actual value, plotting the measured Lyapunov time as a function

of aU. Broadly, they found that below aU ≈ 19.18 au, the Lyapunov

time was substantially less than 107 yr, sometimes as small as 105 yr;

in the range aU ≈ 19.20–19.22 au, the Lyapunov time fluctuated be-

tween about 1 and 10 Myr, interspersed with cases in which the

motion was regular; near aU = 19.24 au it was uniformly regular;

near aU = 19.26 au there was a tightly packed region of both chaotic

and regular orbits and near aU = 19.28 au the motion was again uni-

formly regular. We have reproduced this survey using quadruple

precision integrations, using a very course grid in aU due to com-

puting constraints. (On a 2.8 GHz Intel Pentium 4, a quadruple pre-

cision integration using TAYLOR 1.4 proceeds roughly at 100 Myr per

month of CPU time.) Fig. 2 displays the distance between siblings

for various values of aU. Although we were not able to perform the

survey using a finer grid in aU due to the computational expense,

we see that in broad outline we obtain results similar to Murray &

Holman. In Fig. 3, we repeat the same survey using Intel extended

precision. We see that the results are qualitatively identical, demon-

strating that 19 digits of precision (which requires about 1/20 of the

CPU time of quadruple precision) gives qualitatively identical, and

quantitatively very similar, results. Henceforth in this paper, all TAY-

LOR 1.4 integrations are performed using Intel extended precision,

with the relative local error tolerance set to 10−22.

3 R E S U LT S

3.1 Corroborating previous results

As an early step, the author obtained from Murray and Holman their

ICs used in Murray & Holman (1999), and verified using accurate
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Figure 2. Murray & Holman (1999) in quadruple precision.

integrations that their system was chaotic. The author then obtained

from P. Sharp the ICs used by Grazier et al. (2005), and verified

that their system was regular, at least over a 200-Myr time-span.

The author then spent significant time eliminating several possible

reasons for the discrepancy, such as incorrect ICs, incorrect deletion

of the inner planets etc. The author also integrated from one set of

ICs to the other (having along the way to account for the fact that

they were in different coordinate systems), and finally found that

the systems agreed with each other to a few parts in 107 when

integrated to the same epoch. After some time it became apparent

that neither group of authors had made any obvious errors. The

conclusion seemed to be that both systems nominally represented

the outer Solar system to within observational error, but one was

chaotic and one was not.

3.2 Ephemeris initial conditions drawn at different times

It is reasonable to make the assumption that either our Solar sys-

tem is chaotic, or it is not. It cannot be both. This appears to be

the assumption that most practitioners make when measuring ‘the’

Lyapunov time of our Solar system. Although this is probably a

reasonable assumption, it does not follow that all ICs drawn from

an ephemeris are equivalent. The most recent ephemeris published

by JPL is DE405 (Standish 1998). It is based upon hundreds of

thousands of observations, all of which have finite error. Thus, the

ephemeris does not represent the exact Solar system. For the outer

planets, the best match of DE405 to the observations yields resid-

ual errors of a few parts in 107 (Morrison & Evans 1998; Standish

1998). The masses of the planets are also known to only a few parts

in 107. Note that the product GMi for each planet i is known to much

higher accuracy than either G or Mi alone; however, the initial po-

sitions and velocities are still only known to about seven digits, and

these are the main focus of this paper. It is possible that within these

error bounds there exist different solutions with different Lyapunov

times. In particular, it may be possible that some solutions display

chaos on a 200-Myr time-scale, while others do not.

