. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
be the first-order ODE.
Note that is the solution of (9)
using
as the initial condition and integrating
to time
i+1. Then
is the Jacobian of
. The Jacobian measures how
changes if
is changed by a small amount. The resolvent
is the integral
of J(t) along the path
, and describes how a small perturbation
from
at time
gets mapped to a perturbation
from
at time
. That is,
is the solution of the variational equation
where I is the identity matrix.
The reason the arguments to R seem reversed is for notational
convenience: they satisfy
the identity , and so a perturbation
at time
gets mapped to a perturbation
at time
by the
matrix-matrix and matrix-vector multiplication
[30].
Finally, the linear map in the GHYS refinement procedure is
.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
where is symmetrical, and has real but not necessarily
positive eigenvalues. If
is an eigenvalue of
, then
are eigenvalues of J. If
is positive, this
gives one expanding and one contracting direction; if
is negative,
it gives directions that neither expand nor contract, but ``rotate'' in
some sense. These are the directions that are non-hyperbolic.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .