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The quest for reliable integration of initial value problems (IVPs) for ordinary differential equations
(ODEs) is a long-standing problem in numerical analysis. At one end of the reliability spectrum

are fixed stepsize methods implemented using standard floating point, where the onus lies entirely

with the user to ensure the stepsize chosen is adequate for the desired accuracy. At the other end

of the reliability spectrum are rigorous interval-based methods, that can provide provably correct

bounds on the error of a numerical solution. This rigour comes at a price, however: interval methods

are generally two to three orders of magnitude more expensive than fixed stepsize floating-point

methods. Along the spectrum between these two extremes lie various methods of different expense

that estimate and control some measure of the local errors and adjust the stepsize accordingly.

In this article, we continue previous investigations into a class of interpolants for use in Runge-

Kutta methods that have a defect function whose qualitative behavior is asymptotically indepen-

dent of the problem being integrated. In particular the point, in a step, where the maximum defect

occurs as h → 0 is known a priori. This property allows the defect to be monitored and controlled

in an efficient and robust manner even for modestly large stepsizes. Our interpolants also have a

defect with the highest possible order given the constraints imposed by the order of the underlying

discrete formula. We demonstrate the approach on three Runge-Kutta methods of orders 5, 6, and

8, and provide Fortran and preliminary Matlab interfaces to these three new integrators. We also

consider how sensitive such methods are to roundoff errors. Numerical results for four problems

on a range of accuracy requests are presented.
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1. INTRODUCTION AND MOTIVATION

Consider the initial value problem (IVP) for an ordinary differential equation
(ODE)

y′(t) = f(t, y(t)), (1)

y(t0) = y0, (2)

where y is an n-dimensional vector and f an n-dimensional vector-valued func-
tion. Standard forward error analysis (see for example Dahlquist and Björck
[1974]) tells us that it is only possible, for a very restricted class of problems
(strongly dissipative ODEs), for the numerical solution to remain uniformly
close to the exact solution for a long time. However, backward error analysis
(see, for example, Corless [1994]) shows that numerical solutions to IVPs often
exactly solve a “nearby” problem. Here, nearby can mean either that the nu-
merical solution follows an exact solution of (1) with slightly different initial
conditions (see Hayes [2001] for a review), or that the numerical solution exactly
solves a problem with the same initial condition but with a slightly perturbed
(1). One form of the latter is defect-based backward error analysis, in which
it can be shown that a continuous numerical solution ỹ(t) exactly satisfies a
problem of the form

ỹ′(t) = f(t, ỹ(t)) + δ(t), (3)

ỹ(t0) = y0, (4)

where δ(t) is an n-dimensional vector-valued function called the defect. Of
course, the form and size of the defect depends upon the f the algorithm used to
compute the numerical solution ỹ(t). In this article, we deal exclusively with ex-
plicit pth order Runge-Kutta methods. These methods have the advantage that,
with just a few (sometimes zero) extra evaluations of f (called function evalua-
tions), we can compute a polynomial interpolant between the discrete solution
points that approximates the local solution to O(hp) or O(hp+1) where h is the
stepsize [Enright et al. 1986]. This sequence of polynomial interpolants forms
a continuous piecewise polynomial solution approximation ỹ(t). This piecewise
polynomial can be differentiated giving ỹ′(t), and then ỹ(t) is by definition an
exact solution to (3) where

δ(t) ≡ ỹ′(t) − f(t, ỹ(t)). (5)

Note that in some cases ỹ′(t) may not be defined at the meshpoints, but this
can be accommodated in the analysis.

In generating the underlying discrete solution (which is then interpolated
to form ỹ(t)), one cannot directly control the forward global error, but must be
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satisfied with attempting to control some measure of the local error. That is, if ϕh

is the exact time-h solution operator—that is, ϕh(y0) is the exact solution to (1,
2) at time t0 +h—and φh represents an approximate discrete solution computed
by some algorithm using stepsize h, then the local error at t = t0 + h is

�(h, ỹ0) = φh(ỹ0) − ϕh(ỹ0), (6)

where ỹ0 is the solution value at the beginning of the step. We attempt to
ensure that ‖�(h, ỹ0)‖ ≤ ε, where ε is the desired maximum local error. To
control this error, one traditionally varies the stepsize in order to maintain
the norm of the estimated local error near to the desired local error. In
practice, reliably estimating the local error is relatively inexpensive. For
example, if one is using a pth-order numerical method then the best that
we can expect is that ‖�(h, ỹ0)‖ ∼ hp+1. We can then estimate the local
error by comparing two integrations across the same interval using different
stepsizes or different formulas. However, it is not difficult to show that this
simple strategy can be deceived, in that both integrations can sometimes
give similar but inaccurate results. When this happens, their difference is
small, leading to a spuriously small estimate of the actual local error. Note
that such an underestimate of the size of the local error will not necessarily
result in an approximation with a large local error because other conservative
heuristics governing the stepsize-choosing strategy will usually prevent such
deceptions.