To test this hypothesis, we drew 21 sets of ICs from DE405,

at 30-d intervals starting at Julian Date 244 8235 (1990 December

9.5). We represent each of our 21 sets of ICs using a three-digit

numeral, 000, 030, 060, . . . , 570, 600, representing the number of

days after JD 244 8235 at which the IC is drawn. We chose a 2-yr

total interval across which to draw our ICs in order to ensure a rea-

sonable sample of inner-planet positions before deleting the inner

planets (a Martian year is about 2 Earth years). We drew the ICs by
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Figure 3. Murray & Holman (1999) in LONG DOUBLE.

taking the output of the program TESTEPH.F, which is included with

the DE405 ephemeris. The output of TESTEPH.F is rounded to seven

digits, since no more digits are justifiable.4 As described above, we

augment the mass of the Sun with that of the inner planets and aug-

ment the Sun’s position and linear momentum to match that of the

inner Solar system. For each of the 21 ICs, we generate a ‘sibling’

IC which is offset by 10−14 au (1.5 mm). We then integrate both of

them for 200 Myr, and measure the distance between them at 1-Myr

intervals. To ensure that our results are not integrator- or time-step

dependent, we perform each integration in several ways: first, with

the Wisdom–Holman symplectic mapping included with MERCURY

6.2 (Chambers 1999) with time-steps of 400, 200, 100, 50, 32, 16, 8,

4 and 2 d; secondly, with NBI with a time-step of 4 d and thirdly, with

TAYLOR 1.4 in Intel extended precision with a relative error tolerance

of 10−22. Results for the Wisdom–Holman integrations with larger

time-steps are displayed in Fig. 4. Several key observations present

themselves. First, when comparing across the 21 sets of ICs, there is

remarkable disagreement about whether or not the outer Solar sys-

tem displays exponential divergence. This will be discussed further

below, using more accurate integrations. Looking at an individual

graph, but across time-steps, we note that there are very few cases

(e.g. t = 150, 330, 420) in which there is universal agreement be-

tween all four time-steps that divergence is polynomial. There are

also only a few cases that universally agree that the divergence is

exponential. In most cases, there is substantial disagreement across

time-steps whether a particular IC admits chaos. This is consistent

with the observation of Newman et al. (2000). However, in con-

trast to Newman et al. (2000), we note that the ‘switch’ from chaos

to non-chaos is not always monotonic in time-step. For example,

for system 000, time-steps of 400 and 50 d admit chaos, while the

‘in-between’ time-steps of 200 and 100 d do not. For system 180,

time-steps of 400 and 200 d display non-chaos, while for 100 and

50 d time-steps, chaos is apparent; this is precisely opposite to what

one would expect if large time-steps were injecting chaos into the

system. As we shall see later in the paper (Table 2), there appears

also to be no observable correlation between the time-step and the

percentage of ICs that admit chaos. Thus we hypothesize that the

discrepancy across time-steps is due more to perturbations in the ICs

and our use of only low-order symplectic correctors (Wisdom

4 Although this is probably not the best way to uniformly sample ICs from

within the error volume representing the error in the observations, it does

represent a reasonable way to reproduce how users of DE405, taking ICs

from DE405 to seven digits, get their samples.
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Figure 4. Distance in astronomical unit (au) between ‘sibling’ trajectories as a function of time for 21 sets of ICs drawn from DE405 at 30-d intervals.

Each ‘postage stamp’ graph depicts one IC, integrated with four different time-steps. Siblings are integrated with the Wisdom–Holman symplectic map with

time-steps: 50 d (solid line), 100 d (long dash), 200 d (short dash) and 400 d (dotted). For any given plot, note disagreement across time-steps, and that the

switch between chaos and regularity is not always monotonic with time-step.

et al. 1996; Chambers 1999), than it is due to unreliable integra-

tion at large time-steps. Supporting this hypothesis would require

us to reperform these experiments using a ‘warm-up’ procedure

(Saha & Tremaine 1992), or higher order symplectic correctors

(Wisdom et al. 1996; Wisdom 2006). This is a possible direction

for future research.

