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Abstract

N -body systems are chaotic. This means that numerical errors in their solution are magnified
exponentially with time, perhaps making the solutions useless. Shadowing tries to show that
numerical solutions of chaotic systems still have some validity. A previously published shadowing
refinement algorithm is optimized to give speedups of order 60 for small problems and asymptotic
speedups of O(N) on large problems. This optimized algorithm is used to shadow N -body systems
with up to 25 moving particles. Preliminary results suggest that average shadow length scales
roughly as 1/N , i.e., shadow lengths decrease rapidly as the number of phase-space dimensions
of the system is increased. Some measures of simulation error for N -body systems are discussed
that are less stringent than shadowing. Many areas of further research are discussed both for
high-dimensional shadowing, and for N -body measures of error.
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Chapter 0

Introduction and Motivation

“Prediction can be difficult, particularly about the future.”
— Mark Twain

Astrophysical N -body systems are chaotic. In other words, they have sensitive dependence on
initial conditions. This means that the phase-space distance between two solutions whose initial
conditions differ by an arbitrarily small amount will increase exponentially with time. Since com-
puters constantly make small errors in the computation of such solutions, it is guaranteed (with
probability 1) that a computed solution will diverge exponentially from the true solution with the
same initial conditions. Thus, it is possible that numerical solutions for chaotic systems are over-
whelmed by exponential magnification of small errors, which might mean computed solutions are
worthless. This could be the case even if quantities such as energy or momentum are conserved to
arbitrary accuracy, because there are infinitely many solutions whose energy is exactly the same,
but have vastly different phase space trajectories.

0.0 Introduction

Numerical simulation is a standard tool in the repertoire of the modern physical scientist’s study of
complex systems. The astronomical literature is brimming with results of large N -body simulations.
The proliferation of titles such as “Simulations of Sinking Galaxies” [33], “Dissipationless Collapse
of Galaxies and Initial Conditions” [23], “A Numerical Study of the Stability of Spherical Galaxies”
[24], “The Global Stability of Our Galaxy” [30], and “Dynamical Instabilities in Spherical Stellar
Systems” [4] shows that much trust is placed in the results of these simulations.

Can these simulation results really be trusted? What conditions must a simulation meet for
its accuracy to be assured? Is there a limit on the length of simulated time a system can be
followed accurately? What measures can be used to ascertain the accuracy of a simulation? More
fundamentally, what do we mean by “accuracy” and “error” in these simulations?

All these questions have been addressed in the past with varying degrees of success. There is still
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some controversy about whether simulations of N -body systems can be trusted. The main reason
for this concern is that N -body systems are chaotic — small perturbations in the phase-space co-
ordinates at any point result in a vastly different phase-space solution a short time later. Given
that numerical computations are constantly introducing small errors to the computed solution, we
must naturally ask what effect these errors have on computed solutions.0

0.1 History of exponential divergence in N-body systems

Miller [26] was the first to show that small changes in the initial conditions of an N -body sys-
tem result in exponentially diverging solutions. Lecar [22] co-ordinated a study between many
researchers, each of whom independently computed the solution to an N -body problem with iden-
tical initial conditions. They found that different algorithms and computers gave results in which
some measures differed by as much as 100%. More recent work on the growth of errors includes
Kandrup and Smith [19], who showed that under a large range of parameters, the time scale over
which small perturbations grow by a factor of e (Euler’s constant, 2.7182 . . .), called the e-folding
time1, is comparable to the crossing time (the average time it takes a particle to cross the sys-
tem once). Goodman, Heggie, and Hut [10] developed a detailed theory of the growth of small
perturbations, and verified it with simulation to show that the exponential growth of small errors
results mostly from close encounters, which occur infrequently. This is an interesting result because
it says that, even though the full phase-space solutions may experience exponential error growth,
this growth is due mainly to a few particles that undergo close encounters. Perhaps the results of
collisionless systems can be trusted for longer than collisional ones, since close encounters have a
much smaller effect in the former. Kandrup and Smith [21] showed that as softening is increased
(i.e., the collisionality is decreased), the e-folding time grows slightly faster than linearly. (i.e., the
Lyapunov exponent decreases, so errors are magnified more slowly.) They agree with Goodman
et al. that the error magnification is due more to the rare individual particles whose errors grow
much more quickly than the average, although they claim the global potential also plays a role.
Presumably the particles whose errors grow more quickly than average are ones that have suffered
close encounters.

Since the time-scale for the growth of errors is so short (the errors can be magnified by a factor
of ∼ 10 each crossing time), the results of all N -body simulations may be suspect. If the relative
error per crossing time for a simulation is 10−p, then after about p crossing times, a particle’s
position will have an error comparable to the size of the system — in other words, all information
will have been lost about the particle’s position. Typical simulations today have a p between 4 and
8.

I am not aware of any convincing justification for the belief that statistical measures taken from
these simulations are valid, although I tend to share the same “warm fuzzy” feelings that most
astronomers have — namely that, in some sense, large N -body simulations give valid statistical
results. The problem is, in what sense are they valid, if any; how valid are they; and finally, how

0There is a subspace of measure zero, called the stable subspace, in which small perturbations do not result in
vastly different solutions. But since it has measure zero, the probability of random numerical errors being restricted
to this subspace is zero.

1The e-folding time is 1/λ, where λ is the Lyapunov exponent.
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badly are we allowed to integrate before validity is lost?

0.2 The kinds of errors made in N-body simulations

0.2.0 Input and output Errors

I first distinguish between two general types of errors.

Input errors are errors that can be controlled directly while devising and implementing models
of N -body systems. Input errors in N -body systems may also be called approximations, and
may be divided into modelling approximations and implementation approximations. Modelling
approximations simplify the system being simulated, and include:

• finite-N sampling, also called discreteness noise, because the N used is generally several orders
of magnitude less than the N of the real system being modelled. The general consensus seems
to be that this is the limiting source of error in current large N -body simulations. For example,
Hernquist, Hut and Makino [15], Barnes and Hut [5], and Sellwood [31] explicitly say this;
Singh, Hennessy and Gupta [32] have a “master error equation” in which clearly discreteness
noise is dominant; and Pfenniger and Friedl [27], Jernigan and Porter [17], and Barnes and
Hut [3] all imply that using the largest possible N is a desirable characteristic.

• force softening, i.e., replacing r2 with (r2 + ε2
soft) in the denominator of the gravitational

force computation for some small constant εsoft, usually chosen to approximate the average
inter-particle separation. This is done because it allows a smaller N to approximate a larger
N , and also to eliminate the singularity at r = 0 [6].

• reducing the dimensionality of the problem from 3 to 2, if applicable. This is not done as
often as in the past.

Implementation approximations measure how well the implementation simulates the model, and
include such things as

• numerical integration truncation error.

• machine roundoff error.

• Using approximate force computation algorithms like the Barnes-Hut tree code [3] or the Fast
Multipole Method [12]. Hernquist, Hut, and Makino [15] try to show that the effect of this
error is negligible, by showing that the energy of each individual particle is conserved to a high
degree regardless of whether the Barnes-Hut or the direct O(N 2) algorithm is used. However,
they used the leapfrog integrator with a constant timestep, which guarantees that the energy
error for the entire system is bounded. I’m not sure if this integrator guarantees that the
energy of individual particles is conserved; if it does, the results may not be as conclusive as
they appear. Furthermore, as discussed below, energy conservation may not be a stringent
enough error criterion.
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Output error measures the difference between the output and a real system, and results from
the cumulative effect of all the input errors. A simulation with small output errors is said to have
high accuracy. Given that N -body systems are chaotic, and that their simulation introduces the
above input errors, we must now ask precisely what we mean by the “accuracy” of a simulation.
Amazing as it may seem, there is currently no clear definition of simulation accuracy [29]. Obviously,
attempting to follow the individual paths of all N particles is infeasible; Goodman, Heggie and Hut
[10] show that this would require O(N) digits of precision. On the other hand, most astronomical
publications quote energy conservation as their only measure of output error, even though there
are infinitely many solutions with equal energy but vastly different phase-space trajectories. Some
of these simulations even use an energy-conserving integrator like leapfrog, in which case quoting
energy conservation is of dubious merit, because the integrator conserves energy no matter how big
other errors become!

0.2.1 Macroscopic statistics vs. microscopic details

In large N -body simulations, one is not usually concerned with the precise evolution of individ-
ual particles, but instead with the evolution of the distribution of particles.2 Most practitioners
know that the exponential magnification of errors means they cannot possibly trust the microscopic
details, but they believe that the statistical results are independent of the microscopic errors, al-
though little work has been done to test this belief [10]. Barnes and Hut [5] claim that astrophysical
N -body simulations require only “modest” accuracy levels, but also concede that quoting energy
conservation isn’t enough, and that more stringent tests are needed.

An example of conservation of macroscopic properties is given by Kandrup and Smith [19]. They
show that a histogram of the e-folding times of individual particles stays constant within statistical
uncertainties, even though the phase-space distribution of those particles is vastly different for
different initial conditions.

However, until more stringent tests are applied to N -body simulations, we’ll never know, for
example, if our simulations of spiral galaxies produce spirals for the same reason that real spiral
galaxies do.

0.2.2 Suggestions for measures of output error

We now must distinguish between the desired properties of simulations, and deviations that simu-
lations make from those properties, i.e., the output errors they make.

0. We could demand that a simulation precisely follow the exact evolution of the true solution.

This would be possible in principle for chaotic maps, but not for ODEs. For maps, an
arbitrary precision arithmetic package could be employed, but this is infeasible because it
requires keeping all the digits of every operation, and each multiplication operation typically
doubles the number of digits.

2This is in stark contrast to N -body simulations of our solar system, in which case we are interested in the precise
evolution of the particular solar system we live in, not a hypothetical one very similar to it.
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For problems in which the map is really an ODE integration, like N -body systems, this is not
possible even in principle, because no numerical integration routine is known that can give
exact solutions to arbitrary nonlinear ODEs.

1. Next, we could demand that a simulation have the property that the phase-space distance
between the computed solution and the true solution with the same initial conditions be
bounded by a small constant.

If this property could be realized, all our troubles would be over, for it is a sufficient condition
under any reasonable definition of simulation validity. Unfortunately, ODE integrations have
truncation errors, so the magnitude of these errors will be magnified exponentially on a short
time scale. Goodman, Heggie and Hut [10] offer some solace in that the exact evolution could
be closely followed for a long time if O(N) digits are kept, but this is currently infeasible.
There seems little hope of obtaining valid simulations by this criterion.

2. At the least stringent extreme we can demand that such physically conserved quantities as
energy, and linear and angular momentum, are conserved to some small error.

Certainly global conservation of these quantities is necessary for any reasonable definition of
simulation validity, but it is unclear what other properties are implied by such conservations.

There are several possibilities between these extremes.

3. A little less stringent than (1), we can demand that a simulation follow, with some small
error, the exact phase-space evolution of a set of initial conditions that is close to the actual
set of initial conditions used in the simulation.

Since, with large simulations, we are only interested in the evolution of the distribution of
particles, and since the initial conditions are usually generated from some random distribution
anyway, this is almost as good as option (1). The study of shadowing relates precisely to this
property.

What if shadowing turns out also to be an unattainable goal? We will need to demand less
stringent properties of simulations, such as:

4. Even if a shadow solution cannot be found for a particular simulation, it is still possible that
the global distribution of particles is close to the exact global distribution of a true solution
with similar initial conditions. In other words, a low-resolution, “smoothed” animation of the
real system and the computed solution would be indistinguishable to the unaided eye.

This would be almost as good as shadowing, at least for collisionless systems, but it is unclear
how one would go about proving the existence of this property for a simulation.

5. If the global distribution cannot be followed closely, then perhaps at least some statistical
properties of the distribution could be reproduced by a simulation. A reasonable statistical
property may be something like the time-evolution of the Fourier spectrum of the density
distribution in spherical or cylindrical co-ordinates, so that the wavelengths of the distribution
(i.e., the relative abundance of “clumpiness” of various sizes) are similar to those of the real
system.

4



This is the least stringent property, that I can think of, that a large N -body simulation would
need to be considered valid; i.e., it is the weakest necessary condition I can think of. Note it
is more stringent than energy conservation. However, it is again unclear how one would go
about proving this property exists for a simulation.

It should be clear that the ordering in stringency of the above properties, from most to least
stringent, allows the following logical deductions: 0 ⇒ 1 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 2.

0.3 Summary of this thesis

Chapter 1 will more formally introduce and explain shadowing. Chapter 2 is the main body of
the work, which introduces the optimizations to the shadowing algorithm of Quinlan and Tremaine
[29], and talks about high-dimensional shadowing in general. Chapter 3 contains some prelim-
inary results on high-dimensional shadowing that will be of interest both to practicing N -body
astronomers, and to those interested in shadowing in general. Chapter 4 contains descriptions of
the many open questions and further avenues of research in this area. The appendix contains a
review of the basic N -body equations and the derivation of the Jacobian of an N -body system in
which M particles move amongst N − M fixed ones.
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Chapter 1

Shadowing

“It is in vaine to goe about to make the shadowe straite, if the bodie whiche giveth the shadowe
bee crooked.”

— Stefano Guazzo, Civile Conversation. (1574)

Shadowing is a branch of chaotic systems theory that tries to show that, even in the face of
the exponential magnification of small errors, numerical solutions have some validity. It does
this by trying to show that, for any particular computed solution (the “noisy” solution), there
exists a true solution with slightly different initial conditions that stays uniformly close to the
computed solution. If such a solution exists, it is called a true shadow of the computed solution. An
approximation to true shadowing is numerical shadowing, whereby an iterative refinement algorithm
is applied to a noisy solution to produce a nearby solution with less noise. If this iterative process
converges to a solution with noise close to the machine precision, the resulting solution is called a
numerical shadow. Numerical shadowing is very compute intensive, because it requires the storage
and manipulation of the full phase-space trajectory of the system, at much higher precision than
the original computation.

1.0 Introduction

1.0.0 Definitions

Throughout this thesis, when referring to mathematical variables, boldface will refer to vectors,
and italic will refer to scalars, matrices and functions. Scalars are written in small letters and
matrices in CAPITALS.

Some of the following definitions are taken, with minor modifications, from Grebogi, Hammel,
Yorke, and Sauer [11], hereinafter referred to as GHYS. The terms trajectory, orbit, and solution
are used interchangably throughout this thesis.

Definition. A true trajectory {xi}b
i=a of f satisfies xi+1 = f(xi) for a ≤ i < b. We are interested
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in the case where a and b are finite integers. For a chaotic map, f may be a simple equation,
such as the logistic equation f(x) = 1 − 2x2, which always maps the interval [−1, 1] onto itself.
For an ODE system like the N -body problem, f(x) represents the true solution of integrating the
phase-space co-ordinates x for one timestep.

Definition. {pi}b
i=a is a δf -pseudo-trajectory, also called a noisy orbit, for f if |pi+1−f(pi)| < δf

for a ≤ i < b, where δf is the noise amplitude.

Definition. For a ≤ i < b, the 1-step error made between step i and step i + 1 of the pseudo-
trajectory {pi}b

i=a is the vector ei+1 = pi+1 − f(pi). Thus, a true trajectory is one whose 1-step
errors are identically zero.

Definition of shadowing. The true trajectory {xi}b
i=a δx-shadows {pi}b

i=a on a ≤ i ≤ b if
|xi − pi| < δx for a ≤ i ≤ b. The two stages, of proving that a shadow exists, are refinement and
containment, defined below.

Definition. A shadow step is an interval, that can be larger than the internal timestep of a
numerical integrator, across which a 1-step error is computed.

Definition. The pseudo-trajectory {pi}b
i=a has a glitch at point i = G0 < b if for some relevant

δx there exists a true trajectory that δx-shadows {pi}b
i=a for a ≤ i ≤ G0, but no true trajectory

that δx-shadows it for a ≤ i ≤ G, for G > G0.

The first group of chaotic systems for which it was proven that shadow orbits exist was hyperbolic
systems [2, 7]. In a 2-dimensional hyperbolic system, there are two special directions called the un-
stable (or expanding) and the stable (or contracting) directions, which are generally not orthogonal.
Small perturbations along the stable direction decay exponentially in forward time, while small
perturbations in the unstable direction grow exponentially in forward time. The two directions
reverse roles in backwards time. A “trajectory” for such a system can be imagined as a point
moving in a 2D plane, evolving through a third dimension, representing time.

For such a system it was shown that, if the angle between the stable and unstable directions is
uniformly bounded away from 0, then a noisy trajectory can be shadowed for all time. For non-
hyperbolic systems, it appears that shadows may exist only for finite time. The most important
question in this regard is, how long can a noisy orbit be shadowed? If the time is at least as long as
most typical simulations of chaotic non-hyperbolic systems, then simulations have great validity; if
the shadowing time turns out to be too short, then a less stringent error measure must be resorted
to, such as one listed in Chapter 0.