Another way to control local error is to control the defect directly, which is
explicitly computable, at least pointwise as in (5) [Enright 1989a, 1989b, 1993].
In general, however, the defect can be a complicated function of both the problem
and the numerical algorithm, making an estimate of the maximum defect across
a timestep difficult and expensive to compute. One could, for example, sample
the defect at many points across a timestep, and take the maximum of these
as an estimate of the maximum defect. The likelihood of this being a severe
underestimate of the maximum would depend on the number and location of
the sample points, and would be very small as the number of sample points
increased. However, this is very ad hoc and expensive since it requires extra
evaluations of f at each point we wish to monitor the defect. Furthermore,
without sufficient care in the selection of the interpolating scheme, it is possible
to construct examples that deceive such an ad hoc scheme into thinking the
maximum defect is smaller than it actually is, just as the above local error
estimate can be deceived.

The class of methods we address in this article are a class of Continuous
Runge-Kutta (CRK) methods where the approximate solution is a piecewise
polynomial, z(t), which has an associated defect whose magnitude is bounded
by a small multiple of the tolerance. In addition the “shape” of the defect, de-
fined over a particular step, asymptotically depends only on the method, and
not the problem being integrated or the location of the step. We use the term
shape in the sense that two functions have the same shape if one is a con-
stant multiple of the other. The “shape” of an individual function can then be
defined by that function scaled by its maximum magnitude. Such a method
can be developed at a relatively modest increase in cost (over that of standard
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Table I. Number of Stages Per Step for CRKs

Using an Asymptotically Correct Defect

Estimate

Authors Order→ 5 6 8

Enright [1989a] 4–9 8–10

Higham [1989] 8–9

Present work 11 14 24

Enright and Higham [1991] 21 32 60

implementations of discrete methods) and they have several advantages. First,
since the shape of the defect is asymptotically independent of the problem being
integrated, we can precompute (at compile time) the point in the step at which
the maximum defect is expected to occur (at least asymptotically); at run-time,
a reliable estimate of the maximum defect can be obtained with a single eval-
uation at that point. Second, since the maximum defect, and thus the local
error per unit step [Stetter 1978], can be bounded by a small multiple of the
user-specified tolerance, the methods can be used and the accuracy understood
without a user knowing anything about the underlying formula, or the notion of
local error or stepsize. Convergence as the user-specified tolerance approaches
zero can be proved by relating the maximum defect (which is now directly
controlled) to the maximum local error per unit step [Stetter 1978]. Thus, in-
terfaces and calling sequences can and have been developed which are method
independent.

Since the methods are continuous, they are also useful when visualization
or estimates of the global error are of use or when alternative methods are to
be investigated for solving the same problem.

This class of direct defect control methods is rigorously justified as h → 0
and, in this manuscript, we investigate the validity of this approach over a
range of nonasymptotic stepsizes that are typical of those arising in the solu-
tion of real problems. Other approaches could also be used, but the point of this
article is that the cost of developing effective methods need not be that great.
The work of Enright [1989a] was preliminary and based on the most natural
and inexpensive optimal-order interpolation schemes that could be used for de-
fect control. Higham [1989] also considered the use of asymptotically correct
estimates. Enright and Higham [1991] considered an expensive technique that
assumes parallel processing is available. The work we present here is inter-
mediate: although more expensive than the methods of Enright [1989a] and
Higham [1989], the methods we present achieve robustness comparable to the
parallel methods [Enright and Higham 1991] at a lower cost than the parallel
algorithms would require if implemented sequentially. In particular, Table I
presents a sample of the number of sequential function evaluations required
by the different approaches. Furthermore, as we have noted, an interpolant is
most suitable if the shape of its defect is relatively constant as the stepsize
ranges over the values that arise in typical applications. As we will show, the
defects of the CRKs we analyze and implement here have such a relatively con-
stant shape even for modestly large stepsizes, a property which has not been
previously recognized. (See, for example, Figure 10, which depicts the worst
case of nonconformity seen in our problems.)
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We also note that, to our knowledge, the three methods described in this arti-
cle (of orders 5, 6, and 8) comprise the first user-friendly implementation of di-
rect defect control. The availability of both Fortran and Matlab versions of these
experimental integrators makes them candidates for wide distribution and use.

The reliability of both local error and defect control depend on an implicit
assumption that truncation error dominates roundoff. At stringent accuracy
requests, this assumption may not be valid. We test this assumption and con-
clude that special care is necessary to reduce the effects of roundoff when using
high-order formulas. This is particularly true if the formula requires many
floating-point operations per step.

2. METHODS

2.1 Continuous, Explicit Runge-Kutta Methods

We are primarily concerned with explicit Runge-Kutta methods. A traditional
pth-order, explicit, s-stage, discrete Runge-Kutta formula is described by its
Butcher Tableau,

c A

wT =

0
c2 a21

c3 a31 a32

...
...