Figs 5 and 6 plot the divergence between sibling trajectories for

all 21 ICs, as integrated by more accurate integrations showing con-

vergence: NBI, the Wisdom–Holman mappings with time-steps of

8 and 4 d and TAYLOR 1.4. Wisdom–Holman with 2-d time-steps

agreed with these curves, but are omitted to reduce clutter; Wisdom–

Holman with a time-step of 16 d also showed good agreement in all

but two cases. Both figures are identical except that Fig. 5 uses a log–

linear scale, while Fig. 6 uses a log–log scale; different features are

visible using the different scales. At least two observations present

themselves from these figures. First, if one looks at the system corre-

sponding to any single IC, there is usually good agreement between

the integrations as to the future divergence between the sibling tra-

jectories of that particular case. This demonstrates that convergence

has occurred and makes it unlikely that the results are integrator
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Figure 5. Similar to previous figure, but more accurate integrations. NBI: solid lines; Wisdom–Holman: dashed lines with dt = 8 d (long dash), 4 d (short dash);

dotted lines (TAYLOR 1.4) are shifted below others because TAYLOR 1.4 is more accurate. For any given IC, there is good agreement between the shapes of the

curves, indicating agreement on the existence (or lack) of chaos. (Divergence saturates at ≈ 100 au.)

dependent. Secondly, looking across cases, it appears that the future

of the outer Solar system over the next 200 Myr is quite uncertain,

varying from nearly integrable to chaotic with a Lyapunov time of

order 10 Myr or less. This is quite a startlingly diverse array of pos-

sible outcomes, considering that the ICs for these systems are all

drawn from the same ephemeris, all less than 2 yr apart, and presum-

ably differing from each other by only a few parts in 107. The author

has, in fact, verified that several of the ICs, when all integrated up

to the same epoch in the vicinity of 1991, agree with each other to

a few parts in 107.

Figs 5 and 6 demonstrate that in the chaotic cases, the siblings can

have their respective planets on opposite sides of the Solar system

after 200 Myr. However, Fig. 7 demonstrates that changes in the

orbital elements are much less drastic, demonstrating that the Solar

system is practically stable over a 200-Myr time-scale even when it

is chaotic.

3.3 Explicitly perturbed initial conditions

Following Murray & Holman (1999), we performed several surveys

in which we perturbed the semimajor axis aU of Uranus from its
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Table 2. The percentage of ICs drawn from DE405 that admit chaos. Col-

umn labels: ‘C’ is the cut-off described in the text; ‘dt’ is the time-step; ‘/10’

means out of the 10 ICs drawn at 10-yr intervals from 1900 to 1990; ‘/21’

means out of the 21 ICs drawn at 30-d intervals starting at 1990; ‘Total’ is

the sum of the previous two columns; ‘Per cent’ is the percentage of systems

out of the 31 that display chaos according to the cut-off.

C = 1 C = 0.1

dt /10 /21 Total Per cent /10 /21 Total Per cent

400 7 14 21 67.7 9 16 25 80.6

200 7 11 18 58.1 8 15 23 74.2

100 6 11 17 54.8 8 13 21 67.7

050 6 14 20 64.5 8 15 23 74.2

032 7 10 17 54.8 9 15 24 77.4

016 7 14 21 67.7 8 16 24 77.4

008 8 13 21 67.7 8 14 22 71.0

004 8 13 21 67.7 8 18 26 83.9

002 8 13 21 67.7 8 15 23 74.2

current value, but kept all other ICs constant. We used all three

previously mentioned integrators: Wisdom–Holman with time-steps

of 4 and 8 d; NBI and TAYLOR 1.4. The IC was the default one from

the file BIG.IN included with MERCURY 6.2 (Chambers 1999), which

according to the documentation is from JD 245 1000.5. The inner

planets were deleted, with their mass and momentum augmenting

the Sun’s as described elsewhere in this paper. We completed surveys

in which aU was changed in steps of 2 × 10−k au, for k = 6, 7, 8,

which corresponds to �aU/aU in steps of 10−(k+1). We went 10 steps

in each direction for each value of k. For each step, we generated

a ‘sibling’ IC by randomly perturbing the positions of all planets

by an amount bounded by 10−14 au.5 We then integrated both for

200 Myr, and plotted the distance between them as a function of time.

For k = 7, 8, there was no significant difference between any of the

integrations. That is, all siblings at all steps had virtually identical

divergences when changing aU in 10 steps of 2 × 10−(7,8) au, for a

total change of 2 × 10−6 au. This corresponds to �aU/aU stepped

by 10−(8,9) for a total change in �aU/aU of 10−7 in each direction.