Definition. Refinement is an iterative process that perturbs each point of a noisy orbit in an
attempt to produce a nearby orbit with less noise. A refinement iteration is successful if the
trajectory before the iteration has noise δ0

f and the trajectory after the iteration has noise δ1
f , and

δ1
f < µδ0

f , for some reasonable µ ∈ (0, 1). Otherwise the iteration is unsuccessful.

Definition. Containment is a rigorous method to prove the existence of a shadow orbit. See
GHYS for details. Although this is a good area for further work, containment is beyond the scope
of this thesis.
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The refinement algorithm that concerns us in this thesis is the one first presented in two dimen-
sions by GHYS, and generalized to handle arbitrary Hamiltonian systems by Quinlan and Tremaine
[29], hereinafter referred to as QT.

QT make the distinction between dynamical noise and observational noise. Observational noise
does not effect the future evolution of the system. Laboratory measurements of a macroscopic
system are usually of this type; another example is computer output that prints fewer digits than are
represented internally. In contrast, dynamical noise does effect the future evolution of the system.
The noise introduced by numerical solution of a system of ODE’s is dynamical. QT studied some
existing noise-reduction algorithms in an attempt to refine noisy trajectories of chaotic systems,
but none worked as well as that presented by GHYS. QT postulates that this may be because the
other noise reduction algorithms were designed to reduce observational noise, whereas the GHYS
procedure was designed to reduce dynamical noise in a chaotic system.

1.1 The refinement procedure of GHYS

1.1.0 Introduction

The refinement procedure of GHYS and QT can be likened to Newton’s method for finding a zero of
a function. Indeed, it may be possible to formulate it exactly as a Newton’s method with boundary
conditions, although this has not yet been shown. For pedagogical purposes, I will assume in the
following paragraph that the GHYS refinement procedure can be formulated as a Newton’s method.

The basic idea is as follows. Let P = {pi}S
i=0 be a trajectory with S steps that has noise

δ > ηεmach, where εmach is the machine precision, and η is some constant significantly greater than
1 that allows room for improvement towards the machine precision. Let ei+1 = pi+1 − f(pi) be
the 1-step error at step i + 1, where |ei+1| < δ for all i. The set of 1-step errors is represented by
E = {ei}S

i=1, and is estimated by a numerical integration technique that has higher accuracy than
used to compute P. This describes a function, call it g, taking as input the entire orbit P and
whose output is the set of 1-step errors E, i.e., g(P) = E. Since the 1-step errors are assumed to
be small, |E| is small. That is, P is close to a zero of g, if one exists. A zero of the function would
represent an orbit with zero 1-step error, i.e., a true orbit. This is an ideal situation in which to
run Newton’s method. If Newton’s method converges, then a true orbit has been found.

There are exactly two criteria for a trajectory P′ to be called a numerical shadow of P:

0. P′ must be substantially less noisy than P. Until further work can show a less stringent
condition, we will assume that P′ requires noise comparable to the machine precision. In
other words, P′ must have small 1-step errors.

1. The distance between P′ and P must be bounded by some appropriately chosen constant
δP′ that is small in comparison to the typical scale of the system. For example, for an N -
body system roughly confined to the unit box, a reasonable maximum shadow distance is
comparable to the inter-particle separation, or about 10−2, whichever is smaller. In essence,
this says that if a human observer can’t see the difference between two paths viewed on a
figure with the unaided eye, then the distance is probably small enough.
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Any trajectory satisfying these criteria, no matter what algorithm or heuristic “magic” is used to
produce it, can be called a numerical shadow of P. Later in this chapter a seemingly extremely
näıve refinement procedure will be introduced, called Stable Local Error Subtraction or SLES, which
is completely different from the GHYS procedure, whose speed is comparable to a highly optimized
GHYS procedure, but whose reliability has not yet been rigorously tested.

1.1.1 The GHYS refinement algorithm

This section presents the GHYS refinement procedure for a two-dimensional Hamiltonian system.
Assume we have a noisy orbit P = {pi}S

i=0, and we want to find a less noisy orbit {p̃i}S
i=0. The

1-step errors are estimated by
ei+1 = pi+1 − f̃(pi)

where f̃ is an integrator with higher accuracy than the one used to compute P. The refined orbit
will be constructed by setting

p̃i = pi + ci,

where ci is a correction term for step i. Now,

ci+1 = p̃i+1 − pi+1

≈ f̃(p̃i) − (ei+1 + f̃(pi)), if p̃i+1 ≈ f̃(p̃i)

Assuming the correction terms ci to be small, then f̃(p̃i) can be expanded in a Taylor series about

f̃(pi):

f̃(p̃i) ≈ f̃(pi) +
∂f̃(pi)

∂pi
ci

= f̃(pi) + Lici,

where Li = ∂f̃(pi)
∂pi

is the linearized map. For a discrete chaotic map, Li is just the Jacobian of the

map at step i. For a system of ODEs, Li is the Jacobian of the integral of the ODE from step i to
step i + 1.0 The final equation for the corrections is

ci+1 = Lici − ei+1. (1.1)

0 In other words, let
ṗ = h(t,p) (1.0)

be the first-order ODE. (Often written as y′ = f(t, y) in ODE texts.) Note that pi+1 = f(pi) is the solution of
equation 1.0 using pi as the initial condition and integrating h to time i + 1. Then J = ∂h

∂p
is the Jacobian of

equation 1.0. The Jacobian measures how ṗ changes if p is changed by a small amount. The resolvent R(ti+1, ti) is
the integral of J(t) along the path p(t), and tells us how a small perturbation δp from pi at time ti gets mapped to
a perturbation from pi+1 at timestep ti+1. That is, R(ti+1, ti) is the solution of the so-called variational equation

∂R

∂t
= J(t)R(t, ti), R(ti, ti) = I,

where I is the identity matrix. (The reason the arguments to R seem reversed is for notational convenience: they
satisfy the identity R(t2, t0) = R(t2, t1)R(t1, t0), and so a perturbation δp at time t0 gets mapped to a perturbation
at time t2 by the matrix-matrix and matrix-vector multiplication R2δp = R1R0δp.) Finally, the linear map in the
GHYS refinement procedure is Li = R(ti+1, ti) [13].
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As will be seen later, it is the computation of the linear maps Li, called resolvents, that takes
most of the CPU time during a refinement, because the resolvent has O(N 2) terms in it, and it
needs to be computed to high accuracy. Presumably, if one is interested in studying simpler high-
dimensional systems, a chaotic map would be a better choice than an ODE system, because no
ODE integration is needed.

If the problem were not chaotic, the correction terms ci could be computed directly from equation
1.1. But since Li will amplify any errors in ci that occur near the unstable direction, computing the
ci’s by iterating equation 1.1 quickly produces nothing but noise. Therefore, GHYS suggest splitting
the error and correction terms into components in the stable (si) and unstable (ui) directions at
each timestep:

ei = eui
ui + esi

si (1.2)

ci = cui
ui + csi

si. (1.3)

Computing the unstable unit direction vectors is currently done by initializing the unstable
vector at time 0, u0, to an arbitrary unit vector and iterating the linearized map forward with

ūi+1 = Liui, ui+1 = ūi+1/|ūi+1|. (1.4)

Since Li magnifies any component that lies in the unstable direction, and assuming we are not so
unlucky to choose a u0 that lies precisely along the stable direction, then after a few e-folding times
ui will point roughly in the actual unstable direction. Similarly, the stable unit direction vectors
si are computed by initializing sS to an arbitrary unit vector and iterating backwards,

s̄i = L−1
i si+1, si = s̄i/|s̄i|, (1.5)

where L−1
i can be computed either by inverting Li, or by integrating the variational equations

backwards from step i + 1 to step i. The latter is far more expensive, but may be more reliable
in rare instances. In any case, it is intended that LiL

−1
i = L−1

i Li = I, the identity matrix. There
may be more efficient ways to compute the stable and unstable vectors, possibly having to do with
eigenvector decomposition of the Jacobian of the map (not the Jacobian of the integral of the map),
but I have not looked into this.

Substituting equations 1.2 and 1.3 into equation 1.1 yields

cui+1
ui+1 + csi+1

si+1 = Li(cui
ui + csi

si) − (eui+1
ui+1 + esi+1

si+1) (1.6)

For the same reason that Li magnifies errors in the unstable direction, it diminishes errors in the
stable direction. Likewise, L−1

i diminishes errors in the unstable direction and magnifies errors in
the stable direction. Thus the cu terms should be computed in the backwards direction, and cs

terms in the forward direction. Taking components of equation 1.6 in the unstable direction at step
i + 1 (recall that Liui = ūi+1 lies in the same direction as ui+1), iterate backwards on

cui
= (cui+1

+ eui+1
)/|ūi+1|, (1.7)

and taking components in the stable direction, iterate forwards on

csi+1
= |Lisi|csi

− esi+1
. (1.8)
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The initial choices for cs0
and cuS

are arbitrary as long as they are small — smaller than the
maximum shadowing distance — because equation 1.8 damps initial conditions, and equation 1.7
damps final conditions. QT and GHYS choose them both as 0. This choice is probably as good as
any, but it can be seen here that if one shadow exists, there are infinitely many of them. (Another
justification of this is offered below.) Another way of looking at these initial choices for cs0

and cuS

is that they “pinch” the growing components at the final end point, and the backwards-growing
components at the initial point, to be small, so that (p̃0 − p0) · s0 = 0 and (p̃S − pS) · uS = 0.
That is, boundary conditions are being forced on the problem so that the exponential divergence is
forcibly masked, if possible.

Note that these boundary conditions allow the initial conditions for the shadow and noisy orbits
to differ along the unstable direction. In fact, this must occur if the change in initial conditions is
to have any effect. That is, when looking for a shadow, if perturbations are only allowed in the
stable direction, those perturbations would die out, leading the “shadow” to follow the true orbit
that passes through our initial conditions — the one that is already known to diverge exponentially
from the computed (noisy) orbit.

Generalizing to arbitrary Hamiltonian systems

This section is derived from QT’s Appendix B, although it is presented slightly differently.

If the configuration space is D dimensional, then there are 2D dimensions in the phase space. It
can be shown that in a Hamiltonian system, the number of stable and unstable directions is each

equal to D. At timestep i, let {uj
i}D

j=1 be the D unstable unit vectors, and let {sj
i}D

j=1 be the D
stable unit vectors. For any particular timestep, it will be convenient if the unstable vectors are
orthogonal to each other, and the stable vectors are orthogonal to each other. However, the stable
and unstable vectors together will not in general form an orthogonal system.

The vectors are evolved exactly as before, except using Gram-Schmidt orthonormalization to
produce two sets of D-orthonormal vectors at each timestep. Since we do not know a priori what

directions are stable and unstable at each timestep, we choose an arbitrary orthonormal basis uj
0

at time zero, and an arbitrary orthonormal basis sj
S at time S, and evolve them as:

ūj
i+1 = Liu

j
i , s̄j

i = L−1
i sj

i+1.

Then, at each timestep i, do two Gram-Schmidt orthonormalizations: one on {ūj
i+1}D

j=1 to produce

{uj
i+1}D

j=1, and another on {s̄j
i}D

j=1 to produce {sj
i}D

j=1. After a few e-folding times, we find that u1
i

points in the most unstable direction at timestep i, u2
i points in the second most unstable direction,

etc.Likewise, s1
i points in the most stable direction at time i, s2

i points in the second most stable
direction, etc.

The multidimensional generalizations of the error and correction vectors is the obvious

ei =
D

∑

j=1

(e
uj

i

uj
i + e

sj
i

sj
i ), ci =

D
∑

j=1

(c
uj

i

uj
i + c

sj
i

sj
i ).

To convert the 1-step error at timestep i from phase-space co-ordinates e′
i = {ek

i }2D
k=1 to the stable
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and unstable basis ei =
{

{e
uj

i

}D
j=1, {e

sj
i

}D
j=1

}

, one constructs the matrix Vi whose columns are the

unstable and stable unit vectors, Vi = (u1
i u

2
i . . .uD

i s1
i s

2
i . . . sD

i ), and solves the system Viei = e′i.

The equation for the correction co-efficients in the unstable subspace at timestep i + 1 is

D
∑

j=1

(c
uj

i+1

+ e
uj

i+1

)uj
i+1 =

D
∑

j=1

c
uj

i

Liu
j
i

which we project out along uk
i+1 producing

cuk
i+1

+ euk
i+1

=
D

∑

j=k

c
uj

i
Ukj

i

where the scalar U kj
i = uk

i+1 · Liu
j
i = uk

i+1 · ūj
i+1, and the Gram-Schmidt process ensures U kj

i = 0
if j < k. The boundary condition at timestep S is ∀j {c

uj
S

= 0}, and we compute the co-efficients

backwards using

cuk
i

=
1

Ukk
i



cuk
i+1

+ euk
i+1

−
∑

j>k

c
uj

i
Ukj

i





We first solve for {cuD
i
}S

i=0, which doesn’t require knowledge of the other cu co-efficients, then we

solve for {cuD−1

i
}S

i=0, etc.

The equation for the correction co-efficients in the stable subspace at timestep i is

D
∑

j=1

(c
sj
i+1

+ e
sj
i+1

)L−1
i sj

i+1 =
D

∑

j=1

c
sj
i

sj
i

which we project out along sk
i producing

csk
i

=
D

∑

j=k

(c
sj
i+1

+ e
sj
i+1

)Skj
i

where Skj
i = sk

i · L−1
i sj

i+1 = sk
i · s̄j

i , and the Gram-Schmidt process ensures Skj
i = 0 if j < k. The

boundary condition at time 0 is ∀j {c
sj
0

= 0}, and we compute the co-efficients forwards using

csk
i+1

=
1

Skk
i



csk
i
−

∑

j>k

(c
sj
i+1

+ e
sj
i+1

)Skj
i



 − esk
i+1

As with the unstable corrections, we first compute {csD
i
}S

i=0 which does not require knowledge of

the other cs co-efficients, then we compute {csD−1

i
}, etc.

Discussion of the GHYS algorithm

There is no guarantee that refinement converges towards a true orbit; if there was, then all noisy
orbits would be shadowable. In fact, even if some refinements are successful, numerical refinement
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alone does not prove rigorously that a true shadow exists; it only proves the existence of a numerical
shadow, i.e., a trajectory that has less noise than the original. Furthermore, the 1-step error
ei+1 computed by any numerical technique measures the difference between the noisy and more
accurate solutions at timestep i + 1, where both start from the same position at timestep i. Even
if this distance is about 10−15, it does not imply that the difference between the noisy solution at
timestep i + 1 and the true solution passing through step i is equally small. This was dramatically
demonstrated one day when I accidentally set the precision of the “accurate” integrator to only 10−8,
and the shadowing routine happily refined the orbit until the 1-step errors all had magnitudes less
than 10−15. Considering that the “accurate” trajectories were only being computed to a tolerance
of 10−8, it seems that refinement had converged to within 10−15 of a specific numerical orbit that
had true 1-step errors of about 10−8.

Furthermore, a numerical integration routine that is requested to integrate to a tolerance close
to the machine precision might not achieve it, because it might undetectably lose a few digits near
the machine precision. Thus, even when a numerical shadow is found with 1-step errors of 10−15,
the true 1-step errors are probably closer to 10−12. GHYS provide a method called containment
that can prove rigorously when a true shadow exists, but we have not implemented containment.
As a surrogate to containment, QT did experiments on simple chaotic maps with 100-digit accuracy
(using the Maple symbolic manipulation package) showing that if the GHYS refinement procedure
refined the trajectory to 1-step errors of about 10−15, then successful refinements could be continued
down to 10−100. It is reasonable to assume that refinement would continue to decrease the noise,
converging in the limit to a noiseless (true) trajectory.

For the above reasons, we are confident that convergence to a numerical shadow implies, with
high probability, the existence of a true shadow. However, to prove it rigorously requires imple-
menting a scheme such as the GHYS containment procedure. This is one possible avenue for further
research.

There is also no guarantee that, even if the refinement procedure does converge, that it converges
to a reasonable shadow of P; in principle it could converge to a true orbit that is far from P, in
which case the term “shadow” would be inappropriate. However, I have found in practice that
refinement always fails due to the 1-step errors “exploding” (becoming large). I have never seen a
case in which the refined orbit diverged from the original orbit while retaining small 1-step errors.