...
. . .

cs as,1 as,2 . . . as,s−1

w1 w2 . . . ws−1 ws

, (7)

which represents the discrete Runge-Kutta formula

ϕti+h(ỹi) ≈ φti+h(ỹi) ≡ ỹi+1 = ỹi + h
s∑

j=1

wj f(ti + c j h, Ỹ j ),

where Ỹ j is a j th stage estimate of the solution at time ti + c j h,

Ỹ j = ỹi + h
j−1∑
r=1

ajrf(ti + crh, Ỹr ).

For convenience, we let

k j = f(ti + c j h, Ỹ j ),

giving

ỹi+1 = ỹi + h
s∑

j=1

wj k j .

To define a continuous Runge-Kutta method associated with this discrete
formula, we determine an interpolant ui(t) over each step of the integration1

1We sometimes delete the subscript i from ui(t) when the meaning is clear from the context.
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(see, for example, Enright et al. [1986]),

ui(t) = ỹi + h
s̄∑

j=1

bj (τ )k j , t ∈ [ti, ti+1], (8)

where τ = (t − ti)/h, τ ∈ [0, 1], and

bj (τ ) =
p+1∑
k=1

β j kτ k . (9)

The extra (s̄ − s) stages and the polynomial coefficients β j k are not unique and
can be determined according to several different criteria; for a detailed and
comprehensive discussion, see Verner [1993]. The interpolants that interest us
are optimal order (in that they agree with the local solution to order p + 1),
and their derivatives (and hence their defects) are accurate to order p. The
interpolant, ui(t), can be altered to form a new “improved” interpolant, vi(t), at
a relatively small increase in cost. The idea is based on the observation that by
recomputing some of the k’s using u(t) one can derive interpolants v(t) whose
defect is both O(hp) and whose shape asymptotically approaches a multiple
of a constant polynomial, independent of the problem being integrated. This
is accomplished by ensuring that, for those stages k j that are not accurate to
O(hp+1) but which do contribute to the definition of u(t) (i.e., the corresponding
polynomial bj (τ ) in (8) is nonzero), we replace k j by

k̃ j = f(ti + c j h, u(ti + c j h)).

With this replacement, the coefficients β j k (defining vi(t)) are identical to the
coefficients defining ui(t).

It has been shown [Enright 1989a, 1989b] that the leading term in the asymp-
totic expansion of the defect corresponding to ui(t) satisfies

δ(t) = G(τ )hp + O(hp+1),

where

G(τ ) = q1(τ )F1 + q2(τ )F2 + · · · + qK (τ )FK . (10)

The qj are polynomials in τ that depend only on the method and the F j are
constants depending on both the method and the problem.

Now for a given problem and any method, as h → 0, G(τ ) approaches a
constant polynomial (for each step i), and therefore we should observe plots
of δ(τ ) versus τ approaching a unique polynomial as h → 0. This polynomial
will in general be very different for different problems and for different steps i,
and this is why it is difficult to choose a fixed sample point τ∗ that would give a
robust estimate of the maximum defect across any step. For the polynomial u(t)
we have used a value for τ∗ that is not near any of the zeros of the q1, q2, . . . , qK

[Enright 1989b].
There is a special (but more expensive) class of interpolants (including the

vi(t) discussed a few paragraphs above) which have K = 1, and therefore the
asymptotic expansion of the defect satisfies

δ(t) = q1(τ )F1hp + O(hp+1), (11)
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Table II. The Butcher Tableau of Matlab’s ode45 (The nonboldfaced items (all but

the last row of aij and the last entry of bj ) give the standard discrete tableau. The

last row gives the extra evaluation from which Matlab builds an interpolant with

associated local error that is O(h5) and defect that is O(h4).)

0 0

1/5 1/5 0

3/10 3/40 9/40 0

4/5 44/45 −56/15 32/9 0

8/9 19372/6561 −25360/2187 64448/6561 −212/729 0

1 9017/3168 −355/33 46732/5247 49/176 −5103/18656 0

1 35/384 0 500/1113 125/192 −2187/6784 11/84 0
35/384 0 500/1113 125/192 −2187/6784 11/84 0

where F1hp+1 is the leading term in the expansion of the discrete local error
evaluated at the right endpoint, τ = 1 [Enright 1989a]. That is, there is a direct
asymptotic relationship between the discrete local error and the continuous de-
fect. Since q1 is independent of the problem, we should observe as h → 0 that the
shape of δ(t), and consequently the (norm of the) local maximum defect, is de-
termined by the fixed polynomial q1, independent of the problem and the step i.
The value to use for τ∗ is then the location of the maximum of |q1(τ )|, τ ∈ [0, 1].

For a certain class of linear problems [Enright 1989a, 1993], it is possible
rigorously to bound the magnitude of the maximum defect with only a modest
restriction on the size of the timestep. The point of this article is to demonstrate
that one can develop an effective estimate of the magnitude of the maximum
defect that is asymptotically justified for all problems and which also holds
quite well for practical timesteps. A technique for computing the theoretical
q1(τ ) for the 5/6 pair using Maple is described in the Appendix.