However, for k = 6, some of the steps showed chaos while others

did not. The change was not monotonic: over the 21 steps (10 in

either direction plus the ‘baseline’ case), there were three ‘switches’

between chaos and stability.

Fig. 8 plots two of these 21 systems. The value of �aU/aU differs

between the two systems by one part in 107. One of the systems

appears chaotic, and the other does not, over a 200-Myr time-span.

The non-chaotic one has a semimajor axis of aU + 2 × 10−6 au,

while the chaotic one has semimajor axis aU + 4 × 10−6 au. All

other ICs in the two systems are identical. To ensure that the re-

sult is not integrator dependent, we have repeated the integrations

with the Wisdom–Holman mapping included in MERCURY 6.2 with

time-steps of 8 and 4 d; and with NBI with a time-step of 4 d. As

can be seen, all the integrations agree quite well with one another.

Note that the TAYLOR 1.4 integrations provide three extra digits of

precision, and so the curves for TAYLOR 1.4 are displaced about three

orders of magnitude below the curves computed in double precision.

Otherwise the shapes of the curves are virtually identical. We note

that the chaotic one has a Lyapunov time of about 12 Myr, while the

5 Note that, due to a programming inconsistency on the part of the author,

this is different from the perturbations used to generate siblings in the rest

of the paper. However, we do not expect the precise form of these mm-scale

perturbations to affect the results.

regular one has the sibling trajectories separating from each other

polynomially in time as t1.5.

3.4 Accurate integrations over the age of the Solar system

The author has reported related results for integrations lasting 109 yr

(Hayes 2007). The essential conclusion is the same, in that even

after 109 yr, there remain some ICs (about 10 per cent) that show no

evidence of chaos, although some of the ICs appearing as regular

over 200 Myr develop exponential divergence later.

Fig. 9 displays the sibling divergence over 5 × 109 yr of the

‘canonical’ IC used by DE405 (JED 244 0400.5, 1969 June 28).

As we can see, this IC shows little evidence of chaos for about the

first 1.5 Gyr, and then develops slow exponential divergence with

a Lyapunov time between about 200 and 400 Myr. The individual

planet each shows similarly shaped divergence curves (not shown),

with the magnitude of divergence increasing with orbital radius.

After 5 Gyr, the uncertainty in Jupiter’s position for this IC is less

than 1 au, while the uncertainty in Neptune’s position is about 9 au.

Thus, there is a non-negligible chance that, if the Solar system lies

close enough to the ‘canonical’ IC of DE405, we can know within

about 10◦–15◦ where each outer planet will be in its orbit when

the Sun ends its main-sequence lifetime and becomes a red giant.

Note that the levelling-off that starts at about the 4 Gyr mark is

not saturation (which occurs closer to 100 au separation, while the

separation at 5 Gyr here is less than 10 au); the outer Solar system

instead seems to be entering again into a period of polynomial (non-

chaotic) divergence.

3.5 Percentage of initial conditions displaying chaos

Observing the distance between sibling trajectories in Figs 5 and

6 at the 200 Myr mark, we can reasonably simplify the distinc-

tion between chaotic and regular trajectories. By choosing a cut-off

distance C and restricting our view to the various double-precision

integrations, we can claim that siblings differing by less than C after

200 Myr are regular (in the sense of having no observable Lyapunov

exponent), while those differing by more than C are chaotic with a

measurable positive Lyapunov exponent. Table 2 lists the number

of systems that are chaotic by the above definition, as a function

of time-step and cut-off. In addition to the 21-sample group of ICs

displayed in Figs 5 and 6, we also drew a second sample group of

10 samples, spaced at 10-yr intervals from 1900 to 1990. Since the

TESTEPH.F program included in DE405 provides only seven digits

of precision (corresponding to the accuracy to which the positions

are known), taking ICs from DE405 at different times effectively

takes ICs from different exact orbits, differing from each other by

as much as one part in 107. (As noted in a previous footnote, this

method of sampling may not ideally represent an unbiased sample

from the observational error volume; instead, it is an unbiased sam-

ple from the set of seven-digit-rounded ICs drawn from DE405.)