The error explosion occurs when 1-step errors are so large that the linearized map becomes
invalid for computing corrections. Since the method is global (i.e., each correction depends on
all the others), inaccuracies in the computation of the corrections can quickly amplify the noise
rather than decreasing it. Thus, within 1 or 2 refinement iterations, the 1-step errors can grow by
many orders of magnitude, resulting in failed refinements. It is unclear if local methods like SLES
(introduced below) will suffer the same consequences; probably they do, but errors probably grow
much more slowly, and only locally in the orbit where 1-step errors are large.

Dependence of shadowing on the choice of accurate integrator

I have tried two integrators as my “accurate” integrator, although both were variable-order, variable-
timestep Adams’s methods called SDRIV2 and LSODE [18, 16]. QT used a Bulirsch-Stoer integra-
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tor by Press et al. [28]. It would be interesting to study whether the choice of accurate integrator
influences the numerical shadow found, because if one true shadow exists, then infinitely many
(closely packed) true shadows exist.1 However, if the boundary conditions are the same, then the
solutions should be the same.

Dependence of shadowing on choice of u0 and sS

Since u0 is arbitrary, and the displacement along the actual unstable subspace at time 0 that
determines the evolution of the orbit, is it possible that we may fail to find a shadow because the
initial perturbations allowed by our choice of u0 don’t include the perturbations necessary to find
a shadow?

I have not pursued this question at all, but it seems an interesting one. There are examples
introduced below where the GHYS refinement procedure failed to find a shadow for a noisy orbit
Q, when it can be shown that one exists; the above scenario may be a cause. One way to test it is
to try to find a shadow for Q using a different initial guess for u0, although I have not tried this.
Similar comments apply to sS .

However, there are at least 3 arguments against this dependence being a problem. First, since
the stable subspace has measure zero in the total space, it seems unlikely that an arbitrary choice for
u0 could choose a subspace that doesn’t contain “enough” of the unstable subspace. Secondly, the
correction co-efficients for the unstable subspace are computed starting at the end of the trajectory,
where uS is presumably correct; similarly for the correction co-efficients in the stable subspace and
s0. Thirdly, assuming the shadowing distance is much larger than the 1-step errors, it is likely that
the intervals near the endpoints where the stable/unstable vectors are inaccurate are too small
to allow instabilities in the computations of the corrections to build from 1-step error sizes to
shadow-distance sizes. Further study of this possible problem may be helpful.

If it does turn out to be a problem, there are many possible fixes. First, we could attempt
to shadow only between points that are known to have accurate approximations to the stable and
unstable directions. One measure of this accuracy is to start with two different arbitrary unit vectors
at time 0 and evolve them forward using equation 1.4. When they converge within some tolerance
to the same vector at timestep a, we can assume they are correct after timestep a. The same could
be done to the stable vectors, starting with two different guesses at time S and evolving backwards
using equation 1.5 until they converged at timestep b. Then, shadowing would be attempted only
between a and b.

If we want to shadow all the way to the endpoints, we could attempt to get reliable sta-
ble/unstable vectors everywhere in the following manner: compute the times a and b as above.
Then compute {ui}0

i=a backwards, attempting to evolve the correct ua backwards, while hoping
that instabilities from the stable subspace don’t overwhelm the computation for the few steps that

1“Proof”: For any system, even a chaotic one, given any true orbit of fixed length in time, a small enough
perturbation in the initial conditions in any direction produces a small change in the final conditions, although this
perturbation must be exponentially smaller for chaotic systems than for non-chaotic systems. (If the perturbation
is restricted to the stable subspace, then obviously a similar solution will be obtained.) Thus given any true orbit
that δ-shadows a noisy orbit, we can find infinitely many other true orbits nearby that also δ-shadow the noisy orbit.
However, it may be that all the true orbits are packed into a space unresolved by the machine precision.
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iteration proceeds backwards. Do the same for sb, except evolving forward. This seems to me
the most promising method, although I have not yet tested it. To test how much of the unstable
subspace has encroached on sb+j, perhaps we can dot s̄b+j with ub+j to ensure it stays small.

Another (untested) method to compute the stable and unstable vectors out to the endpoints
is: compute {ui}S

i=0 in the normal way. Then choose sS to be orthogonal to uS. Even though
these vectors are not generally orthogonal, choosing sS to be orthogonal to uS seems better than a
random choice. Then, compute {si}0

i=S−1 normally. Then recompute {ui}S
i=0 using a u0 orthogonal

to s0.

If a method can be invented that computes the stable and unstable vectors using eigenvector
decomposition, then it probably would be better than all the above methods, because it would not
require any resolvents and not be restricted to being away from the endpoints.

1.2 A new shadowing procedure: SLES

1.2.0 Neural network backpropagation and error subtraction

Although the following refinement algorithm has absolutely nothing to do with neural networks,
the idea for it was inspired by how the neural net backpropagation learning algorithm works.
In backpropagation, a function E(w, a) measures the error in the output of a neural network,
given a certain input a. The neural network “learns” by adjusting its internal variables w =
(w1, w2, . . . , wn) to reduce its output error; learning stops when the output error is sufficiently
small. The way it reduces the error is by taking partial derivatives of the error function with
respect to all the internal variables wi, producing the gradient of the error with respect to w.
Moving w a small amount in the direction opposite the gradient should then reduce the error.
The amount by which w is moved along the negative gradient is called the learning rate. In one
sentence, backpropagation says, “Find a direction to move that reduces the error, and then move
a little bit in that direction.”

The inspiration for shadowing is this: once we have computed the 1-step error vectors ei along
the noisy trajectory pi, it seems reasonable that the 1-step error at step i would be reduced if we
simply subtracted a fraction ε of ei from pi, for some ε ∈ (0, 1). This is the basis for what I call a
Local Error Subtraction method.

1.2.1 SLES: Stable Local Error Subtraction

A näıve implementation of the above idea may be simply to set p̃i = pi − εei for i from 1 to S.
However, this does not define how to change the initial point p0, because there is no e0. Since any
new true trajectory must have a different initial condition, we must find a way to correct p0.

To allow corrections to p0, I introduce the backward error,

bi = pi − f̃−(pi+1),
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where f̃−(pi+1) integrates the solution backwards from time i + 1 to time i, and bi is defined on
0 ≤ i < S, where S is the number of shadow steps. Thus each timestep from 1 to S − 1 has both a
forward error ei and backward error bi; timestep 0 has only a backward error b0, and timestep S
has only a forward error eS .

Subtracting some linear combination (εei + βbi) from pi (setting e0 = bS = 0) does not work
for any reasonable values of ε, β that I have tried (between 0.1 and 0.9). I believe this is because
1-step errors computed in the forward direction will be slightly unstable in their components that
lie in the unstable subspace, and backwards 1-step errors will be unstable in their components that
lie in the stable subspace. The method works, however, if we rewrite ei using equation 1.2 (which
was ei = eui

ui + esi
si), and bi = bui

ui + bsi
si, and update pi as

p̃i = pi − (εesi
si + βbui

ui). (1.9)

In other words, we use only the components of the 1-step error that are computationally stable.

The SLES2 method seems to work about as fast as the optimized GHYS method introduced in
the next chapter. For example, using ε = β = 0.9, 1-step errors are generally reduced by about a
factor of 10 per refinement iteration, as one would expect when subtracting away 90% of the error.
However, I have not extensively tested it, and since it seems to have a weaker theoretical basis than
the GHYS method, I have not used it in any of the results mentioned in later chapters. However,
I have no reason to believe that the method is unreliable, so further testing in the future seems
warranted.

Finally, note that SLES makes no explicit use of the linear map Li. Currently, the only use of
the resolvents in SLES is implicitly through the construction of the stable and unstable directions.
If a method of computing the stable and unstable directions can be found that doesn’t use the
linear maps (eg., eigenvector decomposition as mentioned above), then the SLES method will not
use the linear maps at all, and they will not need to be computed. Since computing the linear
maps (for an ODE system) is currently by far the most computationally intensive section of the
program, getting rid of them entirely is an exciting prospect.

Local vs. global methods

It is perhaps important to note that there is a fundamental difference between the GHYS refinement
procedure, which I call a global method, and SLES, which I call a local method. Let the initial
noisy orbit be P0 = {p0

i }S
i=0, with the superscript referring to the refinement iteration. Assuming

the GHYS refinement procedure can be written as a Newton’s method, it can be summarized as

Pj+1 = Pj − [g′(Pj)]−1g(Pj) (1.10)

where g was defined near the beginning of this chapter as the function computing the forward 1-step
errors on the entire orbit,3 and g′ is the Jacobian of g. Thus the entire orbit is updated using a
single (large) equation. SLES, on the other hand, applies the local correction formula of equation

2SLES is pronounced “sleeze”, because this seems like such a sleezy, näıve method.
3This formulation is not complete, because we do not yet know how to include the boundary conditions in g. See

section 4.1.0 for more details.
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1.9 to each point independently; namely

{

pj+1
i = pj

i − (εej
si
si + βbj

ui
ui)

}S

i=0
.

One consequence of this difference occurs when the 1-step errors in the GHYS method “explode”
and cause the iteration to fail. The explosion seems to occur much faster using GHYS than using
SLES. I believe this is because in GHYS, all the 1-step errors along the entire trajectory contribute
to each other’s computation of the correction, so that if a single 1-step error is too big for its linear
map to be valid, then the corrections for all the points will be invalid. However, in SLES, there is
no such dependence between points at arbitrary distances along the trajectory, so a point with large
1-step error can propagate its instability to neighbors j shadow steps away only after j refinement
iterations.

Currently, the only known way to isolate glitches using the GHYS method is the way QT did
it, namely to try shadowing for longer and longer times until the orbit explodes, and then to do a
binary search for shorter and longer shadows until the shadow step at which the glitch occurs is
pinpointed. This is alot of work. Because of the slow way glitches propagate their effects in SLES,
it may be possible to isolate glitches simply by their large errors and that of their neighbors. It
may even be possible to pinpoint multiple glitches along a single trajectory. For example, points
G1 and G2 would be glitches if we could shadow the trajectory from 0 to G1−1 and from G1 +1 to
G2 − 1 and from G2 +1 to S, but not shadow any part of the trajectory containing G1 or G2. This
introduces the concepts of shadowable segments, although it is not clear what use such a concept
is.

1.3 A wider perspective: Why shadowing?

With an introductory level of understanding of shadowing behind us, it may be instructive to devote
some time to “devil’s advocate” questions and answers.

0. Q: Science is usually interested in generally applicable results. Why should we care about
finding an exact solution to a specific initial condition?

A: We don’t. What shadowing tries to do, empirically for now, is show that given any
particular initial condition and cheaply integrated solution, that a solution of a more expensive
integration exists nearby. Ultimately, using GHYS’s containment algorithm, we aim to show
that any particular noisy solution has a true solution nearby. If we cannot find such solutions,
then we may have good reason to suspect the reliability of our simulations.

1. Q: OK, but if the system is chaotic, then it is supposed to have sensitive dependence on initial
conditions. Shouldn’t it be fine that there is noise in our orbits? i.e., isn’t our theory robust
enough to withstand small perturbations? Isn’t computational noise roughly equivalent to
chaos anyway?

A: We (or at least I) do not know enough about chaotic systems to say, so for now we should
play it safe. In fact, one way of looking at shadowing is that we are actually trying to discover
if the theory is robust enough!
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2. Q: There is a large body of theory behind numerical integration of ODE’s. In particular,
the theory of defect-based backwards error analysis (DBBEA) shows that, for any particular
ODE y′ = f(t, y), a numerical method will give the exact solution to a slightly perturbed
problem ỹ′ = f(t, ỹ) + δ(t), where δ(t) is a function whose magnitude is small, roughly the
size of the tolerance requested of the numerical ODE method. Furthermore, there exists a
theorem of ODEs that states equivalence between the problem of how solutions change with
changing initial conditions, and how they change with changing parameters. Isn’t this good
enough when we realize that δ(t) can be considered a parameter with δ(t) ≡ 0 giving the true
solution?

A: Again, we don’t know enough about chaotic systems to say. If I want to integrate the
gravitational N -body problem, DBBEA tells me that I will get the exact solution to the
problem

F =
Gm1m2

r2
+ δ(t). (1.11)

But this is not the N -body problem. Generally in science, one tries to change as few things as
possible between the real world and the model of the world. It seems to me that asking for an
exact solution to the same ODE with sligthly different initial conditions is changing less than
asking for an exact solution to a slightly different ODE. It is certainly not clear that the latter
is good enough, especially considering that we are dealing specifically with problems that we
know have sensitive dependence on small changes. Furthermore, Hamiltonian systems have
many special properties that will be preserved if we change the initial conditions, but may
not be preserved by equation 1.11.

3. Q : What is the ultimate goal of shadowing?

A: That’s a tough question. For one, we are answering question 0 above. A possible ultimate
goal of shadowing could be to identify, learn about, recognize, and finally eliminate glitches
from our simulations, but it is unclear if all of these are feasible, especially the last. I suspect
the GHYS containment procedure may allow us to eliminate glitches when we detect them,
but this line of reasoning requires more thought.
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Chapter 2

High Dimensional Shadowing &
Optimizations to the GHYS
Refinement Algorithm

“What shadows we are, and what shadows we pursue.”
— Edmund Burke, Speech. (1780)

The main thrust of this thesis is to extend a previously published numerical shadowing refinement
procedure to make it more efficient, thus allowing larger and more realistic systems to be shadowed.
The astrophysical N -body problem is used as an example, although the refinement procedure could
just as easily be used on any chaotic system. With various numerical tricks and physical insights,
our algorithm runs, depending on the problem, between 5 and 100 times faster than the original
algorithm.

2.0 Introduction

2.0.0 Background

As described in the previous chapter, Grebogi, Hammel, Yorke, and Sauer (GHYS) [11], invented
a two-dimensional shadowing procedure consisting of two parts:

0. containment, which, if successful, rigourously proves the existence of a true shadow of a noisy
trajectory. It is not, however, guaranteed to find a shadow if one exists. Thus it cannot be
used to disprove the existence of a shadow.

1. refinement, which GHYS intended simply as a method to reduce the noise of a pseudo-
trajectory to increase the chances of success of their containment procedure.
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Quinlan and Tremaine (QT) [29], wanted to test for the existence of shadows in large N -body
systems. They generalized the refinement portion of the GHYS algorithm to work on arbitrary-
dimensional Hamiltonian systems. QT showed that, using 100 decimal digits of precision, if the
noise level of a four-dimensional orbit could be reduced to about 10−15, then the noise could also
be reduced all the way down to 10−100, with the number of correct digits in the solution increasing
geometrically. They conclude that it is reasonable to assume that further refinement would continue
to reduce the noise indefinitely, leading in the limit to a true orbit. This seems less rigourous that
containment, but in practice it is probably almost as reliable.

QT then applied their refinement procedure to a simplified N -body system in which a single
particle moves, unsoftened, among 100 fixed particles that are distributed in a standard Plummer
distribution. For their “cheap” integrator, they used a 5th-order predictor-corrector routine that is
commonly used by astronomers [Appendix B of [6]], arranged to have 1-step errors of about 10−5.
For their expensive integrator, they used a Bulirsch-Stoer method [28] with tolerance 10−13. They
found they could shadow the particle for several crossing times. Unfortunately, their refinement
procedure was too inefficient to work on significantly higher dimensional systems. They tried
two and three moving particles, but found they were pushing the bounds of feasibility that their
shadowing procedure could handle.

It is perhaps important to note before continuing that it is not clear that refinement alone, even
if optimized as introduced in this chapter, and even if it is as reliable as containment, is more
efficient than using containment. But if refinement is to be used at all, it needs to be made more
efficient than the direct, näıve method of GHYS and QT.

2.0.1 Why High Dimensional Shadowing?

It is not at all clear that being able to shadow one particle moving “pinball” fashion amongst 100
fixed ones implies that shadows of large N -body systems exist. To establish the shadowability
of large N -body simulations requires shadowing tests to be applied to more realistic systems. At
present it is far beyond feasibility to attempt shadowing systems of 105 or 106 particles that are
commonly being used today by astronomers. Nevertheless, we can learn much about how shadowing
results change as the dimension increases, using systems with just tens of moving particles. In such
systems it may be reasonable to eliminate the fixed particles entirely, but to extend QT’s results,
most of the experiments performed in this thesis (and reported in the next chapter) were done on
a system with a total of 100 particles, M of which move, for M ranging from 1 to 25.

It is important to emphasize the main scientific question that we will be studying once we have
a reasonably fast shadowing implementation. The question is not only a question concerning N -
body systems, but a general question for chaotic systems: how do shadowing results change as the
number of dimensions increases?

2.0.2 Notation

For the remainder of this thesis, the following definitions will be in effect:
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N is the total number of particles in the N -body system.