2.2 The 4/5 Pair

The Butcher Tableau for the well-known discrete 4/5 Runge-Kutta pair
used by Matlab’s ode45 is shown in Table II. The first six (nonboldfaced)
rows represent the tableau and define k1, . . . , k6 for the standard, discrete
solution.

The standard (nonoptimal) O(h5) interpolating polynomial, z(t), (with a de-
fect that is O(h4)) used in ode45 is defined by

z(t) = ỹi + h
7∑

j=1

bj (τ )k j ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1(τ )

b2(τ )

b3(τ )

b4(τ )

b5(τ )

b6(τ )

b7(τ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −183/64 37/12 −145/128

0 0 0 0

0 1500/371 −1000/159 1000/371

0 −125/32 125/12 −375/64

0 9477/3392 −729/106 25515/6784

0 −11/7 11/3 −55/28

0 3/2 −4 5/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

τ

τ 2

τ 3

τ 4

⎞
⎟⎟⎟⎠ . (12)
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To construct an O(h6) interpolant u(t), we add two more stages (see Enright
[1989a, 1989b] for a justification of these particular choices),

k8 = f(ti + .86h, z(ti + .86h)),

k9 = f(ti + .93h, z(ti + .93h)),

and then our O(h6) interpolant, u(t), has nine stages, with corresponding coef-
ficients (8) defined by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1(τ )

b2(τ )

b3(τ )

b4(τ )

b5(τ )

b6(τ )

b7(τ )

b8(τ )

b9(τ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1708582621
524156928

1232939669
262078464

− 1663764925
524156928

208375
253952

0 0 0 0 0

0 499875
94976

− 1618625
142464

871875
94976

− 15625
5936

0 499875
65536

− 1618625
98304

871875
65536

− 15625
4096

0 − 26237439
6946816

28319463
3473408

− 45762975
6946816

820125
434176

0 43989
28672

− 142439
43008

76725
28672

− 1375
1792

0 − 2291427
100352

3838251
50176

− 8579075
100352

199625
6272

0 − 47953125
1078784

74828125
539392

− 155453125
1078784

78125
1568

0 8734375
145824

− 14359375
72912

31234375
145824

− 234375
3038

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

τ

τ 2

τ 3

τ 4

τ 5

⎞
⎟⎟⎟⎟⎟⎟⎠

. (13)

Finally, to compute the interpolant v(t), we “recompute” k8 and k9, giving

k̂8 = f(ti + 0.86h, u(ti + 0.86h)),

k̂9 = f(ti + 0.93h, u(ti + 0.93h)).

Let k̂ j ≡ k j for those terms not recomputed, i.e., for j = 1, . . . , 7. Then
the asymptotically improved interpolant, which also has local error O(h6),
is

v(ti + τh) = ỹi + h
9∑

j=1

bj (τ )k̂ j .

3. TESTING AND RESULTS

3.1 Testing Our Methods

We created improved interpolants and implemented the resulting modified
methods for several integrators including the 4/5 pair that is ode45 in Mat-
lab, as well as methods implemented by the authors based on 5/6 and 7/8 RK
formula pairs originally introduced by Verner [1993]. Each such method was
extensively tested using the DETEST package [Pryce and Enright 1987], which
assesses the performance of a method on a suite of 25 problems.

In addition, we closely studied the following one-dimensional problems taken
(along with their names) from DETEST. These were chosen because they have
closed-form solutions which facilitate easy evaluation of both local and global
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Table III. The Meanings of Each Letter Used in the Names of Curves in Several Figures to

Follow (Note that not all variations were used in all tests. For example, compensated summation

was not necessary for the method ode45, and so we do not show that variation for ode45.)

(Ss) Error/defect evaluated only at τ∗ [S], or the max over τ ∈ [0..1] [s]. Ideally, we would

like τ∗ to be near the point of maximum defect.

(Cc) Use compensated summation when summing Butcher Tableau? C=yes, c=no.

(Bb) Precomputed accurate values of bj (τ ) of (9) and its derivative at τ = τ∗? B=yes, b=no.

(Ee) Reduce roundoff error in (9) and its derivative by ordering terms in increasing

absolute value at run-time? E=yes, e=no.

(Nn) Reduce roundoff error in (9) and its derivative by compile-time ordering by

increasing absolute value of the coefficients β j k? N=yes, n=no.

(Qq) Use QUAD precision to evaluate (9) and its derivative? Q=yes, q=no.

solutions:

Problem A1: y ′ = − y . (14)

Problem A2: y ′ = − y3/2. (15)

Problem A4: y ′ = y
4

(
1 − y

20

)
. (16)

In addition, we used problem D3, which is the planar, two-body Kepler prob-
lem, which has four components: position x, y , and velocity vx , vy . The Kepler
problem also has a closed-form solution.