We make several observations. First, the fraction of sampled sys-

tems that are chaotic by this simple definition is roughly about

(70±10) per cent, and is relatively independent of both the time-step

and the two sample groups (30-d versus 10-yr samples), although it

of course increases as we decrease the cut-off. Recall that for a given

IC, different step sizes can give different results, so that which sys-

tems are chaotic changes as the time-step changes. However, here

we measure only the number of chaotic systems as a function of

time-step. If chaos were being ‘injected’ into the system by the inte-

grator, we would expect that the number of systems displaying chaos
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Figure 6. Curves identical to the previous figure, but plotted on a log–log scale, which depicts polynomial divergence as a straight line.

should increase with increasing time-step. However, this is not ob-

served. A possible interpretation of this is that even a 400-d time-step

reliably determines whether some system is chaotic, but the system

is slightly different for each time-step due to the IC perturbation

introduced by the symplectic integration (Saha & Tremaine 1992;

Wisdom et al. 1996). Verifying this would require us to implement

a ‘warm-up’ procedure (Saha & Tremaine 1992) or higher order

symplectic correctors than are included with MERCURY 6.2

(Chambers 1999), which we have not done. However, the fact that

the fraction of systems displaying chaos is independent of time-step

argues against the ‘chaos is injected by the integrator’ hypothesis,

at least for the time-steps used in this paper.

3.6 Chaos in the inner Solar system is robust

Varadi et al. (2003) performed a 207-Myr integration of the entire

Solar system, including some non-Newtonian effects and a highly

tuned approximation to the effects of the Moon, and placed a lower

bound of 30 Myr on the Lyapunov time of the outer Solar system.

However, they still saw chaos in the inner Solar system. To test

the robustness of chaos in the inner Solar system, we performed

several integrations of eight planets (Mercury through Neptune)

using the Wisdom–Holman mapping with time-steps of 8, 4, 2, 1

and 0.5 d. We treated the Earth–Moon system as a single body. To

ensure that chaos in the outer Solar system did not ‘infect’ the inner
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Figure 8. Two systems, both using ICs within the error bounds of the best-

known positions for the outer planets. Both have identical ICs except for

the semimajor axis aU of Uranus, which differs between the two systems by

10−7 in �aU/aU. One admits chaos, while the other does not. The ‘upper’

six curves (all starting with sibling distances near 10−5) are all double-

precision integrations, two using Wisdom–Holman with time-steps of 4 and

8 d, and one using NBI. Of the six, the three plotted with points are the chaotic

trajectory and the three plotted with lines are the non-chaotic trajectory. The

‘lower’ two curves (starting with sibling distances near 10−8) are integrated

in extended precision with TAYLOR 1.4. The chaotic one fits an exponential

curve with a Lyapunov time of about 12 Myr, while the non-chaotic one has

the two trajectories separating approximately as t1.5.

Solar system, we used only those DE405 ICs from Figs 5 and 6 for

which the outer Solar system was regular over 200 Myr. We then

integrated the system until chaos appeared. In all cases, even though

the outer Solar system was regular, the inner Solar system displayed

chaos over a short time-scale such that information about the inner

planetary positions was lost within about 20–50 Myr. Thus, unlike

the outer Solar system, we observe that chaos in the inner Solar

system is robust.
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Figure 9. Sibling divergence over 5 Gyr of the canonical IC of DE405,

integrated using TAYLOR 1.4.