M is the number of particles which move. Thus, N − M of them are fixed. The phase-space
has 6M dimensions.

S is the number of shadow steps in the orbit. Thus, there are S + 1 points along the orbit,
from p0 (the initial condition) to pS .

See the Appendix for a quick review of the N -body problem and its equations.

2.0.3 Asymptotic run times

As has already been mentioned, most of the expense of refinement of an N -body orbit is in com-
puting the linear maps Li. See the long footnote on page 9 for an explanation of Li, and the
Appendix for the derivation of the Jacobian of an N -body system. Manually counting floating-
point operations in the Jacobian gives an operation count of roughly 60MN + 50M 2. The total
operation count to compute the right hand side of the variational equation, including the matrix-
matrix multiply and the computation of the Jacobian, is about 108M 3 + 68M2 + 85MN . The M 2

term is probably negligible, and the MN term is only relevant if N >> M . Thus, if there are S
shadow steps, and the function computing the right hand side is invoked an average of k times per
shadow step, the total cost of computing all the resolvents is about k × S × (108M 3 + 85MN). I
have found empirically that, using an Adams’s integrator, k seems to be independent of M , and
roughly equal to about 500 for the shadow steps I use in my N -body simulations. Figure 2.0 shows
some experiments comparing the time to compute one resolvent to M , demonstrating the O(M 3)
relationship.

2.1 The Optimizations

2.1.0 Brief Overview

There are 6 major optimizations that I have applied to the GHYS/QT refinement procedure. The
first two are trivial, and no further details will be given about them. The final four will be explained
in more detail in the remaining sections of this chapter.

Definition If program A has a speedup of α over program B, then the execution time of A is a
fraction 1/α of B’s time; in other words A runs α times faster than B.

The 3M oversight. QT re-computed a new resolvent for each stable and unstable vector, i.e., at
each timestep they computed 6M resolvents. However, a resolvent R(t1, t0) is a matrix operator
that applies to all small perturbations of the orbit from time t0 to t1. Thus only 2 resolvents per
timestep need be computed: one for evolving perturbations forward in time, and another to evolve
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Figure 2.0: Time in seconds to compute one resolvent as a function of the number of moving
particles M . For comparison, 0.006M 3 is also plotted.

them backwards.0 Since most of the time is spent computing the resolvents, fixing this oversight
provides an immediate speedup of a factor of about 3M .

Compute backwards resolvent by inverting forward resolvent. The above optimization
can be extended even further by noting that the resolvent matrix Li that maps perturbations from
timestep i to i + 1 is precisely the inverse matrix of the resolvent that maps small perturbations
from timestep i + 1 to i. Thus, rather than doing an integration from timestep i + 1 backwards to
time i to compute L−1

i , Li can be inverted using matrix operations, or the system Lix = b can be
solved, whenever necessary, using standard elimination schemes. This gives an additional speedup
of about 2, since only one resolvent per timestep need explicitly be computed using integration of
the variational equations.

Large shadow steps. Define a shadow step as a time interval across which the 1-step error and
correction co-efficient are computed. QT used every internal timestep of their integrator’s noisy
orbit as a shadow step, but this is not necessary. It is reasonable to skip timesteps in the original
orbit to build larger shadow steps. This means that fewer resolvents and stable/unstable directions
need to be computed and stored.

0This oversight is not obvious from the description in their appendix B, it appears only in their code.
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Cheaper “accurate” integrator. When computing the resolvent and 1-step errors during early
refinements, it is not necessary to compute them to extremely high accuracy. Since the initial 1-
step errors may have magnitudes of about 10−4, the resolvents and 1-step errors need only be
computed to a tolerance of, say, 10−7, i.e., 3 extra digits. QT always computed the 1-step errors
and resolvents to a tolerance of 10−13.

Constant resolvent/unstable/stable directions. If a shadow exists, then by definition it
cannot be too far away from the original noisy orbit. It is reasonable to assume that the resolvents,
unstable and stable directions (abbreviated RUS) will change little as the orbit is perturbed towards
the shadow. Thus, it may not be necessary to recompute the RUS for every refinement iteration.
This is probably the biggest savings, because in combination with the cheaper integrator, it means
that the RUS usually need only be computed once to a tolerance of about 10−7, and this RUS will
suffice for all future refinements. This is analogous to a simplified Newton’s method that does not
recompute the Jacobian at ever iteration.

Re-use RUS from a previous successful shadow. Recall that to find the longest possible
shadow of a noisy orbit, we attempt to shadow for longer and longer times until shadowing fails.
Assume shadowing for S shadow steps produces a shadow A. Then attempt shadowing for S + k
timesteps for some integer k, and assume a successful shadow B will be found. Since A and the first
S steps of B both shadow the same noisy orbit, they must be close to one another. By the same
argument as the previous paragraph, the RUS that was computed for A can probably be re-used
for the first S shadow steps of B. Thus only k new RUSi’s need be computed.

2.1.1 Constant resolvent, unstable and stable directions

I use the acronym RUS to mean the set of all Resolvents, Unstable, and Stable vectors for the
entire trajectory. The RUS at a particular timestep i is referred to as RUSi.

For a smooth, continuous, well-behaved function, the Jacobian (i.e., the derivative) is also
smooth and continuous. Most Hamiltonian systems (that I have seen) studied by scientists are
at least piecewise of this sort. The N -body problem, in particular, is of this sort, as long as no
particles pass within 0 distance of each other.1 This implies that the resolvent along a particular
path will not change much if the path is perturbed slightly. Since the unstable and stable unit
vectors are derived solely from the resolvents, they will also change only slightly when the path
is perturbed. Thus, the RUS computed on the first refinement iteration should be re-usable on
later iterations, and computing the new 1-step errors is the only significant work to be performed
on each new refinement iteration. (Computing the corrections from the errors is much less CPU
intensive than computing the errors themselves.)

I have empirically found that computing the RUS to a tolerance of between 10−6 and 10−9

usually suffices to refine the orbit down to 1-step errors near the machine precision. If refinement
fails using constant RUS, then perhaps there is a spot in the orbit where some RUSi’s change

1If the force is “softened”, then this problem goes away.
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quickly with small perturbations in the path. In that case, the RUS can be re-computed for a few
refinements, after which constant RUS may be tried again. However, a case in which constant RUS
fails often suggests that there as a mild trouble spot somewhere on the orbit that may cause a
glitch in longer shadows.

Formulae for switching between constant and recomputed RUS

The algorithm used to switch between constant RUS and recomputed RUS uses a running-average
“memory” scheme to keep track of the progress of the magnitude of the maximum 1-step error over
the previous few refinements. Originally, I used a simple algorithm (like QT’s) that would signal
failure when a certain number K of successive refinements had failed, for µ = 0.9 and K = 3. (See
page 7 for the definition of a successful refinement.) However, refinement would sometimes get into
a loop in which there would be a few successful refinements, followed by one or more that would
“undo” the improvements of the previous ones. For example, the largest 1-step error may cycle as
{8, 4, 2, 1, 8, 4, 2, 1, 8 . . .} × 10−13. In general, cases were seen in which the number of refinements
in these loops was 3, 4, and up to about 8. Clearly a simple “die when K successive failures are
seen” is not general enough to catch this kind of loop.

Queuing theory provides a formula that is useful here. It defines an arithmetic running average
A to be

Aj+1 = αAj + (1 − α)ν (2.0)

where ν is the newest element added to the set, and α is the memory constant. The higher the
memory constant, the longer the memory — i.e., the less the effect of an individual new element. A
rule of thumb is that A is roughly an average of the most recent 2/(1 −α) elements. Equation 2.0,
however, is not suited for measuring errors such as those in refinement that can change by many
orders of magnitude, and is especially unsuited when smaller means better. For example, a string
of errors of 10−4 followed by an error of 10−7 would average to about 10−4, whereas a change from
10−4 to 10−7 is an indication that refinement is succeeding. We thus need a geometric equivalent
of equation 2.0, to allow values differing by orders of magnitude to average meaningfully.2 I define
the geometric running average G as

Gj+1 = n+1

√

Gn
j ν (2.1)

where ν is the new element, and n is an integer, n ∝ 1
1−α , so higher n implies longer memory.

Both equations 2.0 and 2.1 require initialization to some reasonable starting value A0 and G0,
respectively. n should not be too large; I found 2 or 3 worked best.

Finally, we want an equation that measures the improvement that is being made by successive
refinements, rather than one that measures absolute error, because it is the change in 1-step errors
that indicates whether current refinements are succeeding, not their absolute size. Note that the
1-step errors may stop decreasing for two reasons: (1) 1-step errors have reached the machine
precision, or (2) refinement is failing to find a shadow. Using the improvement rather than the
absolute value allows us to use the same algorithm to halt refinement in either case. Thus define

2It is trivial to show that the geometric mean of a set of numbers is the arithmetic mean of their logarithms, to a
suitable base.
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∣

.

If I is close to or greater than 1, then the current refinement did not improve on the previous one;
if I << 1 then the current refinement is successful.

Heuristic for switching between constant and recomputed RUS

We have two refinement methods. In order of decreasing cost, they are recomputed RUS, and
constant RUS. The general idea is: if refinement is working well with an expensive method, then
switch to a cheaper one; if a cheaper one seems to be failing, switch to a more expensive one. If
the most expensive one is failing, then give up refinement entirely, and return failure. Here is the
heuristic I have built over many months of trial and error.

• When using recomputed RUS, it is safe to switch to constant RUS when the geometric running
average improvement becomes < 0.1. At this time the current orbit and all its statistics must
be saved in case constant RUS refinement fails.

• When using constant RUS, it is necessary to switch back to recomputed RUS when the
geometric running average improvement stays > 0.5 for 3 successive refinements. At this
time I discard all progress made by constant RUS and revert to the previous orbit that used
recomputed RUS. I think it is reasonable to discard all progress made by constant RUS, even
if significant progress was made, for the following reasons:

– A refinement that computes the RUS is asymptotically more expensive than one that
does not, so discarding all progress made by constant RUS refinements makes little
difference, percentage-wise, in the final run-time.

– Future constant RUS refinements, that will be performed after the RUS is recomputed,
will converge faster than the current ones that just failed, because the RUS will be more
accurate.

– Recomputing the RUS with small 1-step errors would mean (using the simple “3 extra
digits of accuracy” heuristic) recomputing it at a much higher accuracy, at much more
expense, than is necessary.

This argument is not always applicable; I have seen cases in which discarding constant RUS
progress appeared to waste good progress. Perhaps there exists a better heuristic.

• Finally, after having switched back to recomputed RUS, it is time to exit if the geometric
running average improvement stays > 0.1 for 3 successive refinements; and it is safe to switch
again to constant RUS when the geometric running average improvement becomes less than
0.1. I have found that there are usually no half-measures when using recomputed RUS —
refinement either succeeds geometrically or fails miserably.

Further research in recomputed RUS could focus on whether there exists a criterion to decide
that a particular RUSi needs recomputing, rather than all of them. If this is the case, it could be
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an O(S) speed savings. Also, there may be a place for SLES or other noise-reduction procedures
in the loop of expensive and cheap refinement algorithms (which currently contains only the two
above: recomputed RUS and constant RUS).

Finally, I note in passing that Newton’s method is sometimes used with dampening when it is
known that the correction factors may not be accurate, but are assumed to point roughly in the
correct direction. In other words, equation 1.10 (page 16) is modified to

Pj+1 = Pj − θ[g′(Pj)]−1g(Pj)

for some constant θ ∈ (0, 1). I briefly tried this with the correction co-efficients cu, cs, but it did
not seem to work. However, this result should not be taken as conclusive, as I did not spend much
time testing damped correction or trying to make it work.

Re-use RUS from a previous successful shadow

This idea is based on the same observation as constant RUS, and is only useful if constant RUS is
employed. It takes advantage of the RUS for a noisy orbit B being near to the RUS for a nearby
noisy orbit A. In particular, the shadows for two overlapping segments of a noisy orbit will be
near to each other along the segment that the noisy segments overlap, and thus the RUS’s for the
overlapping segment will also be near each other. So, when trying to find a shadow for a segment
B which is an extension to segment A, the RUS of A can be re-used on the segment of B that
overlaps A.

One interesting question is whether to use the first or last RUS that was computed for A, if A
ever had to recompute the RUS. An argument in favour of using the first is that the noisy orbit is
exactly the same, since B is just an extension of A. However, if A had to recompute the RUS, then
probably so will B if A’s first RUS is used. Recall that the RUS needed for the early refinements
need not be as accurate as the ones used later. Furthermore, we assume that the segment of B’s
shadow that overlaps A’s shadow will be closer to A’s shadow than the first few iterations of B
is to the first few iterations of A. Thus, if we use the last RUS that A used, we are less likely to
recompute the RUS for B. If B is a subset of A rather than an extension, then obviously no new
RUSi’s need be computed. All shadowing runs in this thesis use the last RUS.

Finally, re-using the RUS allows a more fine-tuned search for where a glitch occurs, because it is
much less expensive to attempt shadowing particular subsets of a noisy orbit once the entire RUS
is computed.

2.1.2 Large Shadow Steps

Rationale

A numerical solution of an ODE is represented by an ordered, discrete sequence of points. Say
we were to construct a continuous solution p(t) from these points, for example by using a suitably
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smooth and accurate interpolation. Then we could extend the definition of δx shadowing for some
true solution x(t) by saying: x(t) δx-shadows p(t) on t0 ≤ t ≤ t1 if ∀t ∈ [t0, t1], |x(t) − p(t)| < δx.

Now, it should be clear that we can choose any representative sequence of points along p(t) to
use in the refinement algorithm introduced in the previous chapter; we need not choose the points
from which p(t) was originally constructed. In particular, we can choose a subset of the original
set of points, as long as enough points are chosen to be “representative” of p(t). The steps that are
finally chosen are called shadow steps.

There are at least two reasons to desire as few shadow steps as possible: First, if constant
RUS is being used, then the RUS needs to be stored in memory. Each RUSi requires a matrix (the
resolvent), and two sets of basis vectors. Clearly the fewer shadow steps, the less memory is required
to store the RUS.3 Second, if the “accurate” integrator has a large startup cost, then the fewer
startups that are required, the better. For example, the Adams’s methods I used take extremely
small internal timesteps early in the integration. Thus, for each shadow step, the Adams’s method
must restart with extremely small stepsizes.

Estimating the largest shadow steps that can be used

For the N -body simulations reported in this thesis, a set of “standardized” units was used [14] such
that the scale of the system in all units of interest was of order 1 — i.e., the system had a diameter
of order 1, the crossing time was of order 1, and the N particles each had mass 1/N . In such a
system, the timesteps of QT’s integrator averaged about 0.01, and they used each timestep as a
shadow step. I have found empirically that, in this system, using shadow steps of size 0.1 works
well. Smaller shadow steps use more time and memory but could not find shadows any better.
Shadow steps of 0.2 were slightly less reliable, and steps of size 0.5 were unreliable.

The important criterion for choosing shadow step sizes seems to be the validity of the linear
map. Recall that the linear map or resolvent R(t1, t0) is a first-order approximation that maps
small perturbations of the orbit p(t) from time t0 to t1, so that a system starting at p(t0) + e0

evolves, to first order in e0, to p(t1) + R(t1, t0)e0. For this equation to be valid, e0 must be small.4

Since the computation of the correction co-efficients in the GHYS refinement procedure depends on
this linear perturbation approximation, the 1-step errors of our shadow steps must be sufficiently
small for the linear map to be valid. The larger the shadow steps, the further the accurate solution
will diverge from the noisy solution, and thus the larger the correction needed per shadow step.
Although the allowable perturbation size is problem-dependent, I have found empirically that, for
the unit-sized N -body system used here, perturbations of size 10−5 are always small enough, while
perturbations of size about 10−3 or greater start to show significant difficulties. In general, however,
a shadow step must be small enough that the 1-step errors are small enough that the linearized map
is accurate enough that, when the correction is applied at step i, the linearized map correctly maps
the error towards being smaller. In other words, if ei is the 1-step error at pi, ci is the correction,

3For example, with M = 25 moving particles, a RUS of length S = 128 requires about 100 megabytes of memory,
and this space scales as O(SM2). ((25 particles × 6 dimensions per particle)2× 8 bytes per double precision number
× 4 (2 resolvents, 2 sets of basis vectors each covering half the space) × 128 steps).