For each problem and method above, we studied the effect of several vari-
ations. Since we want the magnitude of the defect at τ∗ to be a good approxi-
mation of the maximum defect, we compare the two. Since the coefficients in
the Butcher Tableau of the discrete Runge-Kutta formula and the coefficients
defining the interpolant can both be quite large, we investigated the effect of
compensated summation, which attempts to decrease the effects of roundoff er-
ror by performing all sums using an algorithm that partially extends precision
beyond the hardware floating point precision (see, e.g., Higham [2002]). We also
studied the effect of ordering the terms β j k in (9) and its derivative (used in
computing the defect) both by term size at run-time, and by coefficient size at
compile-time. Finally, to compare against the best answer we can expect (when
roundoff error dominates), we compared each of these variations to one that
uses QUAD precision in all internal calculations. These variations (related to
roundoff) are summarized in Table III.

Note that for a vector-valued f such as that associated with the Kepler prob-
lem, the defect is a also vector-valued function that changes from step to step.
After some preliminary tests on many problems across many steps and accu-
racy requests, we found that looking at a single component of the defect on the
first step of an integration reflected the typical situation that arose on each step
of a system. For the Kepler problem, we also looked only at the first component
of the vector, after verifying that all components were similar.

3.2 U-Shaped Curves

A useful tool to visualize both the order of an integration scheme and the effect
of roundoff is the so-called U-shaped curve, or U-curve for short, in which we
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Fig. 1. Magnitude of the local error as a function of stepsize for the standard O(h5) interpolant,

z(t), used by the Matlab integrator ode45. Each figure is for a different problem, A1, A2, A4, and

D3, respectively. In all cases the slope of the curve (at least above the machine precision of 1e-16) is

5.0, which corresponds to the expected local order of the method. We plot the U-curves as computed

in several different ways for comparison. The three letters of the name of the curve correspond to

the options explained in the text and enumerated in Table III.

plot either the discrete local error or the maximum observed defect associated
with a single step versus the stepsize. (Such a curve can be determined for any
step of the integration. After some preliminary computations, we found that the
curves for a given problem were generally qualitatively similar for all steps. As
a result we have chosen to report the curves corresponding to the first step
of the integration.) We compute the local error by comparing the approximate
solution with the exact local solution for each problem. The slope of the U-curve
on a log-log plot gives the observed order. In Figure 1 we plot the U-curve of the
local error for the standard O(h5) interpolant z(t) used by Matlab’s ode45 for our
four problems. The value of τ∗ for this method, with the interpolant as given in
(12), is τ∗ = 0.23. (This value is chosen simply to avoid zeros of the polynomials
q1, . . . , qK (10).) We plot the U-curves as computed in several different ways
for comparison. The first three letters of the name of the curve in the legend
correspond to the options described in Table III. As can be seen, for problems
A1 and A2, the local error at τ∗ (although we would not be able to measure it
in practice) closely approximates the maximum error, but for problems A4 and
D3 it is a significant underestimate. This is not surprising since τ∗ is chosen
based on attempting to control the defect rather than the local error (and the
maximum local error usually occurs at the right endpoint, τ = 1).

Figure 2 is similar to Figure 1 except we plot the U-curves of the defect
rather than the local error. The defect is computed based on evaluation of (5)
for the standard O(h5) interpolant. The U-shaped curves for both interpolants
u(t) and v(t) (not shown) are qualitatively similar, except the order of the error
and defect (and hence the slopes of the U-curves) are each higher by 1 than
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Fig. 2. Plots similar to Figure 1, except this time we plot the magnitude of the defect. The slopes

of the curves are all about 4.0, because the defect of the Matlab ode45 polynomial interpolant is

O(h4). Note that for problems A1, A2, and A4, the defect at τ∗ (curve Sqb) is virtually identical to

the maximum defect across τ ∈ [0, 1] (curve sqb); however, for problem D3, the maximum defect

occurs elsewhere and so our estimate at τ∗ is a too low by about a factor of 3. Note also that roundoff

affects the computation of the maximum defect near limiting precision, so that the leveling of the

sqb curves near 1e-14 is due to roundoff. If we precompute accurate coefficients for the polynomial

at τ∗ (curve SqB), we eliminate these roundoff effects, allowing computation of the defect at τ∗ as

accurately as if we had used QUAD precision (curve SQb). No compensated summation was used.

in Figures 1 and 2. Note that for problem D3, the defect at τ∗ is a significant
underestimate of the maximum defect for both the standard O(h5) interpolant
z(t) (shown) and for u(t) (not shown).