4 D I S C U S S I O N

We conclude that perturbations in the ICs of the outer planets as

small as one part in 107 can change the behaviour from regular to

chaotic, and back, when measured over a time-span of 200 Myr. We

believe this is the first demonstration of the ‘switch’ from chaos to

near-integrability with such a small perturbation of the ICs. Since

our knowledge of the orbital positions of the outer planets is compa-

rable to one part in 107, it follows that, even if our simplistic phys-

ical model accounting only for Newtonian gravity were the correct

model, it would be impossible at present to determine the Lyapunov

time of the system of Jovian planets. Furthermore, it implies that

an IC with seven digits of precision (which is all an ephemeris can

justifiably provide) can randomly lie on a chaotic or non-chaotic

trajectory. Since our results converge in the limit of small time-

step for the Wisdom–Holman mapping, and the converged results

also agree with two very different high-accuracy integrations, and

finally since the high-accuracy integrations in turn agree very well

with quadruple-precision integrations, we believe that the results in

this paper are substantially free of significant numerical artefact.

Guzzo (2005) corroborates the existence of a large web of three-

body resonances in the outer Solar system, and finds that their place-

ment is consistent with Murray & Holman’s (1999) theory. Guzzo

used his own fourth-order symplectic integrator (Guzzo 2001), and

performed what appear to be reasonable convergence tests to verify

the robustness of his main results. Thus, Murray & Holman’s the-

ory appears to explain the existence and placement of three-planet

resonances. Furthermore, chaotic regions in Hamiltonian systems

are usually densely packed with both chaotic and regular orbits

(Lichtenberg & Lieberman 1992). This paper corroborates the ob-

servation of densely packed regular and chaotic orbits, at a scale

previously unexplored for the system of Jovian planets.

As discussed in the text relating to Fig. 8, we performed surveys

across the semimajor axis aU of Uranus in steps of 2 × 10−k au

for k = 6, 7, 8. We found that, around the current best-estimate

value of aU, perturbations smaller than 2 × 10−6 au had no effect

on the existence of chaos. However, this does not imply that pertur-

bations of this small cannot have an effect; it simply means that the

‘border’ between chaos and regularity is not within 2 × 10−6 au of

the current best estimate of aU. However, it is clear that the border

between chaos and regularity is between the two systems depicted

in Fig. 8, which differ from each other in aU by 2 × 10−6 au. Al-

though a survey across aU for values between those two systems

may not be very relevant from a physical standpoint, it might be very

interesting from a dynamical systems and chaos perspective to probe
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the structure of the border between chaos and regularity. In partic-

ular, it may be interesting to see if the border itself has some sort

of fractal structure (Mandelbrot 1982). Such chaotic structure has

already been observed in the circular restricted three-body problem

(Murison 1989).

Newman et al. (2000) gave a compelling demonstration that the

Wisdom–Holman symplectic mapping with too large a time-step

could introduce chaos into a near-integrable system by first show-

ing that they could reproduce the chaos with a 400-d time-step, and

then showing that the integration converged to being regular with a

time-step of about 50 d or less. Our results appear to hint that an even

smaller time-step may be required: our curves depicting divergence-

of-nearby-orbits did not fully converge until the time-step was 8 d or

less. On the other hand, the symplectic integrators produce solutions

that effectively integrate a system with slightly perturbed ICs, al-

though these perturbations decrease with decreasing time-step (Saha

& Tremaine 1992; Wisdom et al. 1996). Our Fig. 4 demonstrates that

the behaviour does not always ‘switch’ monotonically in time-step

from chaotic to non-chaotic as observed by Newman et al. (2000);

Table 2 also hints that the ‘amount’ of chaos does not appear to in-

crease with increasing time-step. An alternate interpretation is that

even a 400-d time-step accurately integrates an orbit, but not the

orbit that we chose. In particular, it may accurately integrate an

orbit whose IC is perturbed slightly from the one we chose, and

an appropriate correction may allow us to recover the correct orbit

using an integration with much larger time-step (Saha & Tremaine

1992; Wisdom et al. 1996). However, the symplectic correctors in

MERCURY 6.2 are clearly not good enough to perform this recovery

at a 400-d time-step; better correctors (Wisdom 2006) or warm-up

(Saha & Tremaine 1992) may be able to achieve this.

