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Shadowing High-Dimensional Hamiltonian Systems: The Gravitational N-body Problem
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A shadow is an exact solution to a chaotic system of equations that remains close to a numerically
computed solution for a long time. Using a variable-order, variable–time-step integrator, we numeri-
cally compute solutions to a gravitational N-body problem in which many particles move and interact in
a fixed potential. We then search for shadows of these solutions with the longest possible duration. We
find that in ‘‘softened’’ potentials, shadow durations are sufficiently long for significant evolution to
occur. However, in unsoftened potentials, shadow durations are typically very short.
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tion starting at the same initial condition as the numerical increasing the number of moving particles, having
The astronomical literature is brimming with the re-
sults of gravitational N-body simulations. Examples in-
clude studies of the formation, evolution, and structure of
galaxies and clusters of galaxies [1], and the cosmos at
large [2]. Considering that such simulations have been
used to invalidate theories [2], establishing their trust-
worthiness is critical. Like many dynamical systems,
however, a gravitational system displays sensitive depen-
dence on initial conditions (SDIC): two solutions whose
initial conditions differ by an arbitrarily small amount
generally diverge exponentially away from each other [3].
Since numerical methods introduce errors, it is virtually
guaranteed that a numerically computed solution di-
verges exponentially away from the exact solution with
the same initial conditions. This remains true even if
integrals of motion such as energy and momentum are
conserved to arbitrary precision. The phenomenon has
been described (e.g., [3]) as the ‘‘exponential magnifica-
tion of small errors,’’ leaving open the possibility that
trajectories of such simulations are the result of nothing
but magnified noise. Although much effort has been
devoted to many aspects of simulation reliability, and
although SDIC is widely known to be one of these as-
pects, the impact on simulation reliability of SDIC is not
well understood.

Fortunately, most studies of dynamical systems do not
aim to predict the precise evolution of a particular choice
of initial conditions. Instead, the dynamics of the system
is sampled in order to study its general behavior. In such
cases, we typically choose initial conditions from a ran-
dom distribution and would be happy if our numerical
solution exhibited behavior typical of any valid choice of
initial conditions from our distribution. In particular, we
may be satisfied if our numerical solution closely follows
some exact solution whose initial conditions are close to
those that we chose.

The study of shadowing provides just such a property:
a shadow is an exact solution to a given set of equations
that remains close to a numerically computed solution
of the same set of equations for a nontrivial duration of
time, i.e., significantly longer than would the exact solu-
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solution. Although not all numerical simulations are
likely to be shadowable [4–6], the existence of a shadow
is a strong property: it asserts that a numerical solu-
tion can be viewed as an experimental observation of an
exact solution. As such, within the ‘‘observational’’ error,
the dynamics observed in a numerical solution that has a
shadow represent the dynamics of an exact solution. There
are only two remaining questions (both beyond the scope
of this paper): (1) Does the mathematical model being
simulated accurately reflect the system being studied?
This is certainly not the case for systems such as the
weather (and thus shadowing is probably an inappropriate
measure of error), but can be assumed to be the case for
others, such as the unsoftened gravitational N-body prob-
lem. (2) Are shadows typical of exact solutions chosen at
random? Simple examples exist of shadows that are atypi-
cal [7–9], although it seems unlikely that atypical shad-
ows are common — lest the numerical solutions we
compute would be commonly atypical as well [10].

We consider the existence of a shadow to be the ‘‘gold
standard’’ of reliability for simulations of chaotic sys-
tems. For the systems we consider, a shadow lasting
several tens of crossing times (the time it takes a particle
to cross the system from one side to another) is sufficient.
For example, since its formation about 1010 years ago, our
Milky Way Galaxy has rotated only about 40 times at the
orbital radius of our Sun; a shadow of a numerical simu-
lation of our Galaxy lasting as long would be more than
sufficient.

The first proof of the existence of a shadow of a
computer-generated numerical trajectory was provided
by Grebogi et al. [11]. The first study of shadows of
numerical simulations of the N-body problem was under-
taken by Quinlan and Tremaine [12], who found that a
single particle moving in the potential of 100 fixed par-
ticles could be shadowed for a few tens of crossing times.
However, Quinlan and Tremaine [12] were unable to
predict the behavior of systems with more moving par-
ticles because shadowing is computationally very expen-
sive, taking time O�M3� for M moving particles.

In this paper, we extend the results of Ref. [12] by
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FIG. 1. Histogram of shadow durations of 1000 unsoftened
M-body systems. Each system has 99 fixed particles and one
moving particle (i.e., M � 1). Noisy orbits have local error of
about 10�5 per crossing time; numerical shadows were required
to have a maximum local error no bigger than 10�14. The
horizontal axis is in crossing times; the vertical axis is the
measured probability density. The distribution fits an exponen-
tial curve with a mean glitch rate of about 0.07 per crossing
time, indicating that the moving particle encounters glitches as
a Poisson process in an unsoftened system.
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greatly optimized their shadowing algorithm. We find
the following. First, if the gravitational potential is soft-
ened and the number of moving particles M is increased
from 1 to 25, shadow durations tend to decrease with M
slowly enough that shadows of large N-body simula-
tions may exist for nontrivial durations of time. Second,
we demonstrate that M one-moving-particle systems
can be used to approximately predict the shadow duration
of an M-moving-particle system. This is done by postu-
lating that a glitch (the point beyond which no shadow
can be found) in the large system occurs when one of
its moving particles encounters a glitch local to its
own trajectory, and then showing that the same process
can be approximated by superimposing M one-moving-
particle trajectories and taking the minimum shadow
duration of those trajectories. The approximation is ex-
cellent for unsoftened systems, and reasonable for soft-
ened ones. This reduces the amount of computation
required to study shadows of large systems from O�M3�
to O�M�, which greatly facilitates the study of large
systems.

The trajectories that we will attempt to shadow belong
to a slightly simplified gravitational N-body problem in
which there are N total particles, only M of which move.
We do this because the shadowing algorithm we use takes
time O�M3� and we want to simulate a large system with a
complex potential while keeping the time to compute a
shadow tractable. We will refer to such a system as an
M-body system. Each moving particle interacts both with
fixed particles and with other moving particles via
Newton’s gravitational force law, Fij � ��Gmimj�=
�r2ij � "2�, where Fij is the force on particle i from par-
ticle j, mi and mj are their masses, rij is the distance
between them, and " is the gravitational softening pa-
rameter which, if nonzero, artificially smoothens the
gravitational potential in order to approximately emu-
late a system with more particles than are actually present
and to avoid the singularity at rij � 0. We use normal-
ized units [13] in which each particle has mass 1=N, the
system has diameter of order unity, and the crossing time
is of order unity. We use a variable-order, variable–time-
step integrator [14] for all integrations. We generate noisy
trajectories with local errors of about 10�5 per crossing
time. To find shadows, we use an algorithm described in
Ref. [12], optimized to run between 2 and 3 orders of
magnitude faster. Called iterative refinement, we use the
same integrator as the noisy trajectory with tighter tol-
erance to estimate the full phase-space vector of local
errors of the noisy trajectory, and then use a Newton-like
correction to refine the trajectory until it has local errors
as small as possible. For simple systems, the errors of the
refined trajectory can be as small as the machine precision
(10�16), but the minimum local error achievable with
refinement increases as the number of dimensions in-
creases, due to numerical errors in computing the New-
ton corrections. A trajectory produced by refinement is
called a numerical shadow. The existence of a numerical
054104-2
shadow is expected to indicate the existence of an exact
shadow of comparable duration [12].

If a shadow is viewed as a measure of error of a
numerical solution, then the relevant measures are the
phase-space distance between corresponding points on
the ‘‘noisy’’ and exact trajectories (smaller is better),
and the duration over which they remain close together
(longer is better). Generally, the smaller the local error in
the trajectory, the closer and longer the shadow [11,12]. In
this paper, the noisy-shadow distance is typically less than
1% of the size of the system.