Figure 3 plots the shape of the defect of all four problems across τ ∈ [0, 1]
for a typical stepsize (normalized so they all have the same magnitude). It
clearly demonstrates that the shape of the defect—and in particular its maxi-
mum value—is different for the four problems for both the standard interpolant
z(t), and for u(t). Thus there is no single choice of τ∗ that will reliably estimate
the maximum defect for all problems for these interpolants. The figure also
demonstrates that the shape of the defect computed for v(t) is very similar
across all four problems, and that the maximum occurs very close to the ex-
pected value of τ∗ = 0.23. This allows accurate, robust estimation of the maxi-
mum defect using only one function 0evaluation at τ∗.

3.3 The 5/6 Pair

The tableau for the 5/6 pair, along with the derivation of the O(h6) interpolant
was described in Verner [1993], and implemented and investigated in Enright
[1993]. There are eight stages to define this discrete explicit method. One extra
function evaluation results in an interpolant of O(h6) accuracy, and an addi-
tional two evaluations define an optimal order interpolant, u(t), of O(h7) ac-
curacy. Recomputing these final three stages (giving a total of six additional
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Fig. 3. The shape of the 4/5 pair defect curves for all four problems and three interpolants across

an entire step from τ = 0 to τ = 1. The horizontal axis is labeled by percentage across the timestep,

and the curves are normalized so that they are all unity at τ∗ = 0.23. The top-left plot is for the

standard O(h5) interpolant z(t) of Matlab’s ode45, while the right plot is for u(t) of (13), which

has local error O(h6). Note that the maxima (in magnitude) occur at different places for different

problems, and that the max defect is often several times larger in magnitude than that at τ∗; in some

cases (not shown) it was observed to be 40 times larger. The bottom plot is the for the interpolant

v(t), which has O(h6) local error. Its defect has a very similar shape (for a typical stepsize) for all

four problems, so that the defect at τ∗ is very close to the maximum defect.

Fig. 4. U-shaped-curves for the 5/6 pair interpolant u(t) operating on the Kepler problem (problem

D3); local error is on the left, and defect on the right. The letters describing the curves are from

Table III. Also plotted are straight lines demonstrating that the local error of the improved inter-

polant is 7th order and the defect 6th order, respectively. As seen for the 4/5 pair, roundoff has a

significant effect when interpolating at points other than at τ∗, and pre-computing the accurate

polynomial at τ∗ virtually eliminates roundoff at τ∗, giving results as good as if QUAD had been

used. Similar effects are seen for the other problems.

function evaluations over the original eight) defines the interpolant, v(t).
Figure 4 plots the U-curves for the interpolant u(t) for this 5/6 pair on the
Kepler problem. Unlike the 4/5 pair, the defect at τ∗ (right figure) is only a
slight underestimate of the maximum defect across the timestep, at least for
these four problems. As Figures 5, 6, and 7 demonstrate, however, the shape
of the defect across a step for the O(h6) interpolant or for u(t) is still a strong
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Fig. 5. Shape of the local error (left) and defect (right) across a step for the O(h6) interpolant for

the 5/6 pair, operating on all four problems.

Fig. 6. Same as Figure 5, but for the O(h7) interpolant u(t).

Fig. 7. Same as previous two figures but for the O(h7) interpolant v(t) (whose defect is O(h6)),

plus the theoretical Q1(τ ) and q1(τ ). Note the shape of the defect is almost problem independent,

and corresponds well to the shape of the theoretical defect q1(τ ).

function of the problem, and so the sample at τ∗ could potentially be worse for
problems other than these four. (The τ∗ for u(t) was 0.1943, based on avoiding
zeros of the interpolating polynomial applied to linear problems, as described
previously.) Figures 5, 6, and 7 plot the computed local error and defect across
a single step for the 5/6 pair operating on all four problems. As with the 4/5
pair, we see that the shape of the defect for v(t) is almost problem independent,
allowing a single evaluation of the defect at τ∗ to give a reliable estimate of the
maximum defect across the timestep. In Appendix A, we include Maple code
for the derivation of q1(τ ), whose shape corresponds to that of the defect of v(t),
and whose maximum occurs at τ∗ ≈ 0.1509.
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Fig. 8. U-shaped-curves for the 7/8 pair interpolant u(t) operating on the Kepler problem (problem

D3). The letters describing the curves are from Table III. Local error is in the left two figures,

defect in the right two figures. The top two figures compare QUAD at τ∗ to all cases computing

the maximum error and defect across τ∗ ∈ [0, 1], without precomputing accurate values of the

polynomial coefficients. The bottom two figures compare QUAD at τ∗ to all cases computing the

error and defect at τ∗ with precomputing accurate polynomials bj (τ∗) of (9).