4This neglects to mention the error of the resolvent itself, which depends on |t1 − t0|. However, the resolvent error
doesn’t seem to matter much in comparison to the error introduced by the size of the perturbation e0.
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Li = R(ti+1, ti) is the linear map and φ is the exact perturbation map, then Li(pi + ci) must be
close to φ(pi + ci) in comparison to the size of the 1-step errors5:

|Li(pi + ci) − φ(pi + ci)| << max
i

|ei| (2.2)

In practice, it is probably too difficult to use equation 2.2, and it may be necessary to experiment
to find the largest allowable 1-step error, which then must be used to constrain the size of the
shadow steps.

If the Lyapunov exponent λ of the system is known a priori, it may be possible to choose shadow
step sizes a priori. Note that the divergence of the noisy and accurate orbits will be dominated by
the errors in the noisy orbit. Say the noisy orbit has stepsizes of negligible length, each with error
δ. Then each error will be magnified after a time T to eλT δ. If E is the maximum allowable 1-step
error for which the linear map is valid, then shadow steps should be no larger than

ln(E/δ)

λ
.

For our N -body systems, this equation gives an upper bound of about 1 to 10 time units, which
is larger than the 0.1 sized shadow steps I used. Thus, the above equation seems a weak upper
bound.

Even a system with a particular Lyapunov exponent may have short intervals during which the
local divergence rate is faster or slower than the Lyapunov exponent would suggest. Thus, it may
be helpful to devise an algorithm that dynamically builds shadow steps. One such algorithm, as
yet untested, is as follows. Assume that the timesteps in the noisy orbit are small in comparison

to the shadow steps that will be built. Let the noisy orbit be {pi}Q
i=0 at times {ti}Q

i=0. Let E be
the largest allowable 1-step error for which the linear map is valid. To construct a shadow step
starting at time ti, the accurate solution p(t) is initialized to the noisy point p(ti) = pi. Accurate
integration of p(t) proceeds successively to times tj, j > i until |pj+1−p(tj+1)| > E, when tj marks
the end of the shadow step. The accurate solution is then re-initialized to p(tj) = pj to begin the
next shadow step.

Now, the first refinement is likely to have the largest 1-step errors; thus, the first refinement will
need the smallest shadow steps, and thus the largest RUS set of any refinement. This means that
a large RUS set needs to be computed at least once, but only to low accuracy (see the section on
“cheaper accurate integrator”).

Originally I thought that, as refinement proceeds to decrease the 1-step errors, it would be
advantageous to construct larger-and-larger shadow steps. However, I no longer believe this will
give much of a speed savings, because (1) If refinement is working well, then constant RUS will be
invoked, in which case there is no need to recompute the RUS at all; (2) Conversely, if refinement
is failing, then there is no justification to increase the size of shadow steps — in fact, it may be
advantageous to decrease them. Note that if refinement is succeeding, it may be advantageous to
use larger-and-larger shadow steps in the computation of the 1-step errors, even though the RUS
is not being recomputed.6

5The error in the error, so to speak.
6It is interesting to note in passing that the larger the shadow steps, the more obvious it is that refinement
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Finally, implementing dynamic shadow step sizes may help in another area. As described above,
I currently discard all progress made by constant RUS if it begins to fail, reverting to the orbit and
RUS of the most recent refinement that computed the RUS. However, if constant RUS works for
several refinements but then starts to fail, perhaps it would be advantageous to use the orbit of the
most recent successful refinement to build new shadow steps using the above dynamic algorithm,
regardless of whether the most recent successful refinement computed the RUS or not.

2.1.3 Cheaper accurate integrator

When computing the 1-step errors of a noisy orbit, we must use an integrator that has smaller
1-step errors than the integrator used to compute the noisy orbit. The question is, how much more
accurate does it need to be? During early refinements when the 1-step errors are large, the errors
in the correction factors may be dominated by the first-order approximation of the resolvents, so
the 1-step errors need not be computed to machine precision. In practice, I have found that it is
sufficient to compute the 1-step errors to an accuracy 10−3 that of the size of the maximum 1-step
error of the previous refinement; computing them any more accurately does not speed refinement,
although computing them only 10−2 more accurately sometimes results in more iterations of the
refinement procedure.7 In addition, a factor of only 10−2 is not enough because some integrators
have sufficiently gross control of their errors that requesting only 2 extra digits will result in the
integrator returning exactly the same result.8 Note it is necessary to loosen this criterion when the
1-step errors are within 10−3 of the machine precision, in order not to request more accuracy than
the machine precision allows.

The accuracy required to compute the resolvents is less clear. So far, when reverting to recom-
puted RUS, I have been computing them to the same accuracy as the 1-step errors, described in the
previous paragraph. This may be more precision than is necessary, if, for example, the resolvents
change more quickly owing to movement of the orbit than to errors in their construction. In other
words, it may be sufficient to always compute a resolvent to some constant precision, and only
recompute it if the numerical shadow drifts sufficiently far from the original noisy orbit that the
resolvent no longer correctly maps small perturbations from one shadow step to the next.

Choosing the accurate integrator

The only methods I have tried as my accurate integrator are Adams’s methods. It may be wise
to try others. In particular, if the shadow steps are small, it may pay to use a less sophisticated
routine, such as a high-order explicit Runge-Kutta method. If the shadow steps are large, an
Adams’s or a Bulirsch-Stoer method is probably apt, because even though they both have high

converges to a solution of the accurate integrator, not to a true solution. For, if the shadow step errors were small
enough, and the machine precision allowed it, we would be able to “shadow” an entire noisy orbit using a single huge
shadow step.

7More iterations, but each iteration takes less time. There is clearly a trade-off here that is probably problem
dependent.

8This is probably because it did too much work in the less accurate case, so that the solution it computed had
at least 2 more accurate digits than were requested. Then, in the more accurate case, it managed somehow to more
accurately judge its errors, and avoided extra work. A difference of 10−3 is less likely to cause this to happen.
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startup cost, they can eventually move quickly along the solution if they are not forced to restart
too often. It may also be interesting to attempt using extended precision integration to test the
accuracy of the standard (double precision) routines.

Finally, an important factor in problems, like the N -body problem, that have a large variance of
scales all occuring at once (i.e., some pairs of stars are several orders of magnitude closer to each
other than other pairs) is a concept called individual time steps. The modern hand-coded N -body
integrator gives each star a personalized integration timestep; stars that have high accelerations are
integrated with smaller timesteps than those with lower accelerations. Perhaps it would be fruitful
to attempt to write a general-purpose integration routine that uses individual timesteps for each
dimension. However, such an integrator is beyond the scope of this thesis.

2.1.4 Numerical results of the optimizations

To quantify the speedup of the optimizations, 32 noisy orbits were chosen, and each was shadowed
using several different combinations of the optimizations. In each case, the system consisted of
99 fixed particles and one moving particle (i.e., N = 100,M = 1), identical to the shadowing
experiments of QT. Forces were not softened. The 32 orbits were chosen by generating random
3-dimensional positions for all particles from the uniform distribution on (0, 1); a 3-dimensional
random initial velocity for the moving particle was also chosen uniformly on (0, 1).9 The stan-
dardized units of Heggie and Mathieu [14] were used, in which each particle has mass 1/N . The
pseudo-random number generator was the popular 48-bit drand48(), with seeds 1 through 32. The
seed 1 case was run on a Sun SPARCstation 10/514 with a 50 MHz clock; seed cases 2 through 32
were run on 25 MHz Sun SPARCstation IPC’s (each about 1/8 the speed of the SS10/514).

Once the initial conditions were set, each noisy orbit was generated by integrating for 1.28
standard time units (about 1 crossing time) using LSODE [16] with pure relative error control
of 10−6. This figure agreed well with the magnitude of the initial 1-step errors computed during
refinement. Although one crossing time sounds short, it is long enough that 5 of the orbits contained
trouble spots.10 Furthermore, the number of unoptimized QT refinements required to find a shadow
that has no trouble spots seems independent of the length of the orbit — each refinement takes
much longer, but the convergence is still geometric per refinement. Thus, the results below should
be independent of the length of the orbit, as long as the length is non-trivial. This is what has
been observed with the longer orbits I have shadowed, although I do not document them here.

For short shadow steps, a constant shadow step size of 0.01 was used, which approximates the
average sized shadow step in QT. This results in 128 shadow steps. For large shadow steps, 16
shadow steps of size 0.08 were used. As in a usual shadowing attempt, longer and longer segments
are shadowed in an attempt to find the longest shadow. Here, each successive segment had twice
as many shadow steps as the previous one, up to 16 and 128, for long and short shadow steps,

9Astronomers will note that this does not correspond to any realistic astronomical system; however, it seems un-
likely that the precise particle distribution will effect shadowing results. This is supported by the close correspondence
of my results with those of QT, even though they used a more realistic “Plummer” distribution.

10If the orbit has a trouble spot, then Constant Resolvent and Re-use RUS from previous successful shadow will
have no effect, because the RUS will be re-computed in an attempt to find a shadow. The other optimizations —
Cheaper Accurate Integrator, Large Shadow Steps, and Backwards Resolvent by Inverting Forward Resolvent — still
offer significant performance improvement.
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respectively. No attempt was made to isolate glitches more accurately than this factor of two.

The highest tolerance requested of the accurate integrator was 10−15. A successful numerical
shadow was defined to be one whose 1-step errors were all less than 2 × 10−14. This number
was chosen simply because it was the smallest number that geometrically converging refinement
sequences could consistently achieve; 10−14 was too small, because many refinement sequences
would proceed geometrically until their maximum 1-step error was about 1.5 × 10−14, and then
they would “bounce around” for many refinements until, apparently by chance, the maximum
1-step error would fall below 10−14.

The maximum allowed shadow distance was 0.1, although none over 0.0066 were observed with
successful shadows.

The table on page 32 displays the speedups of the various optimizations. All ratios are speedup
factors with respect to the time column. There are several interesting observations to make about
this table. First, note that the run times of the original QT algorithm are comparable to the run
times of my unoptimized version (differing on average by a factor of 1.07), as would be expected.
Now looking at each optimization acting alone, we see that using Large Shadow Steps 8 times longer
than QT (column L) gives an average speedup of about 5.5. The large shadow steps implemented
here (every 8 small shadow steps) was trivial to implement, so I would recommend that, even if
no other optimizations are used, large shadow steps are worthwhile. Third, inverting the forward
resolvent to produce the inverse resolvent (column I) produces the expected average speedup of
2.0. Fourth, the cheap accurate integrator (column C) gives an average speedup of 2.36. This is
about what is expected, because both the QT and C algorithms on average require just over 3
refinements to converge, and all C refinements are cheaper than a QT refinement except the last
one, which is about equal in expense. Finally, using constant RUS gives a speedup of almost 3.
Again this is about what is expected because QT requires about 3 refinements to converge while
R has one RUS computation followed by several cheap constant RUS refinements.

Next we look at combinations of optimizations. First, it is interesting to note that combining
the cheap accurate integrator C with constant RUS R results in an average speedup that is greater
than the product of the two individual speedups (2.36 × 2.68 = 6.32 < 7.55). This is because,
when using CR, only one RUS is computed, and it is computed cheaply. Using R alone requires
computing the one RUS to high accuracy; using C alone requires computing at least one RUS (the
final one) to high accuracy. Second, re-Using the RUS of a previous successful shadow (U or re-Use
RUS, seen in column CUR) makes sense only when R is also used. It gives a speedup of about 43%
over CR. This is less than a factor of 2 because, with C, the resolvents are computed sufficiently
cheaply that the time to do a constant RUS iteration is becoming non-negligible. Presumably if
a UR column existed, it would show a speedup over the R column closer to 2. The last three
columns show other combinations. The most important point to note is that, except for CR, the
combinations give a speedup less than the product of any appropriate choice of previous columns.
Perhaps this is at least partially owing to an affect similar to Ahmdal’s Law: there still exist parts
of the algorithm that have not been sped up, and as the remainder of the program that is being
optimized speeds up, these unoptimized sections take a greater proportion of the time.

Finally, it will be noticed that orbits 5, 6, 13, 19, and 29 obtained speedups significantly smaller
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seed time(s) QT L I C R CR CUR CLR CULR CULRI
1 1442 1.06 4.54 2.01 1.96 3.00 8.87 14.2 30.8 37.2 47.4
2 9379 0.707 6.08 1.82 3.09 3.48 11.2 15.7 52.3 68.3 75.7
3 7847 0.728 6.30 1.88 2.36 2.56 9.29 13.0 44.0 59.7 65.5
4 7011 0.866 11.1 1.98 2.74 2.84 7.88 12.3 40.5 55.8 74.3
5 12204 0.933 12.2 2.13 2.42 1.08 1.66 1.54 5.31 4.96 8.0
6 9443 1.14 7.24 2.01 3.18 3.98 10.8 13.5 5.36 56.8 29.8
7 6277 1.13 5.51 1.85 2.63 2.71 8.50 11.6 46.9 63.7 82.9
8 6582 1.13 4.79 2.04 1.91 2.79 7.09 10.6 33.8 45.4 56.9
9 7154 1.14 4.33 1.92 1.96 2.70 7.74 11.5 30.5 39.6 51.9

10 5832 1.13 4.32 1.87 1.54 2.72 6.46 10.7 29.1 45.5 57.2
11 6659 1.13 5.10 1.93 2.34 2.65 7.40 10.7 37.1 50.7 62.9
12 8623 0.861 5.00 2.44 2.57 3.37 9.64 13.7 44.8 52.4 75.4
13 14566 0.452 4.34 1.00 4.52 0.784 0.931 0.939 5.67 5.15 7.6
14 6976 0.749 4.54 2.00 2.17 2.85 7.23 11.1 32.9 45.2 49.4
15 5664 0.729 4.79 2.02 1.89 2.71 6.83 10.2 33.5 45.4 62.9
16 6634 1.15 4.89 1.97 1.82 2.64 7.35 10.6 33.8 44.8 58.7
17 6854 0.946 4.96 2.06 2.16 2.88 8.97 12.7 47.2 60.8 83.2
18 4932 0.629 2.88 1.74 1.69 2.17 5.38 7.84 25.7 34.1 45.7
19 8470 1.06 5.16 2.98 2.96 1.32 4.37 4.02 31.1 27.5 53.5
20 4566 1.12 5.59 1.91 2.04 2.78 6.21 9.50 33.7 48.6 64.3
21 7409 1.07 6.01 2.00 2.92 2.86 9.59 13.4 46.6 61.3 82.2
22 6988 1.22 4.89 2.17 2.00 3.03 7.34 11.4 36.1 44.0 57.2
23 7699 0.750 4.66 1.93 1.91 3.20 8.27 10.4 35.2 46.3 51.1
24 8851 1.18 2.53 1.79 2.78 2.89 10.2 15.4 52.9 71.1 93.1
25 7287 1.13 3.58 1.96 2.67 2.53 7.58 11.5 34.1 47.4 59.3
26 10736 0.854 7.74 2.84 2.79 4.33 12.4 16.9 58.2 76.5 81.1
27 7001 1.13 5.07 2.01 2.24 2.79 8.35 12.1 38.9 54.5 70.1
28 7324 1.13 4.49 2.06 1.93 2.72 8.01 11.2 33.2 49.3 55.0
29 13779 0.802 4.01 1.89 2.01 0.898 1.16 1.15 4.03 3.99 6.5
30 7932 1.14 10.9 2.01 2.17 2.81 8.82 13.0 43.3 67.5 86.7
31 6989 1.20 5.57 2.26 2.37 2.81 8.44 12.3 47.4 57.2 77.6
32 6720 1.08 4.80 1.89 1.90 2.78 7.61 11.5 34.0 50.5 65.5

avg 7682 1.07 5.56 2.01 2.36 2.68 7.55 10.8 34.6 47.5 59.3

LEGEND
time(s): time in seconds for unoptimized version.

QT: original code of Quinlan & Tremaine [29]
L: Large shadow steps
I: backward resolvent by Inverting forward resolvent

C: Cheaper accurate integrator
R: constant RUS
U: re-Use RUS from previous successful shadow (appears only in combinations)
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than average in some columns. These are the orbits that either contained glitches or trouble spots.11

I will deal with these on a case-by-case basis, since there are several interesting points to be made.

orbit 5 : As can be seen in Figure 2.1, this orbit suffered a close encounter at timestep 83 (out of
128). Figure 2.2 shows that the energy also took a large dip at step 83. The orbit could be
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Figure 2.1: Orbit 5 projected onto the xy plane. The close encounter is near the right-most extent
of the orbit. The “+” marks the point in the orbit where the 1-step errors could not be decreased
below 10−13, and corresponds to the timestep of closest approach. The particle attached to the
bottom end of the orbit near (0.52, 0.27) is the moving particle at its initial position.

shadowed for its first half, but not over its entire length, because it contained a trouble spot
at the close encounter, where the 1-step error could not be decreased below about 10−13.