We present our results of the unsoftened case first,
because it is instructive and generalizes more elegantly
to M > 1 than the softened case. Figure 1 introduces a
histogram of shadow durations for 1000 systems each
with N � 100;M � 1; " � 0. The distribution is well fit
by an exponential curve, suggesting that glitches in one-
particle trajectories are encountered as a Poisson process
in an unsoftened system [15]. This is intriguing because a
Poisson process is memoryless, which means that the
history of the orbit has no effect on the glitch probability.
This is consistent with the view of Ref. [11] that a glitch is
a sudden occurrence independent of the history of the
orbit, and not the result of a long-term buildup of error.

Figure 2 introduces how the average shadow duration
scales as the number of moving particles is increased. We
study two cases: (i) a 99�M particle system in which the
motion of all particles is simulated simultaneously as a
single system but the moving particles do not interact,
and (ii) a 100-particle system in which M particles move
and interact. Surprisingly, the two curves are statistically
indistinguishable, suggesting that although particles in-
teract in motion, they do not interact to cause glitches at a
054104-2
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FIG. 2. Average shadow durations in crossing times of an
unsoftened gravitational M-body system in which there are
100 particles, M of which move, as a function of M. The noisy
orbits have local error of 10�5 per crossing time; each numeri-
cal shadow was required to have a maximum local error no
bigger than 10�12. The dots represent sample shadow durations,
30 samples each for M � 1; 2; . . . ; 19; 20; 25 and 10 samples
each for M � 30; 35; . . . ; 50. The ‘‘coupled average’’ line joins
their averages, while 55=M0:9 and 55=M1:1 are plotted for
comparison. The ‘‘coupled average’’ line is statistically indis-
tinguishable from the ‘‘uncoupled average’’ one, in which the
gravitational interaction between moving particles is deleted.
This suggests that even coupled particles encounter glitches
independently of one another.
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rate any different from that of the system with noninter-
acting particles. A possible explanation is that if 1<
M � N, then the coupling between the M moving par-
ticles is weak on average and we can still view the system
as the superposition of M one-particle systems.
Furthermore, we note that the cross section for close
approaches is not altered as M increases (which simply
changes fixed particles into moving ones), so the argu-
ment still holds independent of whether M � N.
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FIG. 3. Histogram of shadow durations of 1000 systems iden-
tical to those in Fig. 1 except with softening " � 0:1. Note that,
in contrast to Fig. 1, the x axis is logarithmic and extends to
1000 crossing times, and that the histogram height is zero near
a shadow duration of zero, meaning that no particles undergo
glitches until several tens of crossing times have occurred; in
fact, of the 1000 systems sampled, the shortest shadow lasts 33
crossing times.
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Figure 3 introduces the distribution of shadow dura-
tions for 1000 M � 1 systems in which softening has been
set to " � 0:1, which is approximately half the average
interparticle separation. The differences from Fig. 1 are
quite marked. First, the distribution is peaked near 100
crossing times and has a long tail going out to hundreds of
crossing times. Second, even though the local errors of the
noisy and shadow orbits are identical to those from Fig. 1,
the average shadow length has increased by more than an
order of magnitude from 14 to 218. Although this is
roughly equivalent to the increase in the Lyapunov time
scale [12], the distribution is far from exponential. In fact,
the most striking difference from Fig. 1 is that the dis-
tribution has a vanishingly small density near zero
shadow duration, in striking contrast to a Poisson process.
In other words, virtually no particles undergo glitches
until several tens of crossing times have occurred. If this
remains true even for M > 1, then shadowing of softened
gravitational systems would be feasible even for large M,
because the trajectories of all particles in the simulation
would remain valid for many crossing times. This ques-
tion is addressed in Fig. 4, where we introduce the average
shadow duration for softened systems as a function of M,
along with the shadow duration predicted by superimpos-
ing M one-particle systems. We see that although the
duration of shadows for coupled systems decreases as M
increases, they decrease much more slowly than 1=M,
and appear to be leveling off at about 50 crossing times.
This is consistent with superimposing one-particle
trajectories, all of which have shadows that last several
tens of crossing times, although it is surprising that the
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FIG. 4. Average shadow durations in crossing times of a
system with softening parameter " � 0:1 as a function of M.
The points represent sample shadow durations, 9 samples each
for M � 1–5; 10; 20; 25, while the ‘‘coupled average’’ line joins
their averages. Following the assumption that particles encoun-
ter glitches independently of one another, the ‘‘predicted aver-
age’’ is artificially constructed for each M � 1; . . . ; 25 by
superimposing M samples chosen at random from Fig. 3 and
taking the minimum shadow duration of those samples. The
resulting graph resembles the ‘‘coupled average’’ graph reason-
ably well, except for the surprising effect of underestimating
shadow duration of the real system by about �20� 10�%.
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shadow durations are slightly longer than that predicted
by superimposing one-particle trajectories.