3.4 The 7/8 Pair

The derivation of the tableaus for several 7/8 pairs was described in Verner
[1993]. We have chosen one member of this family of Runge-Kutta formulas.
(The actual formula pair chosen can be identified by specifying the abcissa vec-
tor, c. We do this in Appendix B.) Figure 8 reports several U-shaped curves
associated with this 7/8 pair corresponding to problem D3. Local error is on the
left, defect is on the right. The top two figures compare the QUAD-computed
value of the error and defect at τ∗ ≈ 0.92 to the maximum error and defect
across the step, respectively. Two broad observations are clear from the top two
plots: first, the error and defect at τ∗ is a significant underestimate of the max-
imum across the step (which explains the gap between the QUAD and all other
curves in both top diagrams); and second, there is significant roundoff error as-
sociated with evaluation of (9) and its derivative when the timestep is smaller
than about 0.2 (which is why the top curves level off well above machine preci-
sion). Various methods of compensated summation (represented by the letters
C and E in the labels, described in Table III) have surprisingly little effect in de-
creasing the roundoff in evaluating (9). The significant roundoff demonstrated
in the top left figure (local error) results from evaluation of (9), which has several
large magnitude (≈ 5 × 104) polynomial coefficients for the 7/8 pair; the prob-
lem is exacerbated in the right figure (defect), where we evaluate the deriva-
tive of that polynomial, which has even larger magnitude coefficients (up to
4 × 105).

The bottom two figures in Figure 8 compare the QUAD-computed value of
the error and defect at τ∗ to the double-precision-computed values at τ∗ with
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Fig. 9. Shape of the defect across a typical step for the interpolants of the 7/8 pair operating on

all four problems. The interpolants are the nonoptimal O(h8) interpolant (top-left), u(t) (top-right),

and v(t) (bottom-left) using stepsizes typical of double-precision integration. On the bottom-right,

we replot the shape of v(t), using a smaller stepsize giving QUAD-precision accuracy for all four

problems, to demonstrate the limiting behavior of v(t).

precomputed accurate values for the polynomials bj (τ∗), including again various
methods of compensated summation. These figures demonstrate that (i) pre-
computing accurate values of polynomials b′

j at τ∗ (lines labeled with a capital
B), which are needed to compute the estimate of the maximum defect, recovers
effective QUAD precision (bottom-right figure), and (ii) again none of the types
of compensated summation significantly improve the solution (both figures).
In fact, the local error (bottom-left figure) is virtually identical for all the non-
QUAD cases, demonstrating that compensated summation has surprisingly
little effect. Similar results are seen for the other problems. DETEST results
also confirmed this conclusion, in that no significant change in DETEST results
is observable when compensated summation is added.

The shapes of the defects across a step for the 7/8 interpolants are plotted in
Figure 9. Ironically, the 7/8 pair is so accurate that even when the local error and
defect are close to the machine precision for problem A2, the stepsize is too large
to reflect the asymptotic behavior of the optimal interpolant, although for the
other three problems we see that the limiting polynomial is being approached.
In the bottom-right figure, we resort to QUAD-precision integrations with defect
tolerance set to 1e-25 in order to force all problems to have a small enough
stepsize to demonstrate the limiting behavior of the defect associated with v(t),
and in Figure 10, we demonstrate how this limiting polynomial is approached as
the stepsize decreases for problem A2. This also provides a lesson: if the problem
is too “easy” to integrate, then defect measurements at τ∗ may be inappropriate
even for the improved interpolant, because the stepsize is not small enough for
the limiting behavior to be exhibited.
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Fig. 10. How the shape of A2’s defect curve for the 7/8 pair converges on the asymptotic shape as

the timestep decreases. Sixteen stepsizes are plotted, ranging from 0.4823 decreasing successively

by a factor of 1.2 down to 0.0313.

We note that QUAD precision versions of the interpolant and derivative are
available to the user in our package, which is especially useful for the 7/8 pair.
A full QUAD precision version of the 7/8 pair is also provided.

4. DISCUSSION

When using defect control, it is misleading to say we are using a “pair” of RK
formulas, since we do not use the lower-order formula in our estimates. This
allows us to avoid some of the function evaluations related only to the lower
order of the pair, but of course we generally add more than we save. These meth-
ods tend to be more reliable and between about 30–70% more expensive than
traditional implementations of the same formula pair. Note that, although we
could be much more precise regarding the relative cost per step of the different
implementations, they use different error control strategies and therefore the
number of steps to solve a problem might be quite different. It should also be
acknowledged that the sensitivity of the eighth-order method to roundoff er-
ror, although typical of high-order methods using defect control, only affects
performance at very stringent tolerances (accuracy requests near the unit
roundoff level). In general our double precision implementation of the eighth-
order method is more effective than the sixth-order method at moderate to
stringent tolerances.

Note that our analysis and our limited testing have shown that, without a rig-
orously justified technique for estimating the maximum defect (as is available
with the improved interpolants, v(t)), the estimate can be a severe underes-
timate. As this will likely only occur rarely and only on isolated steps, it will
not necessarily affect the reliability of the integration. (In most step-selection
schemes, constraints on the change in stepsize from step to step will reduce the
potential impact of such an isolated deceived estimate.)