This orbit obtained the greatest speedup when the only active optimization was L — the final
3 columns show that the algorithm was slower when other optimizations were added. The
reason seems to be constant RUS: since the 1-step errors could be reduced reliably down to
10−13, but no lower, the algorithm switched many times to constant RUS (at which point the
1-step errors would be decreased to 10−13, but no lower), and then back to recomputed RUS,
which would run for 1 or 2 refinements, producing refinements better than constant RUS but
not geometric; then the algorithm would switch back to constant RUS, again decreasing the
1-step errors to 10−13, then switch back to recomputed RUS, and so forth. Since all progress
of a sequence of constant RUS refinements is discarded, progress was slow, until, finally,

11Although I have never seen a clear definition of “trouble spot”, it seems that other practitioners of shadowing,
eg., GHYS and QT, use the term to refer to any trajectory on which refinement encounters a point on the trajectory
where the 1-step errors do not decrease with refinement, although they do remain small and bounded.
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Figure 2.2: The total energy (kinetic + gravitational potential) of orbit 5. The deep trough at
timestep 83 marks the close approach that caused the trouble spot.

recomputed RUS refinements got down to 10−13, at which point the algorithm conceded
defeat. However, other columns still make sense: for example, comparing column CULR to
CULRI shows a speedup of almost 2, which is expected with the I optimization.

orbit 6 : This orbit also suffered a close encounter, near timestep 87. The total energy of the system
has a sharp dip at that time, similar to that of orbit 5.

The refinement algorithm came excruciatingly close to finding a numerical shadow for this
orbit, at one point achieving a maximum 1-step error of 2.36×10−14 at timestep 87. Columns
L, C, R, and CR show significant speedups, but the combination CLR has an large drop
in speedup, suffering the same alternation between constant RUS and recomputed RUS as
did orbit 5. Perhaps the Large Shadow Step at that point was just slightly too large, thus
having a linear map that was invalid. A similar fate befell the column CULRI, which is
surprising considering that only half as many resolvents as column CULR were computed
per recomputed RUS refinement.

orbit 13 : This particle suffered two close encounters, both in the latter half of the orbit. The energy
had a large dip at each of the close encounters.

Shadowing was easily successful for all attempts that only included the first half of the orbit.
However, the attempt to shadow the entire orbit was fraught with problems trying to satisfy
the extreme sensitivity of the orbit to two close encounters. The second encounter was
sufficiently close that the LSODE integrator in the non-optimized version suffered a fatal
convergence error on the 4th refinement, trying to integrate the backwards resolvent past
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the encounter. This explains why the I column shows no speedup: it did not integrate any
resolvents backwards, and by chance the forward resolvents could be integrated well enough
that it tried more than twice as many refinement iterations than the unoptimized version
before giving up.12 The R version took longer because of time spent alternating between
constant and recomputed RUS.

orbit 19 : This orbit was shadowable for the first half, but not when the second half was included.
However, as can be seen in Figure 2.3, this particle suffered no close encounters. In addition,
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Figure 2.3: Orbit 19. Note there are no close encounters. It is not clear why this orbit was not
shadowable.

the energy (Figure 2.4) has no sharp dips like the other non-shadowable orbits did. The
observed energy fluctuation alone does not seem to provide an adequate explanation of the
non-shadowability of this orbit either, because other orbits, such as orbit 22 (Figure 2.5), had
even larger energy fluctuations, but were still shadowable over their entire length. The largest
1-step errors were consistently at or near time 0. Since the entire orbit appeared extremely
smooth, it is not understood why no shadow could be found over the entire length of the
noisy orbit.

Finally, referring to the speedup table, most of the speedups appear reasonable.

orbit 29 : This particle suffered a close encounter at timestep 53 (out of 128). The first 32 shadow
steps were shadowable, but the first 64 were not, and neither was the orbit as a whole. There
are no surprises in the speedup table; this orbit simply has a glitch at timestep 53.

12Although it is completely by chance that it took exactly the same time to 3 digits.
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Figure 2.4: Energy of orbit 19. There are no sharp dips. It is not clear why this orbit was not
shadowable.

There are many other observations about the shadowing attempts that cannot be seen in the
table.

• For any given seed, the various optimized versions generally produced shadows agreeing to 12
or 13 decimal places. (For large shadow steps, of course, only the points that appeared on the
large shadow steps — every 8 small steps — could be verified.) However, when computing
shadows of short orbits, the number of agreeing decimal places was much smaller, only 5 or 6
in some cases. I do not believe this is a problem, because with a short orbit, the neighborhood
of points that stay near to each other under evolution of the system is large. Furthermore, the
stable and unstable subspaces (recall, computed with arbitrary — but in these cases equal
— subspaces at the endpoints) will be slightly different, because of the resolvents having
different numerical errors. As the orbit gets longer, the neighborhood of initial conditions
that stay close together gets much smaller, and so any algorithm that computes a shadow
must compute ones that agree to many decimal places.

• When using constant RUS, the number of iterations required to find a shadow is always
greater by a small factor (usually 2 or 3) than not using constant RUS. However, this is far
offset by the speed of a constant RUS iteration, which took an average time of 11.4 seconds,
while a recompute RUS iteration averaged 157 seconds — 14 times longer. Since computing
a resolvent takes O(M 3) time, and computing a 1-step error takes only O(M 2) time, this
speedup is asymptotically O(M).

• The various optimizations seem to decrease reliability slightly. Although there was never a
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Figure 2.5: Energy of orbit 22. The total energy variation is more than twice as large as that of
orbit 19, but this orbit was still shadowable.

case (in this table) where an optimized version found a shadow that the non-optimized version
failed to find, there were a few cases vise versa. No repeatable pattern was observed in these
failures, so the reason is still a mystery.

2.2 Reliability of refinement

2.2.0 Refinement is not infallible

QT argue that if the refinement algorithm fails, there is good reason to believe that no shadow
exists. They apply two arguments. First, from the more rigourous study of simpler systems, glitches
are known to exist and are not just a failure of any particular refinement algorithm. Secondly, QT’s
results are consistent with a conjecture by GHYS on the frequency of glitches.

However, during the many shadowing runs done for this thesis, I came across several cases in
which a shadow failed to be found for shadow steps 0..S13 , but a shadow was found for the superset
0..2S. This occured for various values of S from 1 up to 32, where shadow steps were of size 0.1,
and tended to occur more often with larger M . Thus, there were cases in which a shadow was
not found for a noisy segment 3.2 time units long, but one was found for an extension of the same

130..S means the orbit from the beginning of shadow step 0 to the end of shadow step S.
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segment out to 6.4 time units. Clearly, if a shadow exists for 6.4 time units, the first 3.2 time units
of it must also be a valid shadow of the first 3.2 units of the original noisy orbit. This was verified
by using the first half of the 6.4 unit shadow as an initial guess for the 3.2-length shadow; the
refinement procedure then quickly succeeded in constructing a shadow with the standard boundary
conditions for a 3.2-length shadow. Thus, the refinement procedure initially failed to find a shadow
for the 3.2-length noisy orbit, even though one exists.

One of the smaller noisy orbits for which this occurred was also re-tested with all the above
optimizations turned off, with the same result. Thus this phenomenon does not seem to be related
to the optimizations.

It is difficult to say why this happens, but it certainly seems significant. Such a phenomenon also
occurs with Newton’s method: whether it converges often depends critically on the initial guess; a
certain guess may converge to a zero, while a nearby guess may not. To lessen the chance of this
failure, it is recommended that if the refinement procedure fails to find a shadow for a length S,
that the noisy orbit’s length be increased (eg., doubled), and then shadowing tried again on the
longer orbit. This is expensive, but necessary to lessen the chance of failing to find a shadow that
exists.

2.2.1 Other reliability issues

There are several other interesting issues concerning reliability.

Is it necessary to refine an orbit until the 1-step errors are close to the machine precision? QT
noted that most refinement sequences usually either showed geometric convergence within the first
few refinements, or else didn’t converge at all. Most of the experiments in this thesis showed similar
behaviour. Thus it may seem that if geometric convergence is observed, it is safe to assume that
geometric convergence would continue, and stop refinement before reaching the machine precision.
However, I have also observed several cases in which refinement progressed quickly at first, but
then the 1-step errors stopped decreasing before reaching the machine precision. I think these
cases raise some interesting issues. It is arguable that these cases are the most interesting ones:
why did refinement work at first but then fail? What characteristics of the orbit make it hard to
shadow? If refinement works at first but fails before reaching the machine precision, does this mean
there exist cases in which hypothetical refinement beyond machine precision would have failed? If
this were the case, then clearly refinement to machine precision does not always imply the existence
of a true shadow orbit. Sometimes this may simply be a word length problem: perhaps convergence
would have continued if more floating-point digits were available. I do not believe this is always the
case, however, because sometimes convergence stopped 6 decimal digits above machine precision
(i.e., at about 10−10).

One problem with the current standard machine precision of about 10−16 is that there is not
much room between the scale at which geometric convergence starts (about 10−5 or so), and the
machine precision. Thus it may be difficult to recognize geometric convergence when it occurs.
Possibly, more research into higher-precision refinement should be conducted. Conversely, I have
seen cases in which refinement seemed not to be progressing well for several steps, but eventually
refinement to machine precision was successful. This phenomenon sometimes also is observed using
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Newton’s method on standard zero-finding problems. It may or may not be an interesting issue
specifically concerning shadowing.

Finally, when deciding if a refinement is successful, how close to machine precision is “close”?
I have found empirically that as the number of dimensions increases, the minimum achievable
maximum 1-step error increases slightly with the number of moving particles. Given a machine
precision of εmach ≈ 10−16, I have found that maximum 1-step errors reach a plateau somewhat
below about 104 dtout M εmach, where dtout is the size of the shadow step. Although I have not
tried to precisely quantify this effect, there are reasonable arguments to explain it. First, when
large shadow steps are used, it should be no surprise that even the accurate integrator’s output will
vary based on slight perturbations of the input, and that the output variations will be larger if the
shadow step is longer. Since the errors may be assumed to be random at each internal step taken
by the accurate integrator, we may expect a variation-of-sum effect that grows as O(

√
dtout); this is

probably a better estimate than the linear growth assumed in the above formula. Furthermore, the
minimum achievable maximum 1-step error may be expected to grow as O(

√
M), rather than M ,

because the Euclidean norm used to measure the 1-step error has O(M) terms inside the radical.
Further study of a reasonable limit may prove fruitful.

Another problem is bounding the maximum number of refinements allowed before the algorithm
admits defeat, even if no other “fail” criterion has been met. I have found cases in which refinement
had to switch back and forth several times between constant RUS and recomputed RUS, resulting
in 40 or more total iterations (over 3/4 of which used constant RUS), eventually finding a successful
shadow. It is hard to know how any particular upper limit on the number of refinements would
affect reliability. I have arbitrarily chosen 100, although some may consider this high. Usually,
however, if the number of iterations is more than about 10, then shadowing the orbit for twice as
long will fail. In other words, if the number of refinement iterations is high, then there is a mild
trouble spot somewhere in the orbit. This trouble spot will become even more of a problem as we
attempt to build a longer shadow, because the volume of phase space around the trouble spot that
can contain shadows shrinks as the attempted shadowing distance increases (see the discussion on
“brittleness” of orbits in [8]). The total number of refinements, when refinement is working well,
seems independent of the dimension of the problem, and is typically about 5.
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Chapter 3

Some preliminary results of
high-dimensional shadowing

“Think not thy own shadow longer than that of others.”
— Sir Thomas Browne, Christian Morals. (1682)

Using this optimized algorithm, shadowing experiments were performed on N -body systems in
which M bodies move amongst N − M fixed ones. For systems of {N = 100,M}25

M=1 with a
variable-timestep integrator and no softening, our results show that the length of time an orbit is
shadowable decreases with increasing M . However, it is unclear whether this is owing to collective
effects of interacting moving particles, or whether each particle individually has a “glitch rate”,
causing the global glitch rate to increase linearly with the number of particles. However, for a
system of N = 65536,M = 1 with softening and integrating using constant timestep leapfrog, we
were able to shadow the moving particle for two dozen crossing times, which is encouraging.

3.0 High-dimensional N-body shadows encounter difficulty

When employing any particular method to study the reliability of large N -body simulations, it
is essential that the method follow the N -body system for a typical duration that an astronomer
is likely to simulate the system. Thus the short simulations in the previous chapter tabulating
speedups for simulations lasting one crossing time, though good enough for measuring speedups,
are not appropriate for studying the reliability of long running large N -body simulations. Although
the number of large N -body systems that I have studied is still small, some interesting trends have
already been seen.

The shadowing attempts documented in this chapter were produced in the same fashion as the
previous chapter, except that longer shadowing times were attempted, up to a maximum of 256
shadow steps (25.6 standard Heggie and Mathieu time units). Shadowing was attempted first on
1 shadow-step, then doubling the number of steps until two successive failures occured on noisy
orbits 2S and 4S steps long, where S was the longest shadow that was successfully constructed. In
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all the simulations, the total number of particles was held at N = 100, while the number of moving
particles M was varied from 1 to 25; N − M particles remained fixed.

Figure 3.0 plots the longest shadows found in the above systems as a function of M . The number
samples per value of M was 10 for all except M equal to 1,3, and 5, which had 50, 22, and 13
samples, respectively. Although the sample sizes are small and there is much noise in this graph, it
clearly shows that the length of the longest shadow that could be found, using the algorithms in this
thesis, decreases with increasing M . These shadowing attempts find the glitch position to within a
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Figure 3.0: Longest shadows found in unsoftened systems of N = 100 particles, as a function of
the number of moving particles M , while N − M of the particles remain fixed. The vertical axis
measures shadow steps, which were each 0.1 standard time units. Each diamond represents the
longest shadow found for a particular orbit. The piecewise-linear line links the averages of these
systems for each M . For comparison, the curve 250/M is also plotted.

factor of 2. The amount of noise in this graph could be decreased significantly by attempting more
accurately to pinpoint the timestep of a glitch.

Although this result does not look promising for N -body simulations, there are a number of
things to keep in mind. First, it is not clear that allowing M > 1 particles to move amongst
N > M particles is significantly more realistic, in comparison to real systems, than having only 1
particle moving, unless M >> 1. This is because as long as M << N , each moving particle acts
independently of the other moving particles. Until the number of moving particles is comparable
to the number of fixed ones, the moving particles will still encounter fixed ones more often than
their moving counterparts. It is not clear that 25 out of 100 is many enough moving particles.
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Second, perhaps the method used to scale this problem is not realistic. Perhaps a more realistic
scaling of the problem, at least from the astronomer’s point of view, would be to have M particles
move amongst 100M fixed ones. This would smoothen the gravitational potential, which we know
from other studies [21, 10] decreases the Lyapunov exponent, and thus may lengthen the average
shadow length.

Despite the above caveats, there is reason to believe that high-dimensional shadowing may be
difficult. Dawsen et al. [8] show that shadowing becomes extremely difficult in systems where a
Lyapunov exponent fluctuates about zero. They claim that such fluctuating Lyapunov exponents
occur frequently in high-dimensional systems. I do not believe the Dawson result applies to Hamil-
tonian systems, because it can be shown that the number of positive eigenvalues in a Hamiltonian
system is always equal to the number of negative ones.

However, I think there is another reason that high-dimensional shadowing of large N -body
systems may be difficult. Assume that, for a fixed noise amplitude, there exists a mean shadow
length L for a QT-like system of 1 particle moving amongst N >> 1 fixed ones. (It is possible
that no such mean exists, if the scatter in shadow lengths is great enough.) Then, in a system
in which M > 1, M << N particles move, each moving particle will encounter fixed particles far
more often than it encounters other moving particles. Thus each particle, if followed individually,
will have a mean shadow length comparable to L. Since work in this thesis and previous work
has shown that glitches seem to occur most often near close encounters, and since close encounters
occur as a stochastic process0, a shadow length of L is equivalent to a mean glitch rate of 1/L —
i.e., a particle encounters glitches at a rate of 1/L per unit time. Thus, the system of M moving
particles, as a whole, encounters glitches at a rate M/L per unit time, thus resulting in shadow
lengths proportional to L/M . As M becomes large enough to become comparable to N , the rate
that moving particles encounter other moving particles increases, perhaps offsetting the fact that
each encounter lasts a shorter period of time. This leads to the following conjecture:

Conjecture 1 If a chaotic system with D dimensions has an average shadow length of T time
units, then the equivalent system scaled appropriately to MD dimensions will have an average
shadow length of T/M time units, if everything else is held constant. (Especially the integration
accuracy.) In other words, shadow length is inversely proportional to dimensionality.

The graph in figure 3.0 seems consistent with this conjecture, as the curve 250/M indicates.