The difference between the shadow durations for soft-
ened vs unsoftened systems undoubtedly is related to
fluctuating Lyapunov exponents [4–6]. Although we mea-
sured no Lyapunov exponents, we measured a related
quantity, namely, the expansion and contraction factors
across a time step of the vectors that span the locally
expanding and contracting spaces. In a uniformly hyper-
bolic system, these factors will always be greater and less
than 1, respectively. An event of ‘‘nonhyperbolicity’’ can
be observed by looking for areas along the trajectory
where directions which were previously expanding over
long periods instead start to contract, or vice versa. If we
plot the expansion and contraction amounts along a tra-
jectory for either a softened or unsoftened potential, we
find that ‘‘nonhyperbolic’’ events correlate well with the
occurrence of glitches. If we plot an M � 1 particle orbit
in three dimensions, we also observe that these events
loosely correlate with times when the particle’s orbital
geometry changes in an obvious way. We postulate that
the locally expanding and contracting directions of a
particle in the system are closely related to the geometry
of the particle’s orbit, so that changing the geometry of
the orbit can cause these local vectors to become incon-
sistent as time progresses. In an unsoftened system, the
geometry of a particle’s orbit can be suddenly and vio-
lently changed by a close encounter. In softened systems,
however, there is no precise, short-duration ‘‘event’’
which triggers nonhyperbolicity; instead, the geometry
of the orbit of a particle changes slowly, so that many
crossing times occur before a glitch is likely. This helps to
explain Figs. 1 and 3, and is consistent with the finding of
Quinlan and Tremaine [12] that glitches tend to occur
near close approaches in unsoftened systems, but less so in
softened systems.

Now, consider an N-body simulation with 1� 106 par-
ticles, which is not uncommon today. Technically, the first
particle to encounter a glitch in its own individual 6-
dimensional phase-space trajectory causes a glitch in the
full 6� 106-dimensional phase-space solution. However,
the motion of particles in such a system is governed far
more by the global potential than by the position of any
one particle [16]. This raises the question of whether a
glitch in the trajectory of just one particle out of millions
is sufficient to invalidate a simulation. The answer is
almost certainly ‘‘no.’’ More likely, the validity of a
simulation from the shadowing perspective probably de-
grades slowly, as the number of ‘‘locally glitched’’ par-
ticles slowly increases, ‘‘infecting’’ the motion of the
remaining particles [17]. Thus, we can hypothesize that
reasonable statistical results may be acquired from long
simulations of large softened systems as long as only a
few particles have undergone glitches, and the statistics
taken depend on large numbers of particles. Thus, for
example, the global spatial distribution of matter in a
simulated galaxy may be correct, but the number of
054104-4
escapers from a simulated globular cluster may be incor-
rect if the stars that escape happen also to be the stars that
underwent glitches before escaping.

To conclude, we believe there is no feasible integration
accuracy which will give long shadows in an unsoftened
potential. This does not necessarily mean that such simu-
lations are untrustworthy, only that shadowing may be
too stringent a measure of error. In contrast, we believe
that there exists a feasible integration accuracy for which
softened systems are shadowable for many crossing times
even for large N.
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