We inadvertently observed the effect of errors in the coefficients of the tableau
on the accuracy of the integrations. In particular, near the beginning of this
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investigation our 7/8 pair had its coefficients computed using only double-
precision accuracy and, because of ill-conditioning, they were accurate to only
seven to eight significant figures. We later recomputed the coefficients in QUAD
precision, giving coefficients accurate to 16 digits. We then tested both versions
using DETEST (assessing the performance of the defect-based error control)
and found very little difference in performance. Only at the most stringent er-
ror tolerances was there any difference (in some cases) and these differences
were not significant. In particular, when a failure occurs in the original ver-
sion, it occurs for the version with more accurate coefficients at the same point
or very close by. In some cases, there is a bit of improvement in the accuracy
obtained or in the number of steps to achieve a given accuracy, but overall
the reported summary statistics are not significantly different. This could be
a result of the fact that satisfying the order conditions exactly may not be as
important as satisfying a small residual. We know that the original version
had a small residual for the order conditions that we checked (even though the
accuracy of the coefficients was low).

5. CONCLUSIONS

In this article, we have investigated several explicit, continuous Runge-Kutta
methods in which the maximum defect across a step can be reliably and effi-
ciently monitored and controlled. We have analyzed interpolants whose defect,
in the limit of small stepsize, has a predicted shape dependent only on the in-
tegration method and not the problem being integrated. Although methods of
similar functionality have been proposed in the past, ours is different in that
the order of the interpolant is optimal relative to the order of the discrete for-
mula. This results in a method in which the error control is both efficient and
theoretically justified for all sufficiently smooth problems.

APPENDIX

A. DERIVATION OF q1(τ ) FOR THE 5/6 PAIR

The shape of the local error curve for the asymptotically justified interpolant
v(t) for the 5/6 pair is denoted Q1(τ ). Its derivative, q1(τ ) = Q ′

1(τ ), defines the
shape of the defect curve, where Q1(τ ) is the unique polynomial of degree 6
satisfying

Q1(1) = 1,

Q ′
1(0) = Q1(0) = Q ′

1(1) = Q ′
1(0.5) = Q ′

1(0.9) = Q ′
1(0.95) = 0,

where τ = 0.5, 0.9, and 0.95 are the points at the last stages of the interpolant
that are recomputed as described earlier.

Note that if we have

Q1(x) = b0 + b1x1 + · · · + b6x6

then the linear system that determines the bi ’s (with the constraints defined
above at 0 and 1) is simple to write. For the constraints at 1/2, 9/10, and
19/20, the linear equation contains powers of these points and corresponds to
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a Vandermond matrix. Using Maple to solve for Q1(τ ) for the 5/6 pair, we have

Q1:=x->b0+b1*x+b2*x^2+b3*x^3+b4*x^4+b5*x^5+b6*x^6;
q1:=x->b1+2*b2*x+3*b3*x^2+4*b4*x^3+5*b5*x^4+6*b6*x^5;
solve({q1(0)=0,Q1(1)=1,Q1(0)=0,q1(1)=0,q1(1/2)=0,q1(9/10)=0,q1(19/20)=0},

{b0,b1,b2,b3,b4,b5,b6});

Maple then gives

b0 = b1 = 0, b2 = 513/17, b3 = -1766/17, b4 = 2478/17, b5 = -1608/17,
b6 = 400/17.

Solving for the zeros of q′
1(t) allows us to determine that the maximum of

|q1(x)| for x ∈ [0, 1] occurs at x ≈ 0.15087.

B. PRELIMINARY MATLAB VERSIONS OF THE INTEGRATORS

Our implementations of these methods are in Fortran with an interface mod-
eled after DVERK [Hull et al. 1976]. To implement them in Matlab, we used
Matlab’s MEX interface that allows Fortran programs to be directly interfaced
with Matlab code.

The mapping between Matlab’s ODE options datatype and the options in our
current Fortran implementations is not one-to-one; the only options that map
cleanly are the suggested initial timestep HSTART and the maximum allowed
timestep HMAX. Although our Fortran version can specify a smallest allowable
timestep and the maximum number of steps, the Matlab option has no facility
for specifying these. The tolerance specifications are also different. Matlab has
both RelTol and AbsTol, while our Fortran implementations have only one
tolerance, but five different ways to interpret it.

We have implemented an interface that is as similar to ode23 and ode45 as
we can reasonably make it, except for events. We currently have three new
integrators called ode45d, ode56d, and ode78d.

Both the Fortran and Matlab implementations are available from the
authors on request, including a QUAD precision version of the 7/8 pair.
For identification purposes (cf. Section 3.4), the c vector we use for the
7/8 pair is the one called CVSS8 in Enright [1993], whose value is c =
[0, 139/2500, 473499/4616000, 1420497/9232000, 1923/5000, 923/2000,
769/5000, 8571/10000, 0.950522279549898543264080746156213, 3611/5000,
15/16, 1, 1, 1, 0.31101776349538638639274173188291, 0.407, 0.103, 41/125,
0.41, 0.313, 0.681].
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