3.1 One QT-like experiment with N = 65, 536, M = 1

One experiment of a QT-like system was performed with 65,535 fixed particles and 1 moving
particle. This shadowing experiment took 20 hours on a Fujitsu VPX240/10 vector supercomputer.
A vectorization percentage of about 90% was achieved. A reasonable estimate for the time for this
simulation would take on a Sun SPARCstation IPC would be about 100 times longer — about 10
weeks. (If 99% vectorization could be achieved, it would be about 1,000 times longer — about 2
years.)

0See the discussion on stellar kinematics in [25], particularly pages 431–438.
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As with all the simulations in this thesis, the particles each had mass 1/N , were distributed
uniformly in the unit cube, and the initial velocity of the moving particle was also generated in the
uniform unit cube in velocity space. However, the intent for this simulation was to determine how
the particle would react to a smooth potential, so softening was set to 0.01; the average inter-particle
distance is 0.024. The noisy integrator used was time-centred leapfrog with a constant timestep of
0.001. Leapfrog is a second-order, time-symmetric, symplectic integration method used commonly
by astronomers doing large N -body simulations. Shadow steps were of size 0.1, and shadowing was
attempted over shadow step sequences of length of 1,2,4,8,. . . . The longest successful shadow was
512 shadow steps, or 51.2 standard time units. This is quite a long shadow, and is encouraging
for simulations of softened systems. Considering that the unsoftened M = 1 systems rarely had
shadows longer than 256, the one sample taken here with a shadow of length 512 would seem to
suggest a longer average shadow — although only by a factor of 4.

In hindsight, this experiment may not be significantly more realistic than one with, say, N =
103, M = 1 and appropriate softening. However, it does seem to show that in a smooth potential,
shadowing times are significantly longer than in more collisional systems.

3.2 An explanation of one of QT’s figures

Figure 3.1 contains the data of QT’s figure 6. In their text, they mention that part (b) of their figure
was included simply because the scatter was less when they plotted shadow length in timesteps
rather than absolute time. (Recall that they used every internal timestep of their integrator as
a shadow step; thus the shadow steps would be shorter near close encounters.) They could not
provide an adequate explanation of why the scatter was less in such a graph. What follows is a
tentative explanation.

First, I assume that there are two distinct error magnification processes effective in N -body
systems: one is magnification due to the global potential, and the other, a much higher magnification
that acts much less frequently, is due to collisional encounters.1 Thus, if we were to plot successive
times at which a doubling (or e-folding) occurs, the inter-doubling times would be shorter near close
encounters than far from them. Second, different solutions obviously have their close encounters
at different times in their evolutions. Third, define pseudo-time to progress in units such that the
changing doubling times occur at constant intervals in pseudo-time. The result is that pseudo-time
speeds up near close encounters, in comparison to real time. Since glitches occur more frequently
near close encounters in real time, glitches will occur at a more uniform rate in pseudo-time. Finally,
the dynamic timesteps used by QT’s integrator will more uniformly follow pseudo-time than does
real time, since it uses small timesteps near close encounters. In other words, the scatter of glitch
occurrence (i.e., end of a shadow that follows the noisy orbit) is less in pseudo-time (and therefore
in integration timesteps) than in real time. This may explain why QT’s graph 6(b) has less scatter
than their graph 6(a).

1There is some disagreement that these two factors exist. There seems to be an ongoing debate between Kandrup
and Smith [19, 20, 21], who argue that the growth of errors is due both to the global potential and to collisional effects,
while Goodman, Heggie, and Hut [10] argue that collisional encounters are the only process for the magnification of
errors.
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Figure 3.1: Data from QT’s figure 6, used with permission. Their caption was: “Results from
attempts to shadow noisy orbits in the unsoftened Plummer model of Fig. 1 [their figure 1, not
included in this thesis] (each point represents a different orbit): (a) maximum time T for which the
orbit could be shadowed versus the accuracy parameter η used to generate the orbit; (b) maximum
number of time-steps N for which orbit could be shadowed; (c) shadow distance δ versus the
maximum one-step phase-space error ε in the noisy orbit; (d) ε versus η. The dashed lines are
least-squares fits to the data.” See text for a possible explanation of why (b) has less scatter than
(a).
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Chapter 4

Further work

“On voit courir après l’ombre Tant de fous qu’on n’en sait pas.”
(“One sees chasing after shadows more fools than one can count.”)

— La Fontaine, Fables. (1668)

Finally, there is much further work that should be done both in general high dimensional shadow-
ing, and in the N -body shadowing in particular. We point out some possible directions for further
research.

There are two distinct questions addressed in this thesis. One deals with shadowing of high-
dimensional systems in general, and the other deals with shadowing of large N -body systems in
particular. It is not clear that these questions are close enough to each other for generalities to
be drawn from conclusions for the N -body problem. For example, the previous chapter noted
that scaling the problem by increasing the number of moving particles, while holding the total
number of particles constant, may not be the most realistic scaling method. From the perspective
of shadowing in general, it seems that this method changes as little as possible in the system while
the dimensionality of the problem is increased, thus arriving at a more “pure” result about how
shadowing behaves as the dimensionality increases. But astronomers may be more interested in
how the problem scales as the collisionality decreases with increasing N ; thus having M moving
particles amongst 100M fixed ones seems a more apt model for studying this question, because the
gravitational potential becomes smoother as the total number of particles is increased (assuming
the total mass is kept constant, so each particle has mass 1/N).

As QT point out, these are two separate questions, even for the N -body problem: even if,
in general, shadowing becomes more difficult as the number of dimensions increases, the N -body
problem becomes less chaotic (i.e., a smaller Lyapunov exponent) as the potential becomes more
smooth with increasing N . The question of how these two processes interact to affect shadowing
of large N -body systems is still open. Perhaps, even if Conjecture 1 is correct, the collisionality of
large N -body systems decreases enough with increasing N to offset the decreasing average shadow
length with increasing dimensionality.

In the first section of this chapter, I look at possible future work for shadowing of N -body
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systems; in the second section, I look at future work for shadowing in general.

4.0 Future work in N-body shadowing

4.0.0 A better understanding of stable and unstable directions

We should develop a better understanding of precisely what makes a direction stable or unstable.
When a moving particle passes close to a fixed particle, do any of the 3 stable and 3 unstable
directions lie along any of the obvious directions defined by the encounter? For example, along the
path? Perpendicular to the path in the plane of the orbit? Perpendicular to the plane of the orbit?
Figure 4.0 (page 47) shows some possibilities. It would be relatively easy to compute and output
the dot product of the stable and unstable vectors with these special directions during a collision,
but an even better understanding could be had by graphical visualization. What I have in mind
is a “roller coaster” ride on the moving particle of an M = 1 system as it moves throughout the
system. Along with the view from the particle, the vectors of the stable and unstable subspaces
could be rendered on screen, changing dynamically as the particle moves throughout the system.

4.0.1 Spherical vs. disk systems; collisional vs. not

To my knowledge, all large astrophysical N -body shadowing experiments and analyses have focused
on collisional spherical systems; none have focused on disk-like or collisionless systems, such as a
cold disk. Cold disks may be an ideal testing ground for shadowing of N -body systems where
collisionality effects are minimized.

4.0.2 Local glitch propagation

Definitions: A global orbit is a trajectory comprising the entire set of phase space co-ordinates of
the system as a whole. A local orbit is a subset of the phase space dimensions of the global orbit
that follows one individual particle. The terms global noisy orbit, local noisy orbit, global shadow
orbit, and local shadow orbit are the obvious extensions of these terms. A local glitch occurs when
one particle diverges from all possible shadows.

What is the effect on the system, as a whole, if two particles suffer a close encounter between
each other that causes them to diverge from all possible shadows? Do the dimensions act mostly
alone, suffering local glitches in small sets, or is there significant interaction between dimensions?
Are other particles affected almost immediately, resulting in a “cascade of local glitches”, or does
each particle’s orbit diverge independently, largely unaffected by other local glitches?

In a realistic model in which all particles move under their mutual gravitational influence, a
useful measure of error may be the number of particles that are still locally shadowable. In other
words, the high-dimensional phase-space shadow consists of individual paths for each particle; when
one particle undergoes a local glitch and starts to diverge from all possible shadows, the remainder
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(a) (b)

(c) (d)

Figure 4.0: Schematic diagrams of which directions may be stable and unstable in a close encounter
of a moving particle and a fixed particle. All perturbations happen at the point of closest approach.
(a) Schematic diagram of a close encounter, with the plane of the orbit in the plane of the paper.
(b) If the particle’s position is perturbed off the orbit, but still in the plane of the orbit, the particle
will diverge from it’s original orbit, although not exponentially. Thus an unstable direction at the
point of closest approach may be along the line joining the particles. (c) If the particle’s position is
perturbed along the orbit, but not off it, the perturbation is damped as the particle’s speed slows
down on the outbound path. Thus, at the point of closest approach, a stable direction may lie along
the orbit. (d) A perturbation out of the plane of the orbit, as seen nearly edge on; the plane of the
orbit becomes tilted. We see that initially the orbits converge, then cross at point p, then diverge
from one another. We thus see that whether a direction is “stable” or “unstable” may depend on
the duration that the variational equations are integrated. A resolvent from the point of closest
approach to p may label as “stable” this perturbation direction; a resolvent that goes beyond p
may label this direction as “unstable”.
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of the particles may not be affected by this for a long time. If the number of particles that undergo
local glitches increases only slowly, then the simulation still has a reasonable amount of validity
until some appreciable fraction of the particles have diverged from their local shadows. The fact
that the high-dimensional phase-space orbit, as a whole, diverges from the global shadow at the
point of the first local glitch may be too stringent an error criterion for large N -body shadowing.
This also leads to the question of what I call local glitch propagation: how does the local glitch of
one particle effect the others? Clearly, a particle that diverges from its shadow will start to effect
nearby particles, eventually participating in different collisions than would occur in any shadow.
How fast do these effects propagate throughout the system? Does the number of new local glitches
introduced during a small time interval depend on the number of local glitches already present
(leading to an exponential growth via the familiar first-order ODE y ′ = λy), or do most local
glitches arise independently of one another (giving a linear growth rate y ′ = c)? Can the two
be combined as simply as y′ = c0y + c1? If the system is softened, what does the divergence of
one particle’s noisy orbit from all possible shadows imply about the validity of the distribution of
particles? If the distribution is still valid, then the simulation is still valid under error measure 4
at the end of chapter 0, even if no shadow exists.

Practically speaking, if one is using a refinement algorithm to shadow the system, the question
arises of how a high-dimensional phase space trajectory should be shadowed when some of its
dimensions have undergone local glitches. Those dimensions are now invalid in some sense. Should
they simply be ignored for the purposes of the computation of 1-step errors? They cannot be
ignored completely, or else the shadowing model will not model glitch propagation, if present. This
leads naturally to the idea of what I call Fixed Motion Shadowing.

4.0.3 Fixed Motion Shadowing

Shadowing of particular particles in large fixed-motion N -body systems, or simply Fixed Motion
Shadowing, is more general than the form of shadowing done by Quinlan and Tremaine (QT) [29].
In their system, one particle moves amongst many particles whose positions are fixed. A more
realistic system may be to run a standard large N -body simulation with all N particles moving
for some large N , and then fix the motion of all particles in the simulation except one. This one
particle’s orbit is then refined in an attempt to decrease its 1-step errors under the influence of
the gravitational forces of all the other particles, whose motions remain fixed to their orbits in
the original noisy simulation. These particles are said to have fixed motion, while the individual
particle that is shadowed is said to have moving motion, and a shadow so constructed for this
particle is called a fixed motion shadow. Note that we would need to use interpolation to produce
the positions of the fixed motion particles between their noisy timesteps.

The meaning of this shadowing technique is as follows. Let the “moving motion” particle be
called m. Let the computed global noisy orbit be C. Observe that, if m’s 1-step errors can be
reduced to zero in a fixed-motion system, then m’s local noisy orbit Cm is close to an exact orbit
under the influence of the noisy positions of the other particles. In other words, Cm is close to a
true trajectory F that feels its forces from the noisy positions of all the fixed-motion particles —
their motions in C. F is the fixed motion shadow.0

0Think of it like this: F is produced by perturbing m’s orbit to have small 1-step errors under the influence of
some arbitrary, mysterious, external forces produced from a potential that is a function only of time. This potential
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This scheme certainly seems more realistic than a QT-like system. The existence of a fixed
motion shadow seems consistent with the existence of a global shadow, for if a global shadow exists
then each particle’s local noisy orbit, and in particular that of the moving motion one, must closely
follow its local shadow, and the fixed motion shadow will probably follow the local shadow more
closely than does the local noisy orbit.

Does the existence of a fixed motion shadow F for m imply the existence of a global shadow G
of comparable length? Probably not in general, because any local glitch of a particle other than m
will go undetected, since that particle’s motion is fixed. A fixed motion shadow probably provides
a statistic similar to the “average shadow length for an individual particle” in conjecture 1 from
chapter 3 (p. 42). This in turn may provide an estimate of the “how many particles are still
shadowable” error measure discussed in the previous section.

On the other hand, if a global shadow does exist, and if a fixed motion shadow follows the local
shadow more closely than does the local noisy orbit, then fixed motion shadowing may provide
an efficient method to refine the orbit of a high-dimensional trajectory, by allowing refinement of
each local orbit individually in time O(D3) where D is the number of phase space dimensions per
particle (six for N -body systems). Thus numerical shadowing of the entire phase space would take
time O(D3M) per refinement rather than O((DM)3). The question now is, how many refinements
will be needed? This method is analogous to a Gauss-Seidel method for the solution of the matrix
equation Ax = b. There may be interplay between local orbits so that refinement of orbit j changes
orbit i < j in a way inconsistent with the local correction that was applied to orbit i, even though
at the time orbit i was refined, the equation used was valid.1 Of course, this will not help if the
number of refinements required increases, for example, as O(M 2).

If there is no glitch propagation, then each particle encounters local glitches independent of all
the others, and so the existence of a fixed motion shadow implies nothing about the existence of
a global shadow. I expect that glitch propagation has significant influence in collisional systems,
although it probably has little influence in collisionless systems. A collisionless medium controls
the motion of its constituent particles via global potential effects, not local collisional effects. So in
a collisionless system, perhaps it is possible for other particles to have different motions, but in the
same general distribution, and still result in the chosen particle m having the same motion. For
collisionless systems, we are led to error measure 4 from Chapter 0.

Measuring Glitch propagation

To attempt the measurement of glitch propagation effects, we could allow M individual particles
to have moving motion amongst N fixed-motion particles. Then, when a moving motion particle’s
trajectory encounters a local glitch, we would note the time, and then transfer that particle to the
fixed motion group, giving it its original noisy motion, leaving M −1 particles with moving motion.
This would continue until all particles have been transferred to the fixed motion group. We could

comes from the other particles, each of whom moves as if it was sliding along a rigid, massless wire winding through
space. The motion of each particle along its wire — its motion in C — is a function of time, and only time.

1Note that the measure of 1-step error, and thus the measure of a quality of any refinement procedure, is still the
full phase-space 1-step error, which is cheap to compute. In this case, the savings per refinement is that we need to
compute M D × D resolvents per timestep, rather than one MD × MD resolvent.
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then try the same experiment, except rather than transfering glitched particles to the fixed motion
group with their original noisy motion, we could transfer them to the fixed motion group with the
new motion computed from the more accurate trajectory at the time of the local glitch. This may
help us compare glitch propagation effects between the noisy trajectory, and a trajectory with the
glitched particles “corrected”, which we assume is closer to a global shadow of the system.

If we can discover more rigourously what kinds of particle motion cause local glitches (one
criterion seems to be close encounters, or large, abrupt changes in energy), then we have a criterion
for choosing which particles should belong to the moving motion group. For, if we can successfully
fixed-motion shadow the particles that we suspect have the highest probability of undergoing local
glitches, then we can be even more confident that a global shadow exists. This leads to the following
conjecture:

Conjecture 2 If 1 particle (or M particles) can be fixed-motion shadowed for time T in a colli-
sional system, and no other particles satisfy glitch conditions, then a global shadow exists whose
length is comparable to T .

More generally, if we can show that for some subset G of all phase-space co-ordinates P , the
existence of a shadow of G ⇒ the existence of a shadow of P , then we need only attempt shadowing
of G. This is an extremely interesting area for further work in the general area of shadowing.

Fixed-motion shadowing could be tested against full-trajectory shadowing for at least models
like those in the previous chapter in which 25 particles move. We would attempt fixed motion
shadowing on 1 of the 25 particles, and see how the length of the local shadow compares with the
computed global shadow.