The convergence of our results at time-steps of 8 d or less, as

well as the agreement with two different non-symplectic integra-

tors (including the one used by Newman et al.), indicate that the IC

perturbations described by Saha & Tremaine (1992) and Wisdom

et al. (1996) are negligible in our smaller time-step cases. Thus,

using ‘warm-up’ (Saha & Tremaine 1992) or higher order symplec-

tic correctors will not substantially alter our conclusions, although

they might allow the same conclusions to be drawn using larger

time-steps.

With the exception of the results plotted in Fig. 9, all of our sim-

ulations had a duration of 200 Myr. All of them display an initial

period of polynomial divergence, before the appearance of exponen-

tial divergence (if any). However, the duration of initial polynomial

divergence differs greatly across systems, and has been observed by

others (Lecar et al. 2001) to last significantly longer that 200 Myr;

Grazier et al. (2005) observed it to last the entire duration of their

800-Myr simulation. It would be interesting to create a table like

Table 2, but including a ‘simulation duration’ dimension as well.

Certainly the evidence hints that more systems make the ‘switch’

from polynomial to exponential divergence as the duration of the

simulation increases.

Our physical model is very simplistic, accounting only for New-

tonian gravity between the Sun and Jovian planets. Although we

ignore many physical effects which are known to affect the detailed

motion of the planets (Laskar 1999; Varadi et al. 2003), it is un-

clear if such effects would substantially alter the chaotic nature of

solutions. We at first believed that the largest such effect ignored

was solar mass loss. Our first simulations did not account for solar

mass loss, which amounts to about one part in 107 Myr−1 (Laskar

1999; Noerdlinger 2005). Since we find that perturbations in posi-

tion of that order can shift the system in-and-out of chaos, a naive

analysis might lead one to suspect that solar mass loss might shift

the planetary orbits in-and-out of resonance on a time-scales that is

fast compared to the Lyapunov time, thus smoothing out the sibling

divergence. We thus modified our model to include solar mass loss,

but surprisingly it made absolutely no observable difference to any

of the figures presented in this paper. To ensure that we did not make

an error, we simulated systems with ever increasing mass loss until

the Sun was losing 10 per cent of its mass per 100 Myr. We noted

that the planetary orbital semimajor axes expanded significantly, as

would be expected, but that the sibling divergences did not change

until mass loss was at a rate of about 1 per cent per 100 Myr (1000

times greater than in reality). Thus, we conclude that solar mass

loss also makes no difference to our results. Similarly, we believe

that relativistic effects will have negligible effect on the existence

or absence of chaos (Varadi et al. 2003).

5 C O N C L U S I O N A N D F U T U R E WO R K

There has been a discrepancy between various investigators as to

the existence of chaos in the orbits of the Jovian planets. We have

shown that the discrepancy can be explained because there genuinely

exist both chaotic and regular orbits within observational error. In

particular, we have shown that, within the volume of phase space

enclosing the observational error of the current positions of the

Jovian planets, there exist some ICs (about 70 per cent of them) that

lead to chaotic orbits over a 200-Myr time-scale, and some (about

30 per cent of them) that show no evidence of chaos over 200 Myr.6

After 1 Gyr, about 10 per cent of ICs still show no evidence of chaos.

Even after 5 Gyr, the ‘canonical’ IC from DE405 has a small enough

Lyapunov exponent that it may be possible to predict the positions

of the Jovian planets to within a few degrees in longitude, during

the entire main-sequence lifetime of the Sun.

We have validated our results in several ways. First, we have per-

formed convergence tests in all cases: compare Fig. 4 (unconverged)

to Fig. 5 (converged); and the top curves of Fig. 8 (low precision

but still converged) agree with the higher precision ones on the bot-

tom. Secondly, we have confirmed the results of previous authors

from both camps (Murray & Holman 1999; Grazier et al. 2005).

Thirdly, we have utilized three very different double-precision in-

tegration methods, all of which agree with each other in the small

time-step limit. Fourthly, we have verified that our integrations sat-

isfy Brouwer’s law in the cases we expect them to. Fifthly, we have

compared our double-precision solutions with quadruple precision

integrations to verify the accuracy of the former.

We conclude that it is extremely unlikely that our results are

substantially affected by numerical error.
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