Finally, the entire issue of fixed-motion shadowing may be moot if figure 3.0 is a correct indication
of how shadowing scales with increasing dimensions: if shadowing is as difficult in high dimensional
systems as figure 3.0 suggests, then no amount of fiddling with high dimensional kluges, like fixed
motion shadowing, will be of any use.

4.0.4 Robustness of shadowing to small perturbations

If shadows can be shown to exist in large collisional N -body systems, it may allow them to be
simulated with simpler algorithms that ignore small perturbations that until now were thought to
be important to include in models of N -body systems.

For example, Aarseth’s [1] N -body integrator is a popular one for collisional systems. It includes
regularization, in which close encounters between 2 particles are solved using the analytical 2-
body solution with perturbations from the other particles. If a shadow can be shown to exist for
such a numerical solution, it may also be possible to show that a shadow would exist if outside
perturbations were ignored during 2-body close encounters. However, it’s possible this may not be
more efficient in the end, because the interval over which the two-body solution is valid may be
smaller. Aarseth’s integrator also uses individual timesteps for each particle, and interpolation of
positions for particles with large timesteps when computing their forces on particles with smaller
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timesteps. Perhaps discrete positions could be used for particles with large timesteps, rather than
their interpolated positions, and still produce shadowable solutions.

Another example of a system with perturbations is the Barnes and Hut [3] O(N log N) force
computation algorithm. This algorithm produces a force function that is discontinuous in both
space and time, thus introducing artificial, relatively large perturbations; often the force function
for each particle is computed only to about one part in 103 or 104 [5]. Furthermore these kicks have
been shown not to be random, but instead have a high correlation [5]. To test whether such a system
is shadowable, we would need many moving particles (preferably thousands), and then we should
try shadowing it using the O(N 2) force computation algorithm. There has already been work to
show that energy distributions are preserved between the Barnes-Hut and O(N 2) algorithms [15],
but no shadowing was attempted.

More generally, we would like to study the shadowability of solution methods that introduce
arbitrary “kicks” of various magnitudes. Roundoff and truncation error are the only kinds of kicks
that have been studied in shadowing of N -body systems thus far. As seen above, there are many
other types, and it is not clear which, if any, affect the robustness of shadowing results.

4.0.5 Noisy integrator issues

Thus far, not much has been said about the noisy integrator, other than that it has less accuracy
than the “accurate” integrator. Eventually, shadowing should be attempted while using the same
noisy integrator that astronomers commonly use — often leapfrog for collisionless systems, and
Aarseth’s [1] for collisional systems, and usually with individual timesteps for each particle. If it
turns out that long shadows do not exist for the integrators already in common use, but shadows
do exist for other noisy integrators, it may be necessary for shadowing researchers to dictate to
simulation researchers what integrator should be used, and at what accuracy. Comparisons should
be made between symplectic vs. not and time-symmetric vs. not. In the end, the question that
shadowing addresses is, How badly are we allowed to integrate?

Also, it should be noted that the leapfrog integrator should not be expected to work on non-
softened collisional problems. It is an integrator that is more suited to smooth potentials.

4.0.6 Other systems to shadow

Since time-centred leapfrog with constant timestep is a symplectic integrator, then when run with
a suitably small timestep, it gives the exact solution to some Hamiltonian system, although we do
not know exactly what system it is.2 Therefore, if we were to choose some timestep h, then the
solution we get can be considered to be a noisy solution to the exact Hamiltonian system that is
solved with the same equations integrated with a timestep of h/2. Thus, we may be able to learn
something about Hamiltonian shadowing in general by studying a simple system with the leapfrog
integrator, or any symplectic integrator.

2This idea, and the next, on related areas, are based on ideas from Scott Tremaine
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4.0.7 Related areas “inspired” by shadowing

Refinement is an iterative process that attempts to find a true solution close to a computed solution;
it is not known in advance if such a true solution exists or what its initial conditions will be.

What if we have a specific set of initial conditions for which we want to compute the true
solution, assuming we don’t mind that the solution method may take much more computational
effort than traditional solution methods, and assuming we know a solution exists and satisfies
certain conditions? Is it possible to develop an iterative method, analogous to refinement in a
shadowing context, that can reduce the 1-step errors towards a particular solution? Waveform
relaxation and defect correction methods both generate better and better approximations to a
solution of an initial value problem, but can they be applied to chaotic systems? Could such
iterative methods take advantage of knowledge of the stable and unstable subspaces by focusing
effort onto the unstable subspace in forward time and the stable subspace in reverse time? Or
possibly by using the unstable and stable vectors as basis vectors for all computation, rather than
the standard Euclidean orthonormal system? If so, such a solution method would be valuable, for
example, to long-term solar system researchers.3

4.0.8 Reliability issues less stringent than shadowing

If it turns out that shadowing is too stringent an error measure for large N -body systems, we may
need to resort to error measure 4 from Chapter 0.

To show that the distribution of particles evolves independent of the paths of individual particles,
and evolves similarly for equivalent input distributions, we could attempt many simulations whose
initial conditions are all drawn randomly from the same initial distribution. For example, we
could start with a distribution that “looks” like a specific spiral galaxy, and see if a low-resolution,
smoothed animation looks the same regardless of the initial positions of the particles, as long as
the initial distribution looks the same at low resolution.

If this fails, then we can try the same experiment using error measure 5 from Chapter 0. If this
fails, then I don’t know how to measure the reliability of N -body simulations.

3Note, however, that the practicality of attempting to integrate the solar system back several billion years seems
dubious. For, if it is already known that the system is chaotic, then there are an almost unlimited number of small
perturbations that we cannot know about — small undiscovered comets, or comets that passed through our system
once from deep space billions of years ago, which we cannot possibly account for; or stars in our galaxy that perturbed
the planets over the past few billion years.
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4.1 Further work on shadowing in general

4.1.0 Further work on the GHYS/QT algorithm

Here are some further ideas that I have not yet thought about in depth but should be consid-
ered. Some have already been mentioned briefly in previous chapters, but are collected here for
convenience.

• An obvious item that has been overlooked is the course grained parallelism inherent in the
computation of the resolvents: each resolvent is computed independently of all the others.
Thus, each could be computed on a separate processer, for example using the PVM (Parallel
Virtual Machinne) software package [9].

• When using constant RUS, and iterations are failing, is there some way to decide if the
problem is being caused by one (or a small number) of RUSi’s? If so, then only these RUSi’s
need be recomputed, rather than the RUS for the entire trajectory. This is potentially a large
savings. An obvious possibility is that the shadow step with the greatest 1-step error (or
better, the one that has the least improvement) is one that needs its RUSi recomputed. Or,
perhaps a shadow step with a 1-step error that refuses to decrease is too long, making the
resolvent invalid. Here, the shadow step could be split into smaller segments.

• There has been much work done in numerical analysis in the area of two-point boundary value
problems. Shadowing trajectories have two ends, and each end has a boundary condition: at
the last point, the growth of the expanding direction is pinched; the growth of the contracting
direction (expanding in negative time) is pinched at the starting point. Thus there are two
points, and boundary conditions at each end. The work on two-point boundary value problems
may have bearing on shadowing.

• Thus far, perturbations are allowed only in the phase-space co-ordinates of a trajectory.
It seems reasonable to also allow perturbations in time. Would it help if perturbations in
time were allowed as well? In other words, if the time ti at which the phase space point
pi is measured is allowed to be perturbed by small amounts, will shadowing be any more
successful?

• It has been repeatedly stated that the GHYS refinement procedure is similar to a Newton’s
method. It has many similarities: the resolvent is a Jacobian; the method is iterative; when
the Jacobian is recomputed at each step, there is geometric converge; and finally, it shows
some of the same weaknesses as Newton’s method. Is it possible that the GHYS procedure
is a Newton’s method in disguise, with boundary conditions? If it can be arranged to look
exactly like a Newton’s method, then the massive amount of literature and code devoted to
Newton’s method may be brought to bear on the problem.

The Newton’s method item can be formalized a bit more. In general, a one-dimensional Newton’s
method trying to find a zero of the equation y = f(x), given an initial guess x0, is usually written
as xk+1 = xk − f(xk)/f

′(xk). In the refinement problem, the function being computed and for
which we are trying to find a zero is the function that computes the 1-step errors along the entire
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trajectory. Let the entire trajectory be

P =











p0

p1
...

pS











,

Recall the equation for the 1-step errors is

ei+1 = pi+1 − f+(pi)

where f+ is the function that maps point pi at time ti to the true solution at time ti+1 by integrating
the solution of the ODE forwards in time. In the formulation I have in mind, we also need the
backward errors as defined in the SLES refinement algorithm:

bi−1 = pi−1 − f−(pi)

where f− integrates the ODE backwards in time. Then, I define a new type of 1-step error, called
the total 1-step error ai as the sum of the forward and backwards 1-step errors:

ai = ei + bi = 2pi − f−(pi+1) − f+(pi−1),

with e0 = bS = 0. Let the function that computes all the 1-step errors be

E(P) =











a0

a1
...

aS











.

Let P0 be the initial noisy orbit; Pk will represent the k iteration of the Newton’s method. Then
the Newton’s method for the GHYS refinement procedure may be written as

Pk+1 = Pk − J−1
E (Pk)E(Pk)

where JE = E′ is the Jacobian of the 1-step error function E, i.e., the derivative of the 1-step errors
with respect to the phase-space orbit. Writing out JE explicitly,

JE(Pk) =



























∂a0

∂p0

∂a0

∂p1
· · · ∂a0

∂pS

∂a1

∂p0

∂a1

∂p1
· · · ∂a1

∂pS

...
...

. . .
...

∂aS

∂p0

∂aS

∂p1
· · · ∂aS

∂pS



























,
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Taking partial derivatives, we see that

∂ai

∂pj
=















2I, (I is the identity matrix), along the diagonal where i = j.
−f ′

+(pi−1) along the lower diagonal where j = i − 1
−f ′

−(pi+1) along the upper diagonal where j = i + 1
0, otherwise

Finally, note that f ′
+(pi) = Li, and f ′

−(pi) = L−1
i−1, the resolvents that we already compute.

Somewhere here is where the boundary conditions will need to come into play: if the number of
phase space dimensions is 2D (each of the pi and ai vectors has 2D dimensions), then there are D
boundary conditions at each end of the trajectory, limiting the growth of the stable and unstable
components at their respective endpoints. The corrections (computed from J−1E) will probably
also need to be computed in a special order, as they are in the GHYS procedure. I do not currently
know how to include these boundary conditions in the problem, but assuming they can be, the
Newton iteration may look like the scheme described above.

4.1.1 More rigourous algorithms

Containment

Recall that GHYS intended refinement simply as a method to reduce noise in a trajectory, to
give the more rigourous process of containment a better chance to establish rigourous proof of the
existence of a true shadow. Clearly, one avenue of research is to generalize containment to work on
arbitrary Hamiltonian systems. It may even prove to be about as efficient, practically speaking, as
refining to machine epsilon; and most important, it is rigourous.

Uniqueness of the shadow

One interesting question, although it is not crucial to the proof of existence of shadows, is the
question of uniqueness of shadows. It is already known that if one shadow exists, then infinitely
many of them exist, all packed into a small volume of phase space. However, does choosing boundary
conditions for cs0

and cuS
give a unique true shadow from among the infinite number of true shadows

that exist, if one exists at all? It seems to me that fixing the conditions probably produces a unique
shadow, because the number of boundary conditions is exactly equal to the number of degrees of
freedom. For example, fixing the position and velocity at any given time produces a unique true
solution, so it seems reasonable to expect that fixing half the co-ordinates at one time a and half at
another time b would produce a unique solution (if one exists at all), as long as the image at time b
of the initial-condition-subspace at time a is linearly independent from the final-condition-subspace
at time b. It could also be tested numerically by trying slightly different first guesses for the shadow
before refinement starts, or possibly by using a different “accurate” integrator to find the shadow.
However, there may exist pathological boundary cases for which the solution is not unique.
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Appendix A

Review of the astrophysical N-body
problem

A.0 Basic N-body Equations

The general astrophysical N -body system consists of N particles moving according to Newton’s
three laws of motion, with Newton’s familiar gravitational law F = Gm1m2/r

2 being the only
source of force.

Let î, ĵ, k̂ be the unit vectors of the standard Cartesian (x, y, z) system. Let ri = xîi + yiĵ + zik̂
be the position vector of particle i. Let rij = rj − ri be the vector pointing from particle i to
particle j, i.e., the position of particle j with respect to particle i. Thus

rij = (xj − xi)̂i + (yj − yi)̂j + (zj − zi)k̂

The force that particle j exerts on particle i is

Fij =
Gmimj

r2
ij

r̄ij

=
Gmimj

|rij |3
rij

= −Fji

where G is the gravitational constant, mi,mj are the masses of the particles, rij is the vector
pointing from particle i to particle j, rij is the magnitude of this vector, and r̄ij is the unit vector
pointing in the direction of rij . Let the total force on particle i be Fi. It is the sum of all the forces
from all the other particles. Thus the total force Fi on particle i is

Fi =
∑

j 6=i

Fij =
∑

j 6=i

Gmimj
rij

|rij |3

=
∑

j 6=i

Gmimj
(xj − xi)̂i + (yj − yi)̂j + (zj − zi)k̂

[(xj − xi)2 + (yj − yi)2 + (zj − zi)2]
3

2

.
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For a 3-dimensional space, this is a set of 3N second-order ordinary differential equations (ODEs),
which we translate into a set of 6N first-order ODEs by letting the velocity v = ∂

∂tr ≡ ṙ and then

building the phase-space vector of the entire system as p ≡
(

r
v

)

. Thus the first-order ODE

system is

ṗ ≡ ∂

∂t
p =

∂

∂t

(

r
v

)

=

(

ṙ
v̇

)

=

(

v
a

)

where a is the vector representing the accelerations of all the particles.

At any given time, the position r and velocity v of every particle is known. Thus ṙ is simply v,
and v̇ is the set of time-derivatives of the velocity vi of each particle, where

v̇i = ai =
Fi

mi
=

∑

j 6=i

Gmj
(xj − xi)̂i + (yj − yi)̂j + (zj − zi)k̂

[(xj − xi)2 + (yj − yi)2 + (zj − zi)2]
3

2

. (A.0)

If force softening is used, the denominator instead becomes [(xj −xi)
2 +(yj −yi)

2 +(zj −zi)
2 +ε2

s]
3

2

where εs is the softening parameter.

A.1 Jacobian of an N − M fixed-particle system

Let the function computing the derivative of p =

(

r
v

)

be ṗ =

(

v
a

)

= f(p). f has no

dependence on time. The Jacobian of f , ∂f
∂p

is

∂f

∂p
=





∂v
∂r

∂v
∂v

∂a
∂r

∂a
∂v



 =





0 I

∂a
∂r

0





where 0 is the 3N -square zero matrix, and I is the 3N identity matrix. If all particles move,
then the entire Jacobian is 6N square. If only M particles move, then there is no meaning to
the entries in the Jacobian owned by particles that do not move, and so the Jacobian is only
6M square. The only difficult part of this Jacobian is ∂a

∂r
, which is a 3N -square matrix, and

a = (a1 a2 . . . aN )T , r = (r1 r2 . . . rN )T where ai = (aix aiy aiz)
T is the acceleration of particle i,

given by equation A.0, and ri = (rix riy riz)
T ≡ (xi yi zi)

T is its position in 3-space. Thus,

∂a

∂r
=



























∂a1

∂r1

∂a1

∂r2
· · · ∂a1

∂rN

∂a2

∂r1

∂a2

∂r2
· · · ∂a2

∂rN

...
...

. . . · · ·

∂aN

∂r1

∂aN

∂r2
· · · ∂aN

∂rN



























, where
∂ai

∂rj
=

















∂aix

∂xj

∂aix

∂yj

∂aix

∂zj

∂aiy

∂xj

∂aiy

∂yj

∂aiy

∂zj

∂aiz

∂xj

∂aiz

∂yj

∂aiz

∂zj
















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Finally, if we let α, β, γ represent one of {x, y, z}, it can be shown that

∂aiα

∂γj
=



















Gmj(3αjiγij)/r
5
ij , if α 6= γ and j 6= i

−∑

k 6=j Gmk(3αikγki)/r
5
ik, if α 6= γ and j = i

Gmj(r
2
ij − 3α2

ij)/r
5
ij , if α = γ and j 6= i

∑

k 6=i Gmk(−r2
ik + 3α2

ki)/r
5
ik, if α = γ and j = i

where, for example, αij is the α component of rij . If softening is employed, substitute (r2
ij + ε2)

for r2
ij and (r2

ij + ε2)5/2 for r5
ij